PageTable supported an allocate() call that called back
through the Process to allocate memory, but did not have
a method to map addresses without allocating new pages.
It makes more sense for Process to do the allocation, so
this method was renamed allocateMem() and moved to Process,
and uses a new map() call on PageTable.
The remaining uses of the process pointer in PageTable
were only to get the name and the PID, so by passing these
in directly in the constructor, we can make PageTable
completely independent of Process.
By using an underscore, the "." is still available and can unambiguously be
used to refer to members of a structure if an operand is a structure, class,
etc. This change mostly just replaces the appropriate "."s with "_"s, but
there were also a few places where the ISA descriptions where handling the
extensions themselves and had their own regular expressions to update. The
regular expressions in the isa parser were updated as well. It also now
looks for one of the defined type extensions specifically after connecting "_"
where before it would look for any sequence of characters after a "."
following an operand name and try to use it as the extension. This helps to
disambiguate cases where a "_" may legitimately be part of an operand name but
not separate the name from the type suffix.
Because leaving the "_" and suffix on the variable name still leaves a valid
C++ identifier and all extensions need to be consistent in a given context, I
considered leaving them on as a breadcrumb that would show what the intended
type was for that operand. Unfortunately the operands can be referred to in
code templates, the Mem operand in particular, and since the exact type of Mem
can be different for different uses of the same template, that broke things.
Only create a memory ordering violation when the value could have changed
between two subsequent loads, instead of just when loads go out-of-order
to the same address. While not very common in the case of Alpha, with
an architecture with a hardware table walker this can happen reasonably
frequently beacuse a translation will miss and start a table walk and
before the CPU re-schedules the faulting instruction another one will
pass it to the same address (or cache block depending on the dendency
checking).
This patch has been tested with a couple of self-checking hand crafted
programs to stress ordering between two cores.
The performance improvement on SPEC benchmarks can be substantial (2-10%).
Having two StaticInst classes, one nominally ISA dependent and the other ISA
dependent, has not been historically useful and makes the StaticInst class
more complicated that it needs to be. This change merges StaticInstBase into
StaticInst.
This change pulls the instruction decoding machinery (including caches) out of
the StaticInst class and puts it into its own class. This has a few intrinsic
benefits. First, the StaticInst code, which has gotten to be quite large, gets
simpler. Second, the code that handles decode caching is now separated out
into its own component and can be looked at in isolation, making it easier to
understand. I took the opportunity to restructure the code a bit which will
hopefully also help.
Beyond that, this change also lays some ground work for each ISA to have its
own, potentially stateful decode object. We'd be able to include less
contextualizing information in the ExtMachInst objects since that context
would be applied at the decoder. Also, the decoder could "know" ahead of time
that all the instructions it's going to see are going to be, for instance, 64
bit mode, and it will have one less thing to check when it decodes them.
Because the decode caching mechanism has been separated out, it's now possible
to have multiple caches which correspond to different types of decoding
context. Having one cache for each element of the cross product of different
configurations may become prohibitive, so it may be desirable to clear out the
cache when relatively static state changes and not to have one for each
setting.
Because the decode function is no longer universally accessible as a static
member of the StaticInst class, a new function was added to the ThreadContexts
that returns the applicable decode object.
There are a set of locations is the linux kernel that are managed via
cache maintence instructions until all processors enable their MMUs & TLBs.
Writes to these locations are manually flushed from the cache to main
memory when the occur so that cores operating without their MMU enabled
and only issuing uncached accesses can receive the correct data. Unfortuantely,
gem5 doesn't support any kind of software directed maintence of the cache.
Until such time as that support exists this patch marks the specific cache blocks
that need to be coherent as non-cacheable until all CPUs enable their MMU and
thus allows gem5 to boot MP systems with caches enabled (a requirement for
booting an O3 cpu and thus an O3 CPU regression).
SEV instructions were originally implemented to cause asynchronous squashes
via the generateTCSquash() function in the O3 pipeline when updating the
SEV_MAILBOX miscReg. This caused race conditions between CPUs in an MP system
that would lead to a pipeline either going inactive indefinitely or not being
able to commit squashed instructions. Fixed SEV instructions to behave like
interrupts and cause synchronous sqaushes inside the pipeline, eliminating
the race conditions. Also fixed up the semantics of the WFE instruction to
behave as documented in the ARMv7 ISA description to not sleep if SEV_MAILBOX=1
or unmasked interrupts are pending.
SWP and SWPB now throw an undefined instruction exception if
SCTLR.SW == 0. This also required the MIDR to be changed
slightly so programs can correctly determine that gem5 supports
the ARM v7 behavior of SWP/SWPB (in ARM v6, SWP/SWPB were
deprecated, but not disabled at CPU startup).
Adds MISCREG_ID_MMFR2 and removes break on access to MISCREG_CLIDR. Both
registers now return values that are consistent with current ARM
implementations.
readBytes and writeBytes had the word "bytes" in their names because they
accessed blobs of bytes. This distinguished them from the read and write
functions which handled higher level data types. Because those functions don't
exist any more, this change renames readBytes and writeBytes to more general
names, readMem and writeMem, which reflect the fact that they are how you read
and write memory. This also makes their names more consistent with the
register reading/writing functions, although those are still read and set for
some reason.
Instead of clearing the entire TLB on initialization and flush, the code was
clearing only one element. This patch corrects the memsets in the init and
flush routines.
This patch fixes two problems with the O3 cpu model. The first is an issue
with an instruction fetch causing a fault on the next address while the
current macro-op is being issued. This happens when the micro-ops exceed
the fetch bandwdith and then on the next cycle the fetch stage attempts
to issue a request to the next line while it still has micro-ops to issue
if the next line faults a fault is attached to a micro-op in the currently
executing macro-op rather than a "nop" from the next instruction block.
This leads to an instruction incorrectly faulting when on fetch when
it had no reason to fault.
A similar problem occurs with interrupts. When an interrupt occurs the
fetch stage nominally stops issuing instructions immediately. This is incorrect
in the case of a macro-op as the current location might not be interruptable.
This change further eliminates cases where condition codes were being read
just so they could be written without change because the instruction in
question was supposed to preserve them. This is done by creating the condition
code code based on the input rather than just doing a simple substitution.
If one of the condition codes isn't being used in the execution we should only
read it if the instruction might be dependent on it. With the preeceding changes
there are several more cases where we should dynamically pick instead of assuming
as we did before.
Break up the condition code bits into NZ, C, V registers. These are individually
written and this removes some incorrect dependencies between instructions.
Move the saturating bit (which is also saturating) from the renamed register
that holds the flags to the CPSR miscreg and adds a allows setting it in a
similar way to the FP saturating registers. This removes a dependency in
instructions that don't write, but need to preserve the Q bit.
This change splits out the condcodes from being one monolithic register
into three blocks that are updated independently. This allows CPUs
to not have to do RMW operations on the flags registers for instructions
that don't write all flags.
Debug flags are ExecUser, ExecKernel, and ExecAsid. ExecUser and
ExecKernel are set by default when Exec is specified. Use minus
sign with ExecUser or ExecKernel to remove user or kernel tracing
respectively.
Add registers and components to better support the VersatileEB board.
Made the MIDR and SYS_ID register parameters to ArmSystem and RealviewCtrl
respectively.
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
This change fixes a small bug in the arm copyRegs() code where some registers
wouldn't be copied if the processor was in a mode other than MODE_USER.
Additionally, this change simplifies the way the O3 switchCpu code works by
utilizing TheISA::copyRegs() to copy the required context information
rather than the adhoc copying that goes on in the CPU model. The current code
makes assumptions about the visibility of int and float registers that aren't
true for all architectures in FS mode.
***
(1): get rid of expandForMT function
MIPS is the only ISA that cares about having a piece of ISA state integrate
multiple threads so add constants for MIPS and relieve the other ISAs from having
to define this. Also, InOrder was the only core that was actively calling
this function
* * *
(2): get rid of corespecific type
The CoreSpecific type was used as a proxy to pass in HW specific params to
a MIPS CPU, but since MIPS FS hasnt been touched for awhile, it makes sense
to not force every other ISA to use CoreSpecific as well use a special
reset function to set it. That probably should go in a PowerOn reset fault
anyway.
The ISAR registers describe which features the processor supports.
Transcribe the values listed in section B5.2.5 of the ARM ARM
into the registers as read-only values
This change speeds up booting, especially in MP cases, by not executing
udelay() on the core but instead skipping ahead tha amount of time that is being
delayed.
This patch prevents not executed conditional instructions marked as
IsQuiesce from stalling the pipeline indefinitely. If the instruction
is not executed the quiesceSkip psuedoinst is called which schedules a
wakes up call to the fetch stage.
This changes the RFE macroop into 3 microops:
URa = [sp]; URb = [sp+4]; // load CPSR,PC values from stack
sp = sp + offset; // optionally auto-increment
PC = URa; CPSR = URb; // write to the PC and CPSR.
Importantly:
- writing to PC is handled in the last micro-op.
- loading occurs prior to state changes.
There may not be a formally correct spelling for the past tense of mmap, but
mmapped is the spelling Google doesn't try to autocorrect. This makes sense
because it mirrors the past tense of map->mapped and not the past tense of
cape->caped.
--HG--
rename : src/arch/alpha/mmaped_ipr.hh => src/arch/alpha/mmapped_ipr.hh
rename : src/arch/arm/mmaped_ipr.hh => src/arch/arm/mmapped_ipr.hh
rename : src/arch/mips/mmaped_ipr.hh => src/arch/mips/mmapped_ipr.hh
rename : src/arch/power/mmaped_ipr.hh => src/arch/power/mmapped_ipr.hh
rename : src/arch/sparc/mmaped_ipr.hh => src/arch/sparc/mmapped_ipr.hh
rename : src/arch/x86/mmaped_ipr.hh => src/arch/x86/mmapped_ipr.hh
We only support EABI binaries, so there is no reason to support OABI syscalls.
The loader detects OABI calls and fatal() so there is no reason to even check
here.
The ARM performance counters are not currently supported by the model.
This patch interprets a 'reset performance counters' command to mean 'reset
the simulator statistics' instead.
Uncacheable requests were set as such only in atomic mode.
currState->delayed is checked in place of currState->timing for resetting
currState in atomic mode.
Some ISAs (like ARM) relies on hardware page table walkers. For those ISAs,
when a TLB miss occurs, initiateTranslation() can return with NoFault but with
the translation unfinished.
Instructions experiencing a delayed translation due to a hardware page table
walk are deferred until the translation completes and kept into the IQ. In
order to keep track of them, the IQ has been augmented with a queue of the
outstanding delayed memory instructions. When their translation completes,
instructions are re-executed (only their initiateAccess() was already
executed; their DTB translation is now skipped). The IEW stage has been
modified to support such a 2-pass execution.
Any change of control flow now resets the itstate to 0 mask and 0 condition,
except where the control flow alteration write into the cpsr register. These
case, for example return from an iterrupt, require the predecoder to recover
the itstate.
As there is a window of opportunity between the return from an interrupt
changing the control flow at the head of the pipe and the commit of the update
to the CPSR, the predecoder needs to be able to grab the ITstate early. This
is now handled by setting the forcedItState inside a PCstate for the control
flow altering instruction.
That instruction will have the correct mask/cond, but will not have a valid
itstate until advancePC is called (note this happens to advance the execution).
When the new PCstate is copy constructed it gets the itstate cond/mask, and
upon advancing the PC the itstate becomes valid.
Subsequent advancing invalidates the state and zeroes the cond/mask. This is
handled in isolation for the ARM ISA and should have no impact on other ISAs.
Refer arch/arm/types.hh and arch/arm/predecoder.cc for the details.
When this condition occurs the cpu should restart the fetch stage to fetch from
the original execution path. Fault handling in the commit stage is cleaned up a
little bit so the control flow is simplier. Finally, if an instruction is being
used to carry a fault it isn't executed, so the fault propagates appropriately.
Ran all the source files through 'perl -pi' with this script:
s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|;
s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|;
s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|;
Also did a little manual editing on some of the arch/*/isa_traits.hh files
and src/SConscript.
ARM instructions updating cumulative flags (ARM FP exceptions and saturation
flags) are not serialized.
Added aliases for ARM FP exceptions and saturation flags in FPSCR. Removed
write accesses to the FP condition codes for most ARM VFP instructions: only
VCMP and VCMPE instructions update the FP condition codes. Removed a potential
cause of seg. faults in the O3 model for NEON memory macro-ops (ARM).
The L1 cache may have been accessed to provide this data, which confuses
it, if it ends up being accesses twice in one cycle. Instead wait 1 tick
which will force the timing simple CPU to forward to its next clock cycle
when the translation completes.
Also prevent multiple outstanding table walks from occuring at once.
This change modifies the way prefetches work. They are now like normal loads
that don't writeback a register. Previously prefetches were supposed to call
prefetch() on the exection context, so they executed with execute() methods
instead of initiateAcc() completeAcc(). The prefetch() methods for all the CPUs
are blank, meaning that they get executed, but don't actually do anything.
On Alpha dead cache copy code was removed and prefetches are now normal ops.
They count as executed operations, but still don't do anything and IsMemRef is
not longer set on them.
On ARM IsDataPrefetch or IsInstructionPreftech is now set on all prefetch
instructions. The timing simple CPU doesn't try to do anything special for
prefetches now and they execute with the normal memory code path.
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.
PC type:
Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.
These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.
Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.
Advancing the PC:
The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.
One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.
Variable length instructions:
To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.
ISA parser:
To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.
Return address stack:
The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.
Change in stats:
There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.
TODO:
Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
In the process make add skipFuction() to handle isa specific function skipping
instead of ifdefs and other ugliness. For almost all ABIs, 64 bit arguments can
only start in even registers. Size is now passed to getArgument() so that 32
bit systems can make decisions about register selection for 64 bit arguments.
The number argument is now passed by reference because getArgument() will need
to change it based on the size of the argument and the current argument number.
For ARM, if the argument number is odd and a 64-bit register is requested the
number must first be incremented to because all 64 bit arguments are passed
in an even argument register. Then the number will be incremented again to
access both halves of the argument.
This reduces the scope of those includes and makes it less likely for there to
be a dependency loop. This also moves the hashing functions associated with
ExtMachInst objects to be with the ExtMachInst definitions and out of
utility.hh.
Also move the "Fault" reference counted pointer type into a separate file,
sim/fault.hh. It would be better to name this less similarly to sim/faults.hh
to reduce confusion, but fault.hh matches the name of the type. We could change
Fault to FaultPtr to match other pointer types, and then changing the name of
the file would make more sense.
Without this flag set, page-crossing requests were not split into two mem
request.
Depending on the alignment bit in the SCTLR, misaligned access could
raise a fault. However it seems unnecessary to implement that.
This fault can used to flush the pipe, not including the faulting instruction.
The particular case I needed this was for a self-modifying code. It needed to
drain the store queue and force the following instruction to refetch from
icache. DCCMVAC cp15 mcr instruction is modified to raise this fault.
When decoding a srs instruction, invalid mode encoding returns invalid instruction.
This can happen when garbage instructions are fetched from mispredicted path
Allow some loads that update the base register to use just two micro-ops. three
micro-ops are only used if the destination register matches the offset register
or the PC is the destination regsiter. If the PC is updated it needs to be
the last micro-op otherwise O3 will mispredict.