The default cache configuration script currently import the O3_ARM_v7a
model configuration, which depends on the O3 CPU. This breaks if gem5
has been compiled without O3 support. This changeset removes the
dependency by only importing the model if it is requested by the
user. As a bonus, it actually removes some code duplication in the
configuration scripts.
CPU switching consists of the following steps:
1. Drain the system
2. Switch out old CPUs (cpu.switchOut())
3. Change the system timing mode to the mode the new CPUs require
4. Flush caches if switching to hardware virtualization
5. Inform new CPUs of the handover (cpu.takeOverFrom())
6. Resume the system
m5.switchCpus() previously only did step 2 & 5. Since information
about the new processors' memory system requirements is now exposed,
do all of the steps above.
This patch adds automatic memory system switching and flush (if
needed) to switchCpus(). Additionally, it adds optional draining to
switchCpus(). This has the following implications:
* changeToTiming and changeToAtomic are no longer needed, so they have
been removed.
* changeMemoryMode is only used internally, so it is has been renamed
to be private.
* switchCpus requires a reference to the system containing the CPUs as
its first parameter.
WARNING: This changeset breaks compatibility with existing
configuration scripts since it changes the signature of
m5.switchCpus().
The CPUs supported by the configuration scripts used to be
hard-coded. This was not ideal for several reasons. For example, the
configuration scripts depend on all CPU models even though only a
subset might have been compiled.
This changeset adds a new module to the configuration scripts that
automatically discovers the available CPU models from the compiled
SimObjects. As a nice bonus, the use of introspection allows us to
automatically generate a list of available CPU models suitable for
printing. This list is augmented with the Python doc string from the
underlying class if available.
The configuration scripts currently hard-code the requirements of each
CPU. This is clearly not optimal as it makes writing new configuration
scripts painful and adding new CPU models requires existing scripts to
be updated. This patch adds the following class methods to the base
CPU and all relevant CPUs:
* memory_mode -- Return a string describing the current memory mode
(invalid/atomic/timing).
* require_caches -- Does the CPU model require caches?
* support_take_over -- Does the CPU support CPU handover?
The run() method in Simulation.py used to call sys.exit() when the
simulator exits. This is undesirable when user has requested the
simulator to be run in interactive mode since it causes the simulator
to exit rather than entering the interactive Python environment.
This patch moves the default DRAM parameters from the SimpleDRAM class
to two different subclasses, one for DDR3 and one for LPDDR2. More can
be added as we go forward.
The regressions that previously used the SimpleDRAM are now using
SimpleDDR3 as this is the most similar configuration.
This patch moves the branch predictor files in the o3 and inorder directories
to src/cpu/pred. This allows sharing the branch predictor across different
cpu models.
This patch was originally posted by Timothy Jones in July 2010
but never made it to the repository.
--HG--
rename : src/cpu/o3/bpred_unit.cc => src/cpu/pred/bpred_unit.cc
rename : src/cpu/o3/bpred_unit.hh => src/cpu/pred/bpred_unit.hh
rename : src/cpu/o3/bpred_unit_impl.hh => src/cpu/pred/bpred_unit_impl.hh
rename : src/cpu/o3/sat_counter.hh => src/cpu/pred/sat_counter.hh
Used as a command in full-system scripts helps the user ensure the benchmarks have finished successfully.
For example, one can use:
/path/to/benchmark args || /sbin/m5 fail 1
and thus ensure gem5 will exit with an error if the benchmark fails.
The defer_registration parameter is used to prevent a CPU from
initializing at startup, leaving it in the "switched out" mode. The
name of this parameter (and the help string) is confusing. This patch
renames it to switched_out, which should be more descriptive.
This patch generalises the address range resolution for the I/O cache
and I/O bridge such that they do not assume a single memory. The patch
involves adding a parameter to the system which is then defined based
on the memories that are to be visible from the I/O subsystem, whether
behind a cache or a bridge.
The change is needed to allow interleaved memory controllers in the
system.
globalHistoryBits, globalPredictorSize, and choicePredictorSize are decoupled.
globalHistoryBits controls how much history is kept, global and choice
predictor sizes control how much of that history is used when accessing
predictor tables. This way, global and choice predictors can actually be
different sizes, and it is no longer possible to walk off the predictor arrays
and cause a seg fault.
There are now individual thresholds for choice, global, and local saturating
counters, so that taken/not taken decisions are correct even when the
predictors' counters' sizes are different.
The interface for localPredictorSize has been removed from TournamentBP because
the value can be calculated from localHistoryBits.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
There is no point in exporting the old drain() method in
Simulate.py. It should only be used internally by doDrain(). This
patch moves the old drain() method into doDrain() and renames
doDrain() to drain().
Changeset 4f54b0f229b5 removed the call to doDrain in changeToTiming
based on the assumption that the system does not need draining when
running in atomic mode. This is a false assumption since at least the
System class requires the system to be drained before it allows
switching of memory modes. This patch reverts that part of the
changeset.
This patch unified the L1 and L2 caches used throughout the
regressions instead of declaring different, but very similar,
configurations in the different scripts.
The patch also changes the default L2 configuration to match what it
used to be for the fs and se scripts (until the last patch that
updated the regressions to also make use of the cache config). The
MSHRs and targets per MSHR are now set to a more realistic default of
20 and 12, respectively.
As a result of both the aforementioned changes, many of the regression
stats are changed. A follow-on patch will bump the stats.
This patch favours using SimpleDRAM with the default timing instead of
SimpleMemory for all regressions that involve the o3 or inorder CPU,
or are full system (in other words, where the actual performance of
the memory is important for the overall performance).
Moving forward, the solution for FSConfig and the users of fs.py and
se.py is probably something similar to what we use to choose the CPU
type. I envision a few pre-set configurations SimpleLPDDR2,
SimpleDDR3, etc that can be choosen by a dram_type option. Feedback on
this part is welcome.
This patch changes plenty stats and adds all the DRAM controller
related stats. A follow-on patch updates the relevant statistics. The
total run-time for the entire regression goes up with ~5% with this
patch due to the added complexity of the SimpleDRAM model. This is a
concious trade-off to ensure that the model is properly tested.
This patch uses the common L1, L2 and IOCache configuration for the
regressions that all share the same cache parameters. There are a few
regressions that use a slightly different configuration (memtest,
o3-timing=mp, simple-atomic-mp and simple-timing-mp), and the latter
are not changed in this patch. They will be updated in a future patch.
The common cache configurations are changed to match the ones used in
the regressions, and are slightly changed with respect to what they
were. Hopefully this means we can converge on a common base
configuration, used both in the normal user configurations and
regressions.
As only regressions that shared the same cache configuration are
updated, no regressions are affected.
This patch changes the cache-related latencies from an absolute time
expressed in Ticks, to a number of cycles that can be scaled with the
clock period of the caches. Ultimately this patch serves to enable
future work that involves dynamic frequency scaling. As an immediate
benefit it also makes it more convenient to specify cache performance
without implicitly assuming a specific CPU core operating frequency.
The stat blocked_cycles that actually counter in ticks is now updated
to count in cycles.
As the timing is now rounded to the clock edges of the cache, there
are some regressions that change. Plenty of them have very minor
changes, whereas some regressions with a short run-time are perturbed
quite significantly. A follow-on patch updates all the statistics for
the regressions.
This patch changes the CoherentBus between the L1s and L2 to use the
CPU clock and also four times the width compared to the default
bus. The parameters are not intending to fit every single scenario,
but rather serve as a better startingpoint than what we previously
had.
Note that the scripts that do not use the addTwoLevelCacheHiearchy are
not affected by this change.
A separate patch will update the stats.
In the current caches the hit latency is paid twice on a miss. This patch lets
a configurable response latency be set of the cache for the backward path.
This patch simplifies the Range object hierarchy in preparation for an
address range class that also allows striping (e.g. selecting a few
bits as matching in addition to the range).
To extend the AddrRange class to an AddrRegion, the first step is to
simplify the hierarchy such that we can make it as lean as possible
before adding the new functionality. The only class using Range and
MetaRange is AddrRange, and the three classes are now collapsed into
one.
When switching from an atomic CPU to any of the timing CPUs, a drain is
unnecessary since no events are scheduled in atomic mode. However, when
trying to switch CPUs starting with a timing CPU, there may be events
scheduled. This change ensures that all events are drained from the system
by calling m5.drain before switching CPUs.
This patch allows for specifying multiple programs via command line. It also
adds an option for specifying whether to use of SMT. But SMT does not work for
the o3 cpu as of now.
This patch removes the NACKing in the bridge, as the split
request/response busses now ensure that protocol deadlocks do not
occur, i.e. the message-dependency chain is broken by always allowing
responses to make progress without being stalled by requests. The
NACKs had limited support in the system with most components ignoring
their use (with a suitable call to panic), and as the NACKs are no
longer needed to avoid protocol deadlocks, the cleanest way is to
simply remove them.
The bridge is the starting point as this is the only place where the
NACKs are created. A follow-up patch will remove the code that deals
with NACKs in the endpoints, e.g. the X86 table walker and DMA
port. Ultimately the type of packet can be complete removed (until
someone sees a need for modelling more complex protocols, which can
now be done in parts of the system since the port and interface is
split).
As a consequence of the NACK removal, the bridge now has to send a
retry to a master if the request or response queue was full on the
first attempt. This change also makes the bridge ports very similar to
QueuedPorts, and a later patch will change the bridge to use these. A
first step in this direction is taken by aligning the name of the
member functions, as done by this patch.
A bit of tidying up has also been done as part of the simplifications.
Surprisingly, this patch has no impact on any of the
regressions. Hence, there was never any NACKs issued. In a follow-up
patch I would suggest changing the size of the bridge buffers set in
FSConfig.py to also test the situation where the bridge fills up.
This patch fixes the checkpointing by ensuring that the directory is
passer to the scriptCheckpoints function, and that the num_checkpoints
is not used before it is initialised.
This patch adds a --repeat-switch option that will enable repeat core
switching at a user defined period (set with --switch-freq option).
currently, a switch can only occur between like CPU types. inorder CPU
switching is not supported.
*note*
this patch simply allows a config that will perform repeat switching, it
does not fix drain/switchout functionality. if you run with repeat switching
you will hit assertion failures and/or your workload with hang or die.
This patch moves the code related to checkpointing from the run() function to
several different functions. The aim is to make the code more manageable. No
functionality changes are expected, but since the code is kind of unruly, it
is possible that some change might have creeped in.
This changes the way in which the cpu class while restoring from a checkpoint
is set. Earlier it was assumed if cpu type with which to restore is not same
as the cpu type with the which to run the simulation, then the checkpoint
should be restored with the atomic cpu. This assumption is being dropped. The
checkpoint can now be restored with any cpu type, the default being atomic cpu.
This patch changes the se and fs script to use the clock option and
not simply set the CPUs clock to 2 GHz. It also makes a minor change
to the assignment of the switch_cpus clock to allow different clocks.
1) Modifies Benchmarks.py to add support for Android ICS and BBench on Android ICS.
2) An rcS script is added for BBench on ICS.
3) Separates benchmark entries and rcS scripts for GB/ICS
4) Removes the debugging output from the existing BBench run script. These
print statements were used for debugging and they seemed to confuse users
into believing they should see some terminal output.
As status matrix, MIPS fs does not work. Hence, these options are not
required. Secondly, the function is setting param values for a CPU class.
This seems strange, should probably be done in a different way.
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
Added the options to Options.py for FS mode with backward compatibility. It is
good to provide an option to specify the disk image and the memory size from
command line since a lot of disk images are created to support different
benchmark suites as well as per user needs. Change in program also leads to
change in memory requirements. These options provide the interface to provide
both disk image and memory size from the command line and gives more
flexibility.
This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.
All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.
To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.
Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
--HG--
rename : src/mem/PhysicalMemory.py => src/mem/AbstractMemory.py
rename : src/mem/PhysicalMemory.py => src/mem/SimpleMemory.py
rename : src/mem/physical.cc => src/mem/abstract_mem.cc
rename : src/mem/physical.hh => src/mem/abstract_mem.hh
rename : src/mem/physical.cc => src/mem/simple_mem.cc
rename : src/mem/physical.hh => src/mem/simple_mem.hh
With recent changes to the memory system, a port cannot be assigned a peer
port twice. While making use of the Ruby memory system in FS mode, DMA
ports were assigned peer twice, once for the classic memory system
and once for the Ruby memory system. This patch removes this double
assignment of peer ports.
I am not too happy with the way options are added in files se.py and fs.py
currently. This patch moves all the options to the file Options.py, functions
from which are called when required.
Enables the CheckerCPU to be selected at runtime with the --checker option
from the configs/example/fs.py and configs/example/se.py configuration
files. Also merges with the SE/FS changes.