MEM: Enable multiple distributed generalized memories

This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.

All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.

To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.

Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.

--HG--
rename : src/mem/PhysicalMemory.py => src/mem/AbstractMemory.py
rename : src/mem/PhysicalMemory.py => src/mem/SimpleMemory.py
rename : src/mem/physical.cc => src/mem/abstract_mem.cc
rename : src/mem/physical.hh => src/mem/abstract_mem.hh
rename : src/mem/physical.cc => src/mem/simple_mem.cc
rename : src/mem/physical.hh => src/mem/simple_mem.hh
This commit is contained in:
Andreas Hansson 2012-04-06 13:46:31 -04:00
parent dbe1608fd5
commit b00949d88b
64 changed files with 1415 additions and 925 deletions

View file

@ -73,7 +73,7 @@ def makeLinuxAlphaSystem(mem_mode, mdesc = None):
# base address (including the PCI config space)
self.bridge = Bridge(delay='50ns', nack_delay='4ns',
ranges = [AddrRange(IO_address_space_base, Addr.max)])
self.physmem = PhysicalMemory(range = AddrRange(mdesc.mem()))
self.physmem = SimpleMemory(range = AddrRange(mdesc.mem()))
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
self.physmem.port = self.membus.master
@ -109,7 +109,7 @@ def makeLinuxAlphaRubySystem(mem_mode, mdesc = None):
ide = IdeController(disks=[Parent.disk0, Parent.disk2],
pci_func=0, pci_dev=0, pci_bus=0)
physmem = PhysicalMemory(range = AddrRange(mdesc.mem()))
physmem = SimpleMemory(range = AddrRange(mdesc.mem()))
self = LinuxAlphaSystem(physmem = physmem)
if not mdesc:
# generic system
@ -178,8 +178,10 @@ def makeSparcSystem(mem_mode, mdesc = None):
self.t1000 = T1000()
self.t1000.attachOnChipIO(self.membus)
self.t1000.attachIO(self.iobus)
self.physmem = PhysicalMemory(range = AddrRange(Addr('1MB'), size = '64MB'), zero = True)
self.physmem2 = PhysicalMemory(range = AddrRange(Addr('2GB'), size ='256MB'), zero = True)
self.physmem = SimpleMemory(range = AddrRange(Addr('1MB'), size = '64MB'),
zero = True)
self.physmem2 = SimpleMemory(range = AddrRange(Addr('2GB'), size ='256MB'),
zero = True)
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
self.physmem.port = self.membus.master
@ -269,8 +271,8 @@ def makeArmSystem(mem_mode, machine_type, mdesc = None, bare_metal=False):
if bare_metal:
# EOT character on UART will end the simulation
self.realview.uart.end_on_eot = True
self.physmem = PhysicalMemory(range = AddrRange(Addr(mdesc.mem())),
zero = True)
self.physmem = SimpleMemory(range = AddrRange(Addr(mdesc.mem())),
zero = True)
else:
self.kernel = binary('vmlinux.arm.smp.fb.2.6.38.8')
self.machine_type = machine_type
@ -283,8 +285,10 @@ def makeArmSystem(mem_mode, machine_type, mdesc = None, bare_metal=False):
boot_flags = 'earlyprintk console=ttyAMA0 lpj=19988480 norandmaps ' + \
'rw loglevel=8 mem=%s root=/dev/sda1' % mdesc.mem()
self.physmem = PhysicalMemory(range = AddrRange(self.realview.mem_start_addr,
size = mdesc.mem()))
self.physmem = SimpleMemory(range =
AddrRange(self.realview.mem_start_addr,
size = mdesc.mem()),
conf_table_reported = True)
self.realview.setupBootLoader(self.membus, self, binary)
self.gic_cpu_addr = self.realview.gic.cpu_addr
self.flags_addr = self.realview.realview_io.pio_addr + 0x30
@ -319,7 +323,7 @@ def makeLinuxMipsSystem(mem_mode, mdesc = None):
self.iobus = Bus(bus_id=0)
self.membus = MemBus(bus_id=1)
self.bridge = Bridge(delay='50ns', nack_delay='4ns')
self.physmem = PhysicalMemory(range = AddrRange('1GB'))
self.physmem = SimpleMemory(range = AddrRange('1GB'))
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
self.physmem.port = self.membus.master
@ -424,7 +428,7 @@ def makeX86System(mem_mode, numCPUs = 1, mdesc = None, self = None, Ruby = False
self.mem_mode = mem_mode
# Physical memory
self.physmem = PhysicalMemory(range = AddrRange(mdesc.mem()))
self.physmem = SimpleMemory(range = AddrRange(mdesc.mem()))
# Platform
self.pc = Pc()

View file

@ -140,8 +140,8 @@ for scale in treespec[:-2]:
prototypes.insert(0, next)
# system simulated
system = System(funcmem = PhysicalMemory(),
physmem = PhysicalMemory(latency = "100ns"))
system = System(funcmem = SimpleMemory(in_addr_map = False),
physmem = SimpleMemory(latency = "100ns"))
def make_level(spec, prototypes, attach_obj, attach_port):
fanout = spec[0]

View file

@ -83,11 +83,11 @@ else:
sys.exit(1)
#
# Create the M5 system. Note that the PhysicalMemory Object isn't
# Create the M5 system. Note that the Memory Object isn't
# actually used by the rubytester, but is included to support the
# M5 memory size == Ruby memory size checks
#
system = System(physmem = PhysicalMemory())
system = System(physmem = SimpleMemory())
#
# Create the ruby random tester

View file

@ -105,8 +105,8 @@ cpus = [ MemTest(atomic = False,
for i in xrange(options.num_cpus) ]
system = System(cpu = cpus,
funcmem = PhysicalMemory(),
physmem = PhysicalMemory())
funcmem = SimpleMemory(in_addr_map = False),
physmem = SimpleMemory())
if options.num_dmas > 0:
dmas = [ MemTest(atomic = False,

View file

@ -103,7 +103,7 @@ cpus = [ NetworkTest(fixed_pkts=options.fixed_pkts,
# create the desired simulated system
system = System(cpu = cpus,
physmem = PhysicalMemory())
physmem = SimpleMemory())
Ruby.create_system(options, system)

View file

@ -92,11 +92,11 @@ tester = RubyTester(check_flush = check_flush,
wakeup_frequency = options.wakeup_freq)
#
# Create the M5 system. Note that the PhysicalMemory Object isn't
# Create the M5 system. Note that the Memory Object isn't
# actually used by the rubytester, but is included to support the
# M5 memory size == Ruby memory size checks
#
system = System(tester = tester, physmem = PhysicalMemory())
system = System(tester = tester, physmem = SimpleMemory())
Ruby.create_system(options, system)

View file

@ -152,7 +152,7 @@ CPUClass.numThreads = numThreads;
np = options.num_cpus
system = System(cpu = [CPUClass(cpu_id=i) for i in xrange(np)],
physmem = PhysicalMemory(range=AddrRange("512MB")),
physmem = SimpleMemory(range=AddrRange("512MB")),
membus = Bus(), mem_mode = test_mem_mode)
# Sanity check

View file

@ -133,8 +133,9 @@ def create_system(options, system, piobus, dma_ports, ruby_system):
cntrl_count += 1
phys_mem_size = long(system.physmem.range.second) - \
long(system.physmem.range.first) + 1
phys_mem_size = 0
for mem in system.memories.unproxy(system):
phys_mem_size += long(mem.range.second) - long(mem.range.first) + 1
mem_module_size = phys_mem_size / options.num_dirs
for i in xrange(options.num_dirs):

View file

@ -104,8 +104,9 @@ def create_system(options, system, piobus, dma_ports, ruby_system):
cntrl_count += 1
phys_mem_size = long(system.physmem.range.second) - \
long(system.physmem.range.first) + 1
phys_mem_size = 0
for mem in system.memories.unproxy(system):
phys_mem_size += long(mem.range.second) - long(mem.range.first) + 1
mem_module_size = phys_mem_size / options.num_dirs
for i in xrange(options.num_dirs):

View file

@ -132,8 +132,9 @@ def create_system(options, system, piobus, dma_ports, ruby_system):
cntrl_count += 1
phys_mem_size = long(system.physmem.range.second) - \
long(system.physmem.range.first) + 1
phys_mem_size = 0
for mem in system.memories.unproxy(system):
phys_mem_size += long(mem.range.second) - long(mem.range.first) + 1
mem_module_size = phys_mem_size / options.num_dirs
for i in xrange(options.num_dirs):

View file

@ -155,8 +155,9 @@ def create_system(options, system, piobus, dma_ports, ruby_system):
cntrl_count += 1
phys_mem_size = long(system.physmem.range.second) - \
long(system.physmem.range.first) + 1
phys_mem_size = 0
for mem in system.memories.unproxy(system):
phys_mem_size += long(mem.range.second) - long(mem.range.first) + 1
mem_module_size = phys_mem_size / options.num_dirs
for i in xrange(options.num_dirs):

View file

@ -130,8 +130,9 @@ def create_system(options, system, piobus, dma_ports, ruby_system):
cntrl_count += 1
phys_mem_size = long(system.physmem.range.second) - \
long(system.physmem.range.first) + 1
phys_mem_size = 0
for mem in system.memories.unproxy(system):
phys_mem_size += long(mem.range.second) - long(mem.range.first) + 1
mem_module_size = phys_mem_size / options.num_dirs
#

View file

@ -105,8 +105,9 @@ def create_system(options, system, piobus, dma_ports, ruby_system):
cntrl_count += 1
phys_mem_size = long(system.physmem.range.second) - \
long(system.physmem.range.first) + 1
phys_mem_size = 0
for mem in system.memories.unproxy(system):
phys_mem_size += long(mem.range.second) - long(mem.range.first) + 1
mem_module_size = phys_mem_size / options.num_dirs
for i in xrange(options.num_dirs):

View file

@ -172,9 +172,10 @@ def create_system(options, system, piobus = None, dma_ports = []):
total_mem_size.value += dir_cntrl.directory.size.value
dir_cntrl.directory.numa_high_bit = numa_bit
physmem_size = long(system.physmem.range.second) - \
long(system.physmem.range.first) + 1
assert(total_mem_size.value == physmem_size)
phys_mem_size = 0
for mem in system.memories.unproxy(system):
phys_mem_size += long(mem.range.second) - long(mem.range.first) + 1
assert(total_mem_size.value == phys_mem_size)
ruby_profiler = RubyProfiler(ruby_system = ruby,
num_of_sequencers = len(cpu_sequencers))

View file

@ -211,8 +211,8 @@ else:
# ----------------------
# Create a system, and add system wide objects
# ----------------------
system = System(cpu = all_cpus, l1_ = all_l1s, l1bus_ = all_l1buses, physmem = PhysicalMemory(),
membus = Bus(clock = busFrequency))
system = System(cpu = all_cpus, l1_ = all_l1s, l1bus_ = all_l1buses,
physmem = SimpleMemory(), membus = Bus(clock = busFrequency))
system.toL2bus = Bus(clock = busFrequency)
system.l2 = L2(size = options.l2size, assoc = 8)

View file

@ -197,7 +197,7 @@ else:
# ----------------------
# Create a system, and add system wide objects
# ----------------------
system = System(cpu = cpus, physmem = PhysicalMemory(),
system = System(cpu = cpus, physmem = SimpleMemory(),
membus = Bus(clock = busFrequency))
system.toL2bus = Bus(clock = busFrequency)

View file

@ -166,7 +166,7 @@ RemoteGDB::acc(Addr va, size_t len)
do {
if (IsK0Seg(va)) {
if (va < (K0SegBase + pmem->size())) {
if (va < (K0SegBase + system->memSize())) {
DPRINTF(GDBAcc, "acc: Mapping is valid K0SEG <= "
"%#x < K0SEG + size\n", va);
return true;

View file

@ -42,7 +42,6 @@
class System;
class ThreadContext;
class PhysicalMemory;
namespace AlphaISA {

View file

@ -56,8 +56,6 @@ class ArmSystem(System):
# 0x0 Revision
midr_regval = Param.UInt32(0x350fc000, "MIDR value")
boot_loader = Param.String("", "File that contains the boot loader code if any")
boot_loader_mem = Param.PhysicalMemory(NULL,
"Memory object that boot loader is to be loaded into")
gic_cpu_addr = Param.Addr(0, "Addres of the GIC CPU interface")
flags_addr = Param.Addr(0, "Address of the flags register for MP booting")
@ -67,5 +65,3 @@ class LinuxArmSystem(ArmSystem):
machine_type = Param.ArmMachineType('RealView_PBX',
"Machine id from http://www.arm.linux.org.uk/developer/machines/")
atags_addr = Param.Addr(0x100, "Address where default atags structure should be written")

View file

@ -125,9 +125,14 @@ LinuxArmSystem::initState()
ac->pagesize(8192);
ac->rootdev(0);
AddrRangeList atagRanges = physmem.getConfAddrRanges();
if (atagRanges.size() != 1) {
fatal("Expected a single ATAG memory entry but got %d\n",
atagRanges.size());
}
AtagMem *am = new AtagMem;
am->memSize(params()->physmem->size());
am->memStart(params()->physmem->start());
am->memSize(atagRanges.begin()->size());
am->memStart(atagRanges.begin()->start);
AtagCmdline *ad = new AtagCmdline;
ad->cmdline(params()->boot_osflags);

View file

@ -37,7 +37,6 @@
class System;
class ThreadContext;
class PhysicalMemory;
namespace ArmISA
{

View file

@ -55,9 +55,6 @@ using namespace Linux;
ArmSystem::ArmSystem(Params *p)
: System(p), bootldr(NULL)
{
if ((p->boot_loader == "") != (p->boot_loader_mem == NULL))
fatal("If boot_loader is specifed, memory to load it must be also.\n");
if (p->boot_loader != "") {
bootldr = createObjectFile(p->boot_loader);

View file

@ -37,7 +37,6 @@
class System;
class ThreadContext;
class PhysicalMemory;
namespace MipsISA
{

View file

@ -28,7 +28,7 @@
from m5.params import *
from PhysicalMemory import *
from SimpleMemory import SimpleMemory
from System import System
class SparcSystem(System):
@ -38,20 +38,20 @@ class SparcSystem(System):
_hypervisor_desc_base = 0x1f12080000
_partition_desc_base = 0x1f12000000
# ROM for OBP/Reset/Hypervisor
rom = Param.PhysicalMemory(
PhysicalMemory(range=AddrRange(_rom_base, size='8MB')),
rom = Param.SimpleMemory(
SimpleMemory(range=AddrRange(_rom_base, size='8MB')),
"Memory to hold the ROM data")
# nvram
nvram = Param.PhysicalMemory(
PhysicalMemory(range=AddrRange(_nvram_base, size='8kB')),
nvram = Param.SimpleMemory(
SimpleMemory(range=AddrRange(_nvram_base, size='8kB')),
"Memory to hold the nvram data")
# hypervisor description
hypervisor_desc = Param.PhysicalMemory(
PhysicalMemory(range=AddrRange(_hypervisor_desc_base, size='8kB')),
hypervisor_desc = Param.SimpleMemory(
SimpleMemory(range=AddrRange(_hypervisor_desc_base, size='8kB')),
"Memory to hold the hypervisor description")
# partition description
partition_desc = Param.PhysicalMemory(
PhysicalMemory(range=AddrRange(_partition_desc_base, size='8kB')),
partition_desc = Param.SimpleMemory(
SimpleMemory(range=AddrRange(_partition_desc_base, size='8kB')),
"Memory to hold the partition description")
reset_addr = Param.Addr(_rom_base, "Address to load ROM at")

View file

@ -40,7 +40,6 @@
class System;
class ThreadContext;
class PhysicalMemory;
namespace SparcISA
{

View file

@ -254,7 +254,7 @@ BaseRemoteGDB::Event::process(int revent)
BaseRemoteGDB::BaseRemoteGDB(System *_system, ThreadContext *c, size_t cacheSize)
: event(NULL), listener(NULL), number(-1), fd(-1),
active(false), attached(false),
system(_system), pmem(_system->physmem), context(c),
system(_system), context(c),
gdbregs(cacheSize)
{
memset(gdbregs.regs, 0, gdbregs.bytes());

View file

@ -42,7 +42,6 @@
class System;
class ThreadContext;
class PhysicalMemory;
class GDBListener;
@ -131,7 +130,6 @@ class BaseRemoteGDB
bool attached;
System *system;
PhysicalMemory *pmem;
ThreadContext *context;
protected:

View file

@ -121,8 +121,6 @@ class CheckerThreadContext : public ThreadContext
System *getSystemPtr() { return actualTC->getSystemPtr(); }
PhysicalMemory *getPhysMemPtr() { return actualTC->getPhysMemPtr(); }
TheISA::Kernel::Statistics *getKernelStats()
{ return actualTC->getKernelStats(); }

View file

@ -114,10 +114,6 @@ class InOrderThreadContext : public ThreadContext
void setNextMicroPC(uint64_t val) { };
/** Returns a pointer to physical memory. */
PhysicalMemory *getPhysMemPtr()
{ assert(0); return 0; /*return cpu->physmem;*/ }
/** Returns a pointer to this thread's kernel statistics. */
TheISA::Kernel::Statistics *getKernelStats()
{ return thread->kernelStats; }

View file

@ -60,7 +60,6 @@
#include "debug/Activity.hh"
#include "debug/Fetch.hh"
#include "mem/packet.hh"
#include "mem/request.hh"
#include "params/DerivO3CPU.hh"
#include "sim/byteswap.hh"
#include "sim/core.hh"
@ -602,7 +601,7 @@ DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
// Check that we're not going off into random memory
// If we have, just wait around for commit to squash something and put
// us on the right track
if (!cpu->system->isMemory(mem_req->getPaddr())) {
if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
warn("Address %#x is outside of physical memory, stopping fetch\n",
mem_req->getPaddr());
fetchStatus[tid] = NoGoodAddr;

View file

@ -60,7 +60,6 @@ class Checkpoint;
class EndQuiesceEvent;
class MemoryController;
class MemObject;
class PhysicalMemory;
class Process;
class Request;
@ -107,8 +106,6 @@ class OzoneCPU : public BaseCPU
System *getSystemPtr() { return cpu->system; }
PhysicalMemory *getPhysMemPtr() { return cpu->physmem; }
TheISA::Kernel::Statistics *getKernelStats()
{ return thread->getKernelStats(); }
@ -314,7 +311,6 @@ class OzoneCPU : public BaseCPU
TheISA::TLB *itb;
TheISA::TLB *dtb;
System *system;
PhysicalMemory *physmem;
FrontEnd *frontEnd;

View file

@ -95,10 +95,6 @@ AtomicSimpleCPU::init()
}
}
if (fastmem) {
AddrRangeList pmAddrList = system->physmem->getAddrRanges();
physMemAddr = *pmAddrList.begin();
}
// Atomic doesn't do MT right now, so contextId == threadId
ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
@ -283,8 +279,8 @@ AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
if (req->isMmappedIpr())
dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
else {
if (fastmem && pkt.getAddr() == physMemAddr)
dcache_latency += system->physmem->doAtomicAccess(&pkt);
if (fastmem && system->isMemAddr(pkt.getAddr()))
system->getPhysMem().access(&pkt);
else
dcache_latency += dcachePort.sendAtomic(&pkt);
}
@ -385,8 +381,8 @@ AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
dcache_latency +=
TheISA::handleIprWrite(thread->getTC(), &pkt);
} else {
if (fastmem && pkt.getAddr() == physMemAddr)
dcache_latency += system->physmem->doAtomicAccess(&pkt);
if (fastmem && system->isMemAddr(pkt.getAddr()))
system->getPhysMem().access(&pkt);
else
dcache_latency += dcachePort.sendAtomic(&pkt);
}
@ -481,9 +477,8 @@ AtomicSimpleCPU::tick()
Packet::Broadcast);
ifetch_pkt.dataStatic(&inst);
if (fastmem && ifetch_pkt.getAddr() == physMemAddr)
icache_latency =
system->physmem->doAtomicAccess(&ifetch_pkt);
if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
system->getPhysMem().access(&ifetch_pkt);
else
icache_latency = icachePort.sendAtomic(&ifetch_pkt);

View file

@ -110,8 +110,6 @@ class AtomicSimpleCPU : public BaseSimpleCPU
bool dcache_access;
Tick dcache_latency;
Range<Addr> physMemAddr;
protected:
/** Return a reference to the data port. */

View file

@ -92,7 +92,7 @@ AlphaBackdoor::startup()
alphaAccess->kernStart = system->getKernelStart();
alphaAccess->kernEnd = system->getKernelEnd();
alphaAccess->entryPoint = system->getKernelEntry();
alphaAccess->mem_size = system->physmem->size();
alphaAccess->mem_size = system->memSize();
alphaAccess->cpuClock = cpu->frequency() / 1000000; // In MHz
Tsunami *tsunami = dynamic_cast<Tsunami *>(params()->platform);
if (!tsunami)

View file

@ -49,7 +49,7 @@ from Ide import *
from Platform import Platform
from Terminal import Terminal
from Uart import Uart
from PhysicalMemory import *
from SimpleMemory import SimpleMemory
class AmbaDevice(BasicPioDevice):
type = 'AmbaDevice'
@ -146,10 +146,11 @@ class RealView(Platform):
max_mem_size = Param.Addr('256MB', "Maximum amount of RAM supported by platform")
def setupBootLoader(self, mem_bus, cur_sys, loc):
self.nvmem = PhysicalMemory(range = AddrRange(Addr('2GB'), size = '64MB'), zero = True)
self.nvmem = SimpleMemory(range = AddrRange(Addr('2GB'),
size = '64MB'),
zero = True)
self.nvmem.port = mem_bus.master
cur_sys.boot_loader = loc('boot.arm')
cur_sys.boot_loader_mem = self.nvmem
# Reference for memory map and interrupt number
@ -438,7 +439,8 @@ class VExpress_EMM(RealView):
BAR0 = 0x1C1A0000, BAR0Size = '256B',
BAR1 = 0x1C1A0100, BAR1Size = '4096B',
BAR0LegacyIO = True, BAR1LegacyIO = True)
vram = PhysicalMemory(range = AddrRange(0x18000000, size='32MB'), zero = True)
vram = SimpleMemory(range = AddrRange(0x18000000, size='32MB'),
zero = True)
rtc = PL031(pio_addr=0x1C170000, int_num=36)
l2x0_fake = IsaFake(pio_addr=0x2C100000, pio_size=0xfff)
@ -453,10 +455,10 @@ class VExpress_EMM(RealView):
mmc_fake = AmbaFake(pio_addr=0x1c050000)
def setupBootLoader(self, mem_bus, cur_sys, loc):
self.nvmem = PhysicalMemory(range = AddrRange(0, size = '64MB'), zero = True)
self.nvmem = SimpleMemory(range = AddrRange(0, size = '64MB'),
zero = True)
self.nvmem.port = mem_bus.master
cur_sys.boot_loader = loc('boot_emm.arm')
cur_sys.boot_loader_mem = self.nvmem
cur_sys.atags_addr = 0x80000100
# Attach I/O devices that are on chip and also set the appropriate

View file

@ -186,7 +186,6 @@ typedef enum DmaState {
Dma_Transfer
} DmaState_t;
class PhysicalMemory;
class IdeController;
/**

61
src/mem/AbstractMemory.py Normal file
View file

@ -0,0 +1,61 @@
# Copyright (c) 2012 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2005-2008 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Nathan Binkert
# Andreas Hansson
from m5.params import *
from MemObject import MemObject
class AbstractMemory(MemObject):
type = 'AbstractMemory'
abstract = True
range = Param.AddrRange(AddrRange('128MB'), "Address range")
file = Param.String('', "Memory-mapped file")
null = Param.Bool(False, "Do not store data, always return zero")
zero = Param.Bool(False, "Initialize memory with zeros")
# All memories are passed to the global physical memory, and
# certain memories may be excluded from the global address map,
# e.g. by the testers that use shadow memories as a reference
in_addr_map = Param.Bool(True, "Memory part of the global address map")
# Should the bootloader include this memory when passing
# configuration information about the physical memory layout to
# the kernel, e.g. using ATAG or ACPI
conf_table_reported = Param.Bool(False, "Report to configuration table")

View file

@ -47,7 +47,10 @@ Source('fs_translating_port_proxy.cc')
Source('se_translating_port_proxy.cc')
if env['TARGET_ISA'] != 'no':
SimObject('PhysicalMemory.py')
SimObject('AbstractMemory.py')
SimObject('SimpleMemory.py')
Source('abstract_mem.cc')
Source('simple_mem.cc')
Source('page_table.cc')
Source('physical.cc')

View file

@ -1,3 +1,15 @@
# Copyright (c) 2012 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2005-2008 The Regents of The University of Michigan
# All rights reserved.
#
@ -25,17 +37,13 @@
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Nathan Binkert
# Andreas Hansson
from m5.params import *
from m5.proxy import *
from MemObject import *
from AbstractMemory import *
class PhysicalMemory(MemObject):
type = 'PhysicalMemory'
port = VectorSlavePort("the access port")
range = Param.AddrRange(AddrRange('128MB'), "Device Address")
file = Param.String('', "memory mapped file")
latency = Param.Latency('30ns', "latency of an access")
latency_var = Param.Latency('0ns', "access variablity")
zero = Param.Bool(False, "zero initialize memory")
null = Param.Bool(False, "do not store data, always return zero")
class SimpleMemory(AbstractMemory):
type = 'SimpleMemory'
port = VectorSlavePort("Slave ports")
latency = Param.Latency('30ns', "Request to response latency")
latency_var = Param.Latency('0ns', "Request to response latency variance")

537
src/mem/abstract_mem.cc Normal file
View file

@ -0,0 +1,537 @@
/*
* Copyright (c) 2010-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Ali Saidi
* Andreas Hansson
*/
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/user.h>
#include <fcntl.h>
#include <unistd.h>
#include <zlib.h>
#include <cerrno>
#include <cstdio>
#include <iostream>
#include <string>
#include "arch/registers.hh"
#include "config/the_isa.hh"
#include "debug/LLSC.hh"
#include "debug/MemoryAccess.hh"
#include "mem/abstract_mem.hh"
#include "mem/packet_access.hh"
using namespace std;
AbstractMemory::AbstractMemory(const Params *p) :
MemObject(p), range(params()->range), pmemAddr(NULL),
confTableReported(p->conf_table_reported), inAddrMap(p->in_addr_map)
{
if (size() % TheISA::PageBytes != 0)
panic("Memory Size not divisible by page size\n");
if (params()->null)
return;
if (params()->file == "") {
int map_flags = MAP_ANON | MAP_PRIVATE;
pmemAddr = (uint8_t *)mmap(NULL, size(),
PROT_READ | PROT_WRITE, map_flags, -1, 0);
} else {
int map_flags = MAP_PRIVATE;
int fd = open(params()->file.c_str(), O_RDONLY);
long _size = lseek(fd, 0, SEEK_END);
if (_size != range.size()) {
warn("Specified size %d does not match file %s %d\n", range.size(),
params()->file, _size);
range = RangeSize(range.start, _size);
}
lseek(fd, 0, SEEK_SET);
pmemAddr = (uint8_t *)mmap(NULL, roundUp(_size, sysconf(_SC_PAGESIZE)),
PROT_READ | PROT_WRITE, map_flags, fd, 0);
}
if (pmemAddr == (void *)MAP_FAILED) {
perror("mmap");
if (params()->file == "")
fatal("Could not mmap!\n");
else
fatal("Could not find file: %s\n", params()->file);
}
//If requested, initialize all the memory to 0
if (p->zero)
memset(pmemAddr, 0, size());
}
AbstractMemory::~AbstractMemory()
{
if (pmemAddr)
munmap((char*)pmemAddr, size());
}
void
AbstractMemory::regStats()
{
using namespace Stats;
bytesRead
.name(name() + ".bytes_read")
.desc("Number of bytes read from this memory")
;
bytesInstRead
.name(name() + ".bytes_inst_read")
.desc("Number of instructions bytes read from this memory")
;
bytesWritten
.name(name() + ".bytes_written")
.desc("Number of bytes written to this memory")
;
numReads
.name(name() + ".num_reads")
.desc("Number of read requests responded to by this memory")
;
numWrites
.name(name() + ".num_writes")
.desc("Number of write requests responded to by this memory")
;
numOther
.name(name() + ".num_other")
.desc("Number of other requests responded to by this memory")
;
bwRead
.name(name() + ".bw_read")
.desc("Total read bandwidth from this memory (bytes/s)")
.precision(0)
.prereq(bytesRead)
;
bwInstRead
.name(name() + ".bw_inst_read")
.desc("Instruction read bandwidth from this memory (bytes/s)")
.precision(0)
.prereq(bytesInstRead)
;
bwWrite
.name(name() + ".bw_write")
.desc("Write bandwidth from this memory (bytes/s)")
.precision(0)
.prereq(bytesWritten)
;
bwTotal
.name(name() + ".bw_total")
.desc("Total bandwidth to/from this memory (bytes/s)")
.precision(0)
.prereq(bwTotal)
;
bwRead = bytesRead / simSeconds;
bwInstRead = bytesInstRead / simSeconds;
bwWrite = bytesWritten / simSeconds;
bwTotal = (bytesRead + bytesWritten) / simSeconds;
}
Range<Addr>
AbstractMemory::getAddrRange()
{
return range;
}
// Add load-locked to tracking list. Should only be called if the
// operation is a load and the LLSC flag is set.
void
AbstractMemory::trackLoadLocked(PacketPtr pkt)
{
Request *req = pkt->req;
Addr paddr = LockedAddr::mask(req->getPaddr());
// first we check if we already have a locked addr for this
// xc. Since each xc only gets one, we just update the
// existing record with the new address.
list<LockedAddr>::iterator i;
for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) {
if (i->matchesContext(req)) {
DPRINTF(LLSC, "Modifying lock record: context %d addr %#x\n",
req->contextId(), paddr);
i->addr = paddr;
return;
}
}
// no record for this xc: need to allocate a new one
DPRINTF(LLSC, "Adding lock record: context %d addr %#x\n",
req->contextId(), paddr);
lockedAddrList.push_front(LockedAddr(req));
}
// Called on *writes* only... both regular stores and
// store-conditional operations. Check for conventional stores which
// conflict with locked addresses, and for success/failure of store
// conditionals.
bool
AbstractMemory::checkLockedAddrList(PacketPtr pkt)
{
Request *req = pkt->req;
Addr paddr = LockedAddr::mask(req->getPaddr());
bool isLLSC = pkt->isLLSC();
// Initialize return value. Non-conditional stores always
// succeed. Assume conditional stores will fail until proven
// otherwise.
bool success = !isLLSC;
// Iterate over list. Note that there could be multiple matching
// records, as more than one context could have done a load locked
// to this location.
list<LockedAddr>::iterator i = lockedAddrList.begin();
while (i != lockedAddrList.end()) {
if (i->addr == paddr) {
// we have a matching address
if (isLLSC && i->matchesContext(req)) {
// it's a store conditional, and as far as the memory
// system can tell, the requesting context's lock is
// still valid.
DPRINTF(LLSC, "StCond success: context %d addr %#x\n",
req->contextId(), paddr);
success = true;
}
// Get rid of our record of this lock and advance to next
DPRINTF(LLSC, "Erasing lock record: context %d addr %#x\n",
i->contextId, paddr);
i = lockedAddrList.erase(i);
}
else {
// no match: advance to next record
++i;
}
}
if (isLLSC) {
req->setExtraData(success ? 1 : 0);
}
return success;
}
#if TRACING_ON
#define CASE(A, T) \
case sizeof(T): \
DPRINTF(MemoryAccess,"%s of size %i on address 0x%x data 0x%x\n", \
A, pkt->getSize(), pkt->getAddr(), pkt->get<T>()); \
break
#define TRACE_PACKET(A) \
do { \
switch (pkt->getSize()) { \
CASE(A, uint64_t); \
CASE(A, uint32_t); \
CASE(A, uint16_t); \
CASE(A, uint8_t); \
default: \
DPRINTF(MemoryAccess, "%s of size %i on address 0x%x\n", \
A, pkt->getSize(), pkt->getAddr()); \
DDUMP(MemoryAccess, pkt->getPtr<uint8_t>(), pkt->getSize());\
} \
} while (0)
#else
#define TRACE_PACKET(A)
#endif
void
AbstractMemory::access(PacketPtr pkt)
{
assert(pkt->getAddr() >= range.start &&
(pkt->getAddr() + pkt->getSize() - 1) <= range.end);
if (pkt->memInhibitAsserted()) {
DPRINTF(MemoryAccess, "mem inhibited on 0x%x: not responding\n",
pkt->getAddr());
return;
}
uint8_t *hostAddr = pmemAddr + pkt->getAddr() - range.start;
if (pkt->cmd == MemCmd::SwapReq) {
TheISA::IntReg overwrite_val;
bool overwrite_mem;
uint64_t condition_val64;
uint32_t condition_val32;
if (!pmemAddr)
panic("Swap only works if there is real memory (i.e. null=False)");
assert(sizeof(TheISA::IntReg) >= pkt->getSize());
overwrite_mem = true;
// keep a copy of our possible write value, and copy what is at the
// memory address into the packet
std::memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize());
std::memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
if (pkt->req->isCondSwap()) {
if (pkt->getSize() == sizeof(uint64_t)) {
condition_val64 = pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val64, hostAddr,
sizeof(uint64_t));
} else if (pkt->getSize() == sizeof(uint32_t)) {
condition_val32 = (uint32_t)pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val32, hostAddr,
sizeof(uint32_t));
} else
panic("Invalid size for conditional read/write\n");
}
if (overwrite_mem)
std::memcpy(hostAddr, &overwrite_val, pkt->getSize());
assert(!pkt->req->isInstFetch());
TRACE_PACKET("Read/Write");
numOther++;
} else if (pkt->isRead()) {
assert(!pkt->isWrite());
if (pkt->isLLSC()) {
trackLoadLocked(pkt);
}
if (pmemAddr)
memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
TRACE_PACKET(pkt->req->isInstFetch() ? "IFetch" : "Read");
numReads++;
bytesRead += pkt->getSize();
if (pkt->req->isInstFetch())
bytesInstRead += pkt->getSize();
} else if (pkt->isWrite()) {
if (writeOK(pkt)) {
if (pmemAddr)
memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
assert(!pkt->req->isInstFetch());
TRACE_PACKET("Write");
numWrites++;
bytesWritten += pkt->getSize();
}
} else if (pkt->isInvalidate()) {
// no need to do anything
} else {
panic("unimplemented");
}
if (pkt->needsResponse()) {
pkt->makeResponse();
}
}
void
AbstractMemory::functionalAccess(PacketPtr pkt)
{
assert(pkt->getAddr() >= range.start &&
(pkt->getAddr() + pkt->getSize() - 1) <= range.end);
uint8_t *hostAddr = pmemAddr + pkt->getAddr() - range.start;
if (pkt->isRead()) {
if (pmemAddr)
memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
TRACE_PACKET("Read");
pkt->makeResponse();
} else if (pkt->isWrite()) {
if (pmemAddr)
memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
TRACE_PACKET("Write");
pkt->makeResponse();
} else if (pkt->isPrint()) {
Packet::PrintReqState *prs =
dynamic_cast<Packet::PrintReqState*>(pkt->senderState);
// Need to call printLabels() explicitly since we're not going
// through printObj().
prs->printLabels();
// Right now we just print the single byte at the specified address.
ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *hostAddr);
} else {
panic("AbstractMemory: unimplemented functional command %s",
pkt->cmdString());
}
}
void
AbstractMemory::serialize(ostream &os)
{
if (!pmemAddr)
return;
gzFile compressedMem;
string filename = name() + ".physmem";
long _size = range.size();
SERIALIZE_SCALAR(filename);
SERIALIZE_SCALAR(_size);
// write memory file
string thefile = Checkpoint::dir() + "/" + filename.c_str();
int fd = creat(thefile.c_str(), 0664);
if (fd < 0) {
perror("creat");
fatal("Can't open physical memory checkpoint file '%s'\n", filename);
}
compressedMem = gzdopen(fd, "wb");
if (compressedMem == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
if (gzwrite(compressedMem, pmemAddr, size()) != (int)size()) {
fatal("Write failed on physical memory checkpoint file '%s'\n",
filename);
}
if (gzclose(compressedMem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
list<LockedAddr>::iterator i = lockedAddrList.begin();
vector<Addr> lal_addr;
vector<int> lal_cid;
while (i != lockedAddrList.end()) {
lal_addr.push_back(i->addr);
lal_cid.push_back(i->contextId);
i++;
}
arrayParamOut(os, "lal_addr", lal_addr);
arrayParamOut(os, "lal_cid", lal_cid);
}
void
AbstractMemory::unserialize(Checkpoint *cp, const string &section)
{
if (!pmemAddr)
return;
gzFile compressedMem;
long *tempPage;
long *pmem_current;
uint64_t curSize;
uint32_t bytesRead;
const uint32_t chunkSize = 16384;
string filename;
UNSERIALIZE_SCALAR(filename);
filename = cp->cptDir + "/" + filename;
// mmap memoryfile
int fd = open(filename.c_str(), O_RDONLY);
if (fd < 0) {
perror("open");
fatal("Can't open physical memory checkpoint file '%s'", filename);
}
compressedMem = gzdopen(fd, "rb");
if (compressedMem == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
// unmap file that was mmapped in the constructor
// This is done here to make sure that gzip and open don't muck with our
// nice large space of memory before we reallocate it
munmap((char*)pmemAddr, size());
long _size;
UNSERIALIZE_SCALAR(_size);
if (_size > params()->range.size())
fatal("Memory size has changed! size %lld, param size %lld\n",
_size, params()->range.size());
pmemAddr = (uint8_t *)mmap(NULL, size(),
PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
if (pmemAddr == (void *)MAP_FAILED) {
perror("mmap");
fatal("Could not mmap physical memory!\n");
}
curSize = 0;
tempPage = (long*)malloc(chunkSize);
if (tempPage == NULL)
fatal("Unable to malloc memory to read file %s\n", filename);
/* Only copy bytes that are non-zero, so we don't give the VM system hell */
while (curSize < size()) {
bytesRead = gzread(compressedMem, tempPage, chunkSize);
if (bytesRead == 0)
break;
assert(bytesRead % sizeof(long) == 0);
for (uint32_t x = 0; x < bytesRead / sizeof(long); x++)
{
if (*(tempPage+x) != 0) {
pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long));
*pmem_current = *(tempPage+x);
}
}
curSize += bytesRead;
}
free(tempPage);
if (gzclose(compressedMem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
vector<Addr> lal_addr;
vector<int> lal_cid;
arrayParamIn(cp, section, "lal_addr", lal_addr);
arrayParamIn(cp, section, "lal_cid", lal_cid);
for(int i = 0; i < lal_addr.size(); i++)
lockedAddrList.push_front(LockedAddr(lal_addr[i], lal_cid[i]));
}

250
src/mem/abstract_mem.hh Normal file
View file

@ -0,0 +1,250 @@
/*
* Copyright (c) 2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Andreas Hansson
*/
/**
* @file
* AbstractMemory declaration
*/
#ifndef __ABSTRACT_MEMORY_HH__
#define __ABSTRACT_MEMORY_HH__
#include "mem/mem_object.hh"
#include "params/AbstractMemory.hh"
#include "sim/stats.hh"
/**
* An abstract memory represents a contiguous block of physical
* memory, with an associated address range, and also provides basic
* functionality for reading and writing this memory without any
* timing information. It is a MemObject since any subclass must have
* at least one slave port.
*/
class AbstractMemory : public MemObject
{
protected:
// Address range of this memory
Range<Addr> range;
// Pointer to host memory used to implement this memory
uint8_t* pmemAddr;
// Enable specific memories to be reported to the configuration table
bool confTableReported;
// Should the memory appear in the global address map
bool inAddrMap;
class LockedAddr {
public:
// on alpha, minimum LL/SC granularity is 16 bytes, so lower
// bits need to masked off.
static const Addr Addr_Mask = 0xf;
static Addr mask(Addr paddr) { return (paddr & ~Addr_Mask); }
Addr addr; // locked address
int contextId; // locking hw context
// check for matching execution context
bool matchesContext(Request *req)
{
return (contextId == req->contextId());
}
LockedAddr(Request *req) : addr(mask(req->getPaddr())),
contextId(req->contextId())
{
}
// constructor for unserialization use
LockedAddr(Addr _addr, int _cid) : addr(_addr), contextId(_cid)
{
}
};
std::list<LockedAddr> lockedAddrList;
// helper function for checkLockedAddrs(): we really want to
// inline a quick check for an empty locked addr list (hopefully
// the common case), and do the full list search (if necessary) in
// this out-of-line function
bool checkLockedAddrList(PacketPtr pkt);
// Record the address of a load-locked operation so that we can
// clear the execution context's lock flag if a matching store is
// performed
void trackLoadLocked(PacketPtr pkt);
// Compare a store address with any locked addresses so we can
// clear the lock flag appropriately. Return value set to 'false'
// if store operation should be suppressed (because it was a
// conditional store and the address was no longer locked by the
// requesting execution context), 'true' otherwise. Note that
// this method must be called on *all* stores since even
// non-conditional stores must clear any matching lock addresses.
bool writeOK(PacketPtr pkt) {
Request *req = pkt->req;
if (lockedAddrList.empty()) {
// no locked addrs: nothing to check, store_conditional fails
bool isLLSC = pkt->isLLSC();
if (isLLSC) {
req->setExtraData(0);
}
return !isLLSC; // only do write if not an sc
} else {
// iterate over list...
return checkLockedAddrList(pkt);
}
}
/** Number of total bytes read from this memory */
Stats::Scalar bytesRead;
/** Number of instruction bytes read from this memory */
Stats::Scalar bytesInstRead;
/** Number of bytes written to this memory */
Stats::Scalar bytesWritten;
/** Number of read requests */
Stats::Scalar numReads;
/** Number of write requests */
Stats::Scalar numWrites;
/** Number of other requests */
Stats::Scalar numOther;
/** Read bandwidth from this memory */
Stats::Formula bwRead;
/** Read bandwidth from this memory */
Stats::Formula bwInstRead;
/** Write bandwidth from this memory */
Stats::Formula bwWrite;
/** Total bandwidth from this memory */
Stats::Formula bwTotal;
private:
// Prevent copying
AbstractMemory(const AbstractMemory&);
// Prevent assignment
AbstractMemory& operator=(const AbstractMemory&);
public:
typedef AbstractMemoryParams Params;
AbstractMemory(const Params* p);
virtual ~AbstractMemory();
const Params *
params() const
{
return dynamic_cast<const Params *>(_params);
}
/**
* Get the address range
*
* @return a single contigous address range
*/
Range<Addr> getAddrRange();
/**
* Get the memory size.
*
* @return the size of the memory
*/
uint64_t size() { return range.size(); }
/**
* Get the start address.
*
* @return the start address of the memory
*/
Addr start() { return range.start; }
/**
* Should this memory be passed to the kernel and part of the OS
* physical memory layout.
*
* @return if this memory is reported
*/
bool isConfReported() const { return confTableReported; }
/**
* Some memories are used as shadow memories or should for other
* reasons not be part of the global address map.
*
* @return if this memory is part of the address map
*/
bool isInAddrMap() const { return inAddrMap; }
/**
* Perform an untimed memory access and update all the state
* (e.g. locked addresses) and statistics accordingly. The packet
* is turned into a response if required.
*
* @param pkt Packet performing the access
*/
void access(PacketPtr pkt);
/**
* Perform an untimed memory read or write without changing
* anything but the memory itself. No stats are affected by this
* access. In addition to normal accesses this also facilitates
* print requests.
*
* @param pkt Packet performing the access
*/
void functionalAccess(PacketPtr pkt);
/**
* Register Statistics
*/
virtual void regStats();
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
};
#endif //__ABSTRACT_MEMORY_HH__

View file

@ -331,7 +331,7 @@ MSHR::handleSnoop(PacketPtr pkt, Counter _order)
// to forward the snoop up the hierarchy after the current
// transaction completes.
// Actual target device (typ. PhysicalMemory) will delete the
// Actual target device (typ. a memory) will delete the
// packet on reception, so we need to save a copy here.
PacketPtr cp_pkt = new Packet(pkt, true);
targets->add(cp_pkt, curTick(), _order, Target::FromSnoop,

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2010-2011 ARM Limited
* Copyright (c) 2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
@ -11,9 +11,6 @@
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
@ -37,618 +34,93 @@
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Ali Saidi
* Authors: Andreas Hansson
*/
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/user.h>
#include <fcntl.h>
#include <unistd.h>
#include <zlib.h>
#include <cerrno>
#include <cstdio>
#include <iostream>
#include <string>
#include "arch/isa_traits.hh"
#include "arch/registers.hh"
#include "base/intmath.hh"
#include "base/misc.hh"
#include "base/random.hh"
#include "base/types.hh"
#include "config/the_isa.hh"
#include "debug/LLSC.hh"
#include "debug/MemoryAccess.hh"
#include "mem/packet_access.hh"
#include "debug/BusAddrRanges.hh"
#include "mem/physical.hh"
#include "sim/eventq.hh"
using namespace std;
using namespace TheISA;
PhysicalMemory::PhysicalMemory(const Params *p)
: MemObject(p), pmemAddr(NULL), lat(p->latency), lat_var(p->latency_var),
_size(params()->range.size()), _start(params()->range.start)
PhysicalMemory::PhysicalMemory(const vector<AbstractMemory*>& _memories) :
size(0)
{
if (size() % TheISA::PageBytes != 0)
panic("Memory Size not divisible by page size\n");
for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
m != _memories.end(); ++m) {
// only add the memory if it is part of the global address map
if ((*m)->isInAddrMap()) {
memories.push_back(*m);
// create the appropriate number of ports
for (int i = 0; i < p->port_port_connection_count; ++i) {
ports.push_back(new MemoryPort(csprintf("%s-port%d", name(), i),
this));
}
// calculate the total size once and for all
size += (*m)->size();
if (params()->null)
return;
if (params()->file == "") {
int map_flags = MAP_ANON | MAP_PRIVATE;
pmemAddr = (uint8_t *)mmap(NULL, size(),
PROT_READ | PROT_WRITE, map_flags, -1, 0);
} else {
int map_flags = MAP_PRIVATE;
int fd = open(params()->file.c_str(), O_RDONLY);
_size = lseek(fd, 0, SEEK_END);
lseek(fd, 0, SEEK_SET);
pmemAddr = (uint8_t *)mmap(NULL, roundUp(size(), sysconf(_SC_PAGESIZE)),
PROT_READ | PROT_WRITE, map_flags, fd, 0);
}
if (pmemAddr == (void *)MAP_FAILED) {
perror("mmap");
if (params()->file == "")
fatal("Could not mmap!\n");
else
fatal("Could not find file: %s\n", params()->file);
}
//If requested, initialize all the memory to 0
if (p->zero)
memset(pmemAddr, 0, size());
}
void
PhysicalMemory::init()
{
for (PortIterator p = ports.begin(); p != ports.end(); ++p) {
if (!(*p)->isConnected()) {
fatal("PhysicalMemory port %s is unconnected!\n", (*p)->name());
} else {
(*p)->sendRangeChange();
// add the range to our interval tree and make sure it does not
// intersect an existing range
if (addrMap.insert((*m)->getAddrRange(), *m) == addrMap.end())
fatal("Memory address range for %s is overlapping\n",
(*m)->name());
}
DPRINTF(BusAddrRanges,
"Skipping memory %s that is not in global address map\n",
(*m)->name());
}
rangeCache.invalidate();
}
PhysicalMemory::~PhysicalMemory()
{
if (pmemAddr)
munmap((char*)pmemAddr, size());
}
void
PhysicalMemory::regStats()
{
using namespace Stats;
bytesRead
.name(name() + ".bytes_read")
.desc("Number of bytes read from this memory")
;
bytesInstRead
.name(name() + ".bytes_inst_read")
.desc("Number of instructions bytes read from this memory")
;
bytesWritten
.name(name() + ".bytes_written")
.desc("Number of bytes written to this memory")
;
numReads
.name(name() + ".num_reads")
.desc("Number of read requests responded to by this memory")
;
numWrites
.name(name() + ".num_writes")
.desc("Number of write requests responded to by this memory")
;
numOther
.name(name() + ".num_other")
.desc("Number of other requests responded to by this memory")
;
bwRead
.name(name() + ".bw_read")
.desc("Total read bandwidth from this memory (bytes/s)")
.precision(0)
.prereq(bytesRead)
;
bwInstRead
.name(name() + ".bw_inst_read")
.desc("Instruction read bandwidth from this memory (bytes/s)")
.precision(0)
.prereq(bytesInstRead)
;
bwWrite
.name(name() + ".bw_write")
.desc("Write bandwidth from this memory (bytes/s)")
.precision(0)
.prereq(bytesWritten)
;
bwTotal
.name(name() + ".bw_total")
.desc("Total bandwidth to/from this memory (bytes/s)")
.precision(0)
.prereq(bwTotal)
;
bwRead = bytesRead / simSeconds;
bwInstRead = bytesInstRead / simSeconds;
bwWrite = bytesWritten / simSeconds;
bwTotal = (bytesRead + bytesWritten) / simSeconds;
}
unsigned
PhysicalMemory::deviceBlockSize() const
{
//Can accept anysize request
return 0;
}
Tick
PhysicalMemory::calculateLatency(PacketPtr pkt)
{
Tick latency = lat;
if (lat_var != 0)
latency += random_mt.random<Tick>(0, lat_var);
return latency;
}
// Add load-locked to tracking list. Should only be called if the
// operation is a load and the LLSC flag is set.
void
PhysicalMemory::trackLoadLocked(PacketPtr pkt)
{
Request *req = pkt->req;
Addr paddr = LockedAddr::mask(req->getPaddr());
// first we check if we already have a locked addr for this
// xc. Since each xc only gets one, we just update the
// existing record with the new address.
list<LockedAddr>::iterator i;
for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) {
if (i->matchesContext(req)) {
DPRINTF(LLSC, "Modifying lock record: context %d addr %#x\n",
req->contextId(), paddr);
i->addr = paddr;
return;
}
}
// no record for this xc: need to allocate a new one
DPRINTF(LLSC, "Adding lock record: context %d addr %#x\n",
req->contextId(), paddr);
lockedAddrList.push_front(LockedAddr(req));
}
// Called on *writes* only... both regular stores and
// store-conditional operations. Check for conventional stores which
// conflict with locked addresses, and for success/failure of store
// conditionals.
bool
PhysicalMemory::checkLockedAddrList(PacketPtr pkt)
PhysicalMemory::isMemAddr(Addr addr) const
{
Request *req = pkt->req;
Addr paddr = LockedAddr::mask(req->getPaddr());
bool isLLSC = pkt->isLLSC();
// Initialize return value. Non-conditional stores always
// succeed. Assume conditional stores will fail until proven
// otherwise.
bool success = !isLLSC;
// Iterate over list. Note that there could be multiple matching
// records, as more than one context could have done a load locked
// to this location.
list<LockedAddr>::iterator i = lockedAddrList.begin();
while (i != lockedAddrList.end()) {
if (i->addr == paddr) {
// we have a matching address
if (isLLSC && i->matchesContext(req)) {
// it's a store conditional, and as far as the memory
// system can tell, the requesting context's lock is
// still valid.
DPRINTF(LLSC, "StCond success: context %d addr %#x\n",
req->contextId(), paddr);
success = true;
}
// Get rid of our record of this lock and advance to next
DPRINTF(LLSC, "Erasing lock record: context %d addr %#x\n",
i->contextId, paddr);
i = lockedAddrList.erase(i);
}
else {
// no match: advance to next record
++i;
// see if the address is within the last matched range
if (addr != rangeCache) {
// lookup in the interval tree
range_map<Addr, AbstractMemory*>::const_iterator r =
addrMap.find(addr);
if (r == addrMap.end()) {
// not in the cache, and not in the tree
return false;
}
// the range is in the tree, update the cache
rangeCache = r->first;
}
if (isLLSC) {
req->setExtraData(success ? 1 : 0);
}
assert(addrMap.find(addr) != addrMap.end());
return success;
}
#if TRACING_ON
#define CASE(A, T) \
case sizeof(T): \
DPRINTF(MemoryAccess,"%s of size %i on address 0x%x data 0x%x\n", \
A, pkt->getSize(), pkt->getAddr(), pkt->get<T>()); \
break
#define TRACE_PACKET(A) \
do { \
switch (pkt->getSize()) { \
CASE(A, uint64_t); \
CASE(A, uint32_t); \
CASE(A, uint16_t); \
CASE(A, uint8_t); \
default: \
DPRINTF(MemoryAccess, "%s of size %i on address 0x%x\n", \
A, pkt->getSize(), pkt->getAddr()); \
DDUMP(MemoryAccess, pkt->getPtr<uint8_t>(), pkt->getSize());\
} \
} while (0)
#else
#define TRACE_PACKET(A)
#endif
Tick
PhysicalMemory::doAtomicAccess(PacketPtr pkt)
{
assert(pkt->getAddr() >= start() &&
pkt->getAddr() + pkt->getSize() <= start() + size());
if (pkt->memInhibitAsserted()) {
DPRINTF(MemoryAccess, "mem inhibited on 0x%x: not responding\n",
pkt->getAddr());
return 0;
}
uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();
if (pkt->cmd == MemCmd::SwapReq) {
IntReg overwrite_val;
bool overwrite_mem;
uint64_t condition_val64;
uint32_t condition_val32;
if (!pmemAddr)
panic("Swap only works if there is real memory (i.e. null=False)");
assert(sizeof(IntReg) >= pkt->getSize());
overwrite_mem = true;
// keep a copy of our possible write value, and copy what is at the
// memory address into the packet
std::memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize());
std::memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
if (pkt->req->isCondSwap()) {
if (pkt->getSize() == sizeof(uint64_t)) {
condition_val64 = pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val64, hostAddr,
sizeof(uint64_t));
} else if (pkt->getSize() == sizeof(uint32_t)) {
condition_val32 = (uint32_t)pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val32, hostAddr,
sizeof(uint32_t));
} else
panic("Invalid size for conditional read/write\n");
}
if (overwrite_mem)
std::memcpy(hostAddr, &overwrite_val, pkt->getSize());
assert(!pkt->req->isInstFetch());
TRACE_PACKET("Read/Write");
numOther++;
} else if (pkt->isRead()) {
assert(!pkt->isWrite());
if (pkt->isLLSC()) {
trackLoadLocked(pkt);
}
if (pmemAddr)
memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
TRACE_PACKET(pkt->req->isInstFetch() ? "IFetch" : "Read");
numReads++;
bytesRead += pkt->getSize();
if (pkt->req->isInstFetch())
bytesInstRead += pkt->getSize();
} else if (pkt->isWrite()) {
if (writeOK(pkt)) {
if (pmemAddr)
memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
assert(!pkt->req->isInstFetch());
TRACE_PACKET("Write");
numWrites++;
bytesWritten += pkt->getSize();
}
} else if (pkt->isInvalidate()) {
//upgrade or invalidate
if (pkt->needsResponse()) {
pkt->makeAtomicResponse();
}
} else {
panic("unimplemented");
}
if (pkt->needsResponse()) {
pkt->makeAtomicResponse();
}
return calculateLatency(pkt);
}
void
PhysicalMemory::doFunctionalAccess(PacketPtr pkt)
{
assert(pkt->getAddr() >= start() &&
pkt->getAddr() + pkt->getSize() <= start() + size());
uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();
if (pkt->isRead()) {
if (pmemAddr)
memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
TRACE_PACKET("Read");
pkt->makeAtomicResponse();
} else if (pkt->isWrite()) {
if (pmemAddr)
memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
TRACE_PACKET("Write");
pkt->makeAtomicResponse();
} else if (pkt->isPrint()) {
Packet::PrintReqState *prs =
dynamic_cast<Packet::PrintReqState*>(pkt->senderState);
// Need to call printLabels() explicitly since we're not going
// through printObj().
prs->printLabels();
// Right now we just print the single byte at the specified address.
ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *hostAddr);
} else {
panic("PhysicalMemory: unimplemented functional command %s",
pkt->cmdString());
}
}
SlavePort &
PhysicalMemory::getSlavePort(const std::string &if_name, int idx)
{
if (if_name != "port") {
return MemObject::getSlavePort(if_name, idx);
} else {
if (idx >= static_cast<int>(ports.size())) {
fatal("PhysicalMemory::getSlavePort: unknown index %d\n", idx);
}
return *ports[idx];
}
}
PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name,
PhysicalMemory *_memory)
: SimpleTimingPort(_name, _memory), memory(_memory)
{ }
AddrRangeList
PhysicalMemory::MemoryPort::getAddrRanges()
{
return memory->getAddrRanges();
// either matched the cache or found in the tree
return true;
}
AddrRangeList
PhysicalMemory::getAddrRanges()
PhysicalMemory::getConfAddrRanges() const
{
// this could be done once in the constructor, but since it is unlikely to
// be called more than once the iteration should not be a problem
AddrRangeList ranges;
ranges.push_back(RangeSize(start(), size()));
for (vector<AbstractMemory*>::const_iterator m = memories.begin();
m != memories.end(); ++m) {
if ((*m)->isConfReported()) {
ranges.push_back((*m)->getAddrRange());
}
}
return ranges;
}
unsigned
PhysicalMemory::MemoryPort::deviceBlockSize() const
void
PhysicalMemory::access(PacketPtr pkt)
{
return memory->deviceBlockSize();
}
Tick
PhysicalMemory::MemoryPort::recvAtomic(PacketPtr pkt)
{
return memory->doAtomicAccess(pkt);
assert(pkt->isRequest());
Addr addr = pkt->getAddr();
range_map<Addr, AbstractMemory*>::const_iterator m = addrMap.find(addr);
assert(m != addrMap.end());
m->second->access(pkt);
}
void
PhysicalMemory::MemoryPort::recvFunctional(PacketPtr pkt)
PhysicalMemory::functionalAccess(PacketPtr pkt)
{
pkt->pushLabel(memory->name());
if (!queue.checkFunctional(pkt)) {
// Default implementation of SimpleTimingPort::recvFunctional()
// calls recvAtomic() and throws away the latency; we can save a
// little here by just not calculating the latency.
memory->doFunctionalAccess(pkt);
}
pkt->popLabel();
}
unsigned int
PhysicalMemory::drain(Event *de)
{
int count = 0;
for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
count += (*pi)->drain(de);
}
if (count)
changeState(Draining);
else
changeState(Drained);
return count;
}
void
PhysicalMemory::serialize(ostream &os)
{
if (!pmemAddr)
return;
gzFile compressedMem;
string filename = name() + ".physmem";
SERIALIZE_SCALAR(filename);
SERIALIZE_SCALAR(_size);
// write memory file
string thefile = Checkpoint::dir() + "/" + filename.c_str();
int fd = creat(thefile.c_str(), 0664);
if (fd < 0) {
perror("creat");
fatal("Can't open physical memory checkpoint file '%s'\n", filename);
}
compressedMem = gzdopen(fd, "wb");
if (compressedMem == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
if (gzwrite(compressedMem, pmemAddr, size()) != (int)size()) {
fatal("Write failed on physical memory checkpoint file '%s'\n",
filename);
}
if (gzclose(compressedMem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
list<LockedAddr>::iterator i = lockedAddrList.begin();
vector<Addr> lal_addr;
vector<int> lal_cid;
while (i != lockedAddrList.end()) {
lal_addr.push_back(i->addr);
lal_cid.push_back(i->contextId);
i++;
}
arrayParamOut(os, "lal_addr", lal_addr);
arrayParamOut(os, "lal_cid", lal_cid);
}
void
PhysicalMemory::unserialize(Checkpoint *cp, const string &section)
{
if (!pmemAddr)
return;
gzFile compressedMem;
long *tempPage;
long *pmem_current;
uint64_t curSize;
uint32_t bytesRead;
const uint32_t chunkSize = 16384;
string filename;
UNSERIALIZE_SCALAR(filename);
filename = cp->cptDir + "/" + filename;
// mmap memoryfile
int fd = open(filename.c_str(), O_RDONLY);
if (fd < 0) {
perror("open");
fatal("Can't open physical memory checkpoint file '%s'", filename);
}
compressedMem = gzdopen(fd, "rb");
if (compressedMem == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
// unmap file that was mmapped in the constructor
// This is done here to make sure that gzip and open don't muck with our
// nice large space of memory before we reallocate it
munmap((char*)pmemAddr, size());
UNSERIALIZE_SCALAR(_size);
if (size() > params()->range.size())
fatal("Memory size has changed! size %lld, param size %lld\n",
size(), params()->range.size());
pmemAddr = (uint8_t *)mmap(NULL, size(),
PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
if (pmemAddr == (void *)MAP_FAILED) {
perror("mmap");
fatal("Could not mmap physical memory!\n");
}
curSize = 0;
tempPage = (long*)malloc(chunkSize);
if (tempPage == NULL)
fatal("Unable to malloc memory to read file %s\n", filename);
/* Only copy bytes that are non-zero, so we don't give the VM system hell */
while (curSize < size()) {
bytesRead = gzread(compressedMem, tempPage, chunkSize);
if (bytesRead == 0)
break;
assert(bytesRead % sizeof(long) == 0);
for (uint32_t x = 0; x < bytesRead / sizeof(long); x++)
{
if (*(tempPage+x) != 0) {
pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long));
*pmem_current = *(tempPage+x);
}
}
curSize += bytesRead;
}
free(tempPage);
if (gzclose(compressedMem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
vector<Addr> lal_addr;
vector<int> lal_cid;
arrayParamIn(cp, section, "lal_addr", lal_addr);
arrayParamIn(cp, section, "lal_cid", lal_cid);
for(int i = 0; i < lal_addr.size(); i++)
lockedAddrList.push_front(LockedAddr(lal_addr[i], lal_cid[i]));
}
PhysicalMemory *
PhysicalMemoryParams::create()
{
return new PhysicalMemory(this);
assert(pkt->isRequest());
Addr addr = pkt->getAddr();
range_map<Addr, AbstractMemory*>::const_iterator m = addrMap.find(addr);
assert(m != addrMap.end());
m->second->functionalAccess(pkt);
}

View file

@ -1,6 +1,15 @@
/*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
* Copyright (c) 2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
@ -25,195 +34,88 @@
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
*/
/* @file
* Authors: Andreas Hansson
*/
#ifndef __PHYSICAL_MEMORY_HH__
#define __PHYSICAL_MEMORY_HH__
#include <map>
#include <string>
#include "base/range.hh"
#include "base/statistics.hh"
#include "mem/mem_object.hh"
#include "base/range_map.hh"
#include "mem/abstract_mem.hh"
#include "mem/packet.hh"
#include "mem/tport.hh"
#include "params/PhysicalMemory.hh"
#include "sim/eventq.hh"
#include "sim/stats.hh"
//
// Functional model for a contiguous block of physical memory. (i.e. RAM)
//
class PhysicalMemory : public MemObject
/**
* The physical memory encapsulates all memories in the system and
* provides basic functionality for accessing those memories without
* going through the memory system and interconnect.
*/
class PhysicalMemory
{
protected:
class MemoryPort : public SimpleTimingPort
{
PhysicalMemory *memory;
public:
MemoryPort(const std::string &_name, PhysicalMemory *_memory);
protected:
virtual Tick recvAtomic(PacketPtr pkt);
virtual void recvFunctional(PacketPtr pkt);
virtual AddrRangeList getAddrRanges();
virtual unsigned deviceBlockSize() const;
};
int numPorts;
private:
// prevent copying of a MainMemory object
PhysicalMemory(const PhysicalMemory &specmem);
const PhysicalMemory &operator=(const PhysicalMemory &specmem);
protected:
// Global address map
range_map<Addr, AbstractMemory* > addrMap;
class LockedAddr {
public:
// on alpha, minimum LL/SC granularity is 16 bytes, so lower
// bits need to masked off.
static const Addr Addr_Mask = 0xf;
// a mutable cache for the last range that matched an address
mutable Range<Addr> rangeCache;
static Addr mask(Addr paddr) { return (paddr & ~Addr_Mask); }
// All address-mapped memories
std::vector<AbstractMemory*> memories;
Addr addr; // locked address
int contextId; // locking hw context
// The total memory size
uint64_t size;
// check for matching execution context
bool matchesContext(Request *req)
{
return (contextId == req->contextId());
}
// Prevent copying
PhysicalMemory(const PhysicalMemory&);
LockedAddr(Request *req)
: addr(mask(req->getPaddr())),
contextId(req->contextId())
{
}
// constructor for unserialization use
LockedAddr(Addr _addr, int _cid)
: addr(_addr), contextId(_cid)
{
}
};
std::list<LockedAddr> lockedAddrList;
// helper function for checkLockedAddrs(): we really want to
// inline a quick check for an empty locked addr list (hopefully
// the common case), and do the full list search (if necessary) in
// this out-of-line function
bool checkLockedAddrList(PacketPtr pkt);
// Record the address of a load-locked operation so that we can
// clear the execution context's lock flag if a matching store is
// performed
void trackLoadLocked(PacketPtr pkt);
// Compare a store address with any locked addresses so we can
// clear the lock flag appropriately. Return value set to 'false'
// if store operation should be suppressed (because it was a
// conditional store and the address was no longer locked by the
// requesting execution context), 'true' otherwise. Note that
// this method must be called on *all* stores since even
// non-conditional stores must clear any matching lock addresses.
bool writeOK(PacketPtr pkt) {
Request *req = pkt->req;
if (lockedAddrList.empty()) {
// no locked addrs: nothing to check, store_conditional fails
bool isLLSC = pkt->isLLSC();
if (isLLSC) {
req->setExtraData(0);
}
return !isLLSC; // only do write if not an sc
} else {
// iterate over list...
return checkLockedAddrList(pkt);
}
}
uint8_t *pmemAddr;
Tick lat;
Tick lat_var;
std::vector<MemoryPort*> ports;
typedef std::vector<MemoryPort*>::iterator PortIterator;
uint64_t _size;
uint64_t _start;
/** Number of total bytes read from this memory */
Stats::Scalar bytesRead;
/** Number of instruction bytes read from this memory */
Stats::Scalar bytesInstRead;
/** Number of bytes written to this memory */
Stats::Scalar bytesWritten;
/** Number of read requests */
Stats::Scalar numReads;
/** Number of write requests */
Stats::Scalar numWrites;
/** Number of other requests */
Stats::Scalar numOther;
/** Read bandwidth from this memory */
Stats::Formula bwRead;
/** Read bandwidth from this memory */
Stats::Formula bwInstRead;
/** Write bandwidth from this memory */
Stats::Formula bwWrite;
/** Total bandwidth from this memory */
Stats::Formula bwTotal;
// Prevent assignment
PhysicalMemory& operator=(const PhysicalMemory&);
public:
uint64_t size() { return _size; }
uint64_t start() { return _start; }
public:
typedef PhysicalMemoryParams Params;
PhysicalMemory(const Params *p);
virtual ~PhysicalMemory();
const Params *
params() const
{
return dynamic_cast<const Params *>(_params);
}
public:
unsigned deviceBlockSize() const;
AddrRangeList getAddrRanges();
virtual SlavePort &getSlavePort(const std::string &if_name, int idx = -1);
void virtual init();
unsigned int drain(Event *de);
Tick doAtomicAccess(PacketPtr pkt);
void doFunctionalAccess(PacketPtr pkt);
protected:
virtual Tick calculateLatency(PacketPtr pkt);
public:
/**
* Register Statistics
/**
* Create a physical memory object, wrapping a number of memories.
*/
void regStats();
PhysicalMemory(const std::vector<AbstractMemory*>& _memories);
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
/**
* Nothing to destruct.
*/
~PhysicalMemory() { }
/**
* Check if a physical address is within a range of a memory that
* is part of the global address map.
*
* @param addr A physical address
* @return Whether the address corresponds to a memory
*/
bool isMemAddr(Addr addr) const;
/**
* Get the memory ranges for all memories that are to be reported
* to the configuration table.
*
* @return All configuration table memory ranges
*/
AddrRangeList getConfAddrRanges() const;
/**
* Get the total physical memory size.
*
* @return The sum of all memory sizes
*/
uint64_t totalSize() const { return size; }
/**
*
*/
void access(PacketPtr pkt);
void functionalAccess(PacketPtr pkt);
};
#endif //__PHYSICAL_MEMORY_HH__

View file

@ -467,7 +467,7 @@ RubyPort::M5Port::recvFunctional(PacketPtr pkt)
// The following command performs the real functional access.
// This line should be removed once Ruby supplies the official version
// of data.
ruby_port->system->physmem->doFunctionalAccess(pkt);
ruby_port->system->getPhysMem().functionalAccess(pkt);
}
// turn packet around to go back to requester if response expected
@ -646,7 +646,7 @@ RubyPort::M5Port::hitCallback(PacketPtr pkt)
DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
if (accessPhysMem) {
ruby_port->system->physmem->doAtomicAccess(pkt);
ruby_port->system->getPhysMem().access(pkt);
} else if (needsResponse) {
pkt->makeResponse();
}
@ -688,7 +688,7 @@ RubyPort::M5Port::getAddrRanges()
bool
RubyPort::M5Port::isPhysMemAddress(Addr addr)
{
return ruby_port->system->isMemory(addr);
return ruby_port->system->isMemAddr(addr);
}
unsigned

167
src/mem/simple_mem.cc Normal file
View file

@ -0,0 +1,167 @@
/*
* Copyright (c) 2010-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Ali Saidi
* Andreas Hansson
*/
#include "base/random.hh"
#include "mem/simple_mem.hh"
using namespace std;
SimpleMemory::SimpleMemory(const Params* p) :
AbstractMemory(p),
lat(p->latency), lat_var(p->latency_var)
{
for (size_t i = 0; i < p->port_port_connection_count; ++i) {
ports.push_back(new MemoryPort(csprintf("%s-port-%d", name(), i),
*this));
}
}
void
SimpleMemory::init()
{
for (vector<MemoryPort*>::iterator p = ports.begin(); p != ports.end();
++p) {
if (!(*p)->isConnected()) {
fatal("SimpleMemory port %s is unconnected!\n", (*p)->name());
} else {
(*p)->sendRangeChange();
}
}
}
Tick
SimpleMemory::calculateLatency(PacketPtr pkt)
{
if (pkt->memInhibitAsserted()) {
return 0;
} else {
Tick latency = lat;
if (lat_var != 0)
latency += random_mt.random<Tick>(0, lat_var);
return latency;
}
}
Tick
SimpleMemory::doAtomicAccess(PacketPtr pkt)
{
access(pkt);
return calculateLatency(pkt);
}
void
SimpleMemory::doFunctionalAccess(PacketPtr pkt)
{
functionalAccess(pkt);
}
SlavePort &
SimpleMemory::getSlavePort(const std::string &if_name, int idx)
{
if (if_name != "port") {
return MemObject::getSlavePort(if_name, idx);
} else {
if (idx >= static_cast<int>(ports.size())) {
fatal("SimpleMemory::getSlavePort: unknown index %d\n", idx);
}
return *ports[idx];
}
}
unsigned int
SimpleMemory::drain(Event *de)
{
int count = 0;
for (vector<MemoryPort*>::iterator p = ports.begin(); p != ports.end();
++p) {
count += (*p)->drain(de);
}
if (count)
changeState(Draining);
else
changeState(Drained);
return count;
}
SimpleMemory::MemoryPort::MemoryPort(const std::string& _name,
SimpleMemory& _memory)
: SimpleTimingPort(_name, &_memory), memory(_memory)
{ }
AddrRangeList
SimpleMemory::MemoryPort::getAddrRanges()
{
AddrRangeList ranges;
ranges.push_back(memory.getAddrRange());
return ranges;
}
Tick
SimpleMemory::MemoryPort::recvAtomic(PacketPtr pkt)
{
return memory.doAtomicAccess(pkt);
}
void
SimpleMemory::MemoryPort::recvFunctional(PacketPtr pkt)
{
pkt->pushLabel(memory.name());
if (!queue.checkFunctional(pkt)) {
// Default implementation of SimpleTimingPort::recvFunctional()
// calls recvAtomic() and throws away the latency; we can save a
// little here by just not calculating the latency.
memory.doFunctionalAccess(pkt);
}
pkt->popLabel();
}
SimpleMemory*
SimpleMemoryParams::create()
{
return new SimpleMemory(this);
}

114
src/mem/simple_mem.hh Normal file
View file

@ -0,0 +1,114 @@
/*
* Copyright (c) 2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Andreas Hansson
*/
/**
* @file
* SimpleMemory declaration
*/
#ifndef __SIMPLE_MEMORY_HH__
#define __SIMPLE_MEMORY_HH__
#include "mem/abstract_mem.hh"
#include "mem/tport.hh"
#include "params/SimpleMemory.hh"
/**
* The simple memory is a basic multi-ported memory with an infinite
* throughput and a fixed latency, potentially with a variance added
* to it. It uses a SimpleTimingPort to implement the timing accesses.
*/
class SimpleMemory : public AbstractMemory
{
private:
class MemoryPort : public SimpleTimingPort
{
SimpleMemory& memory;
public:
MemoryPort(const std::string& _name, SimpleMemory& _memory);
protected:
virtual Tick recvAtomic(PacketPtr pkt);
virtual void recvFunctional(PacketPtr pkt);
virtual AddrRangeList getAddrRanges();
};
std::vector<MemoryPort*> ports;
Tick lat;
Tick lat_var;
public:
typedef SimpleMemoryParams Params;
SimpleMemory(const Params *p);
virtual ~SimpleMemory() { }
unsigned int drain(Event* de);
virtual SlavePort& getSlavePort(const std::string& if_name, int idx = -1);
virtual void init();
const Params *
params() const
{
return dynamic_cast<const Params *>(_params);
}
protected:
Tick doAtomicAccess(PacketPtr pkt);
void doFunctionalAccess(PacketPtr pkt);
virtual Tick calculateLatency(PacketPtr pkt);
};
#endif //__SIMPLE_MEMORY_HH__

View file

@ -33,7 +33,7 @@ from m5.defines import buildEnv
from m5.params import *
from m5.proxy import *
from PhysicalMemory import *
from SimpleMemory import *
class MemoryMode(Enum): vals = ['invalid', 'atomic', 'timing']
@ -52,9 +52,9 @@ class System(MemObject):
void setMemoryMode(Enums::MemoryMode mode);
''')
physmem = Param.PhysicalMemory("Physical Memory")
memories = VectorParam.AbstractMemory(Self.all,
"All memories in the system")
mem_mode = Param.MemoryMode('atomic', "The mode the memory system is in")
memories = VectorParam.PhysicalMemory(Self.all, "All memories is the system")
work_item_id = Param.Int(-1, "specific work item id")
num_work_ids = Param.Int(16, "Number of distinct work item types")
work_begin_cpu_id_exit = Param.Int(-1,

View file

@ -73,7 +73,6 @@ int System::numSystemsRunning = 0;
System::System(Params *p)
: MemObject(p), _systemPort("system_port", this),
physmem(p->physmem),
_numContexts(0),
pagePtr(0),
init_param(p->init_param),
@ -81,6 +80,7 @@ System::System(Params *p)
virtProxy(_systemPort),
loadAddrMask(p->load_addr_mask),
nextPID(0),
physmem(p->memories),
memoryMode(p->mem_mode),
workItemsBegin(0),
workItemsEnd(0),
@ -92,16 +92,6 @@ System::System(Params *p)
// add self to global system list
systemList.push_back(this);
/** Keep track of all memories we can execute code out of
* in our system
*/
for (int x = 0; x < p->memories.size(); x++) {
if (!p->memories[x])
continue;
memRanges.push_back(RangeSize(p->memories[x]->start(),
p->memories[x]->size()));
}
if (FullSystem) {
kernelSymtab = new SymbolTable;
if (!debugSymbolTable)
@ -308,32 +298,27 @@ System::allocPhysPages(int npages)
{
Addr return_addr = pagePtr << LogVMPageSize;
pagePtr += npages;
if (pagePtr > physmem->size())
if (pagePtr > physmem.totalSize())
fatal("Out of memory, please increase size of physical memory.");
return return_addr;
}
Addr
System::memSize()
System::memSize() const
{
return physmem->size();
return physmem.totalSize();
}
Addr
System::freeMemSize()
System::freeMemSize() const
{
return physmem->size() - (pagePtr << LogVMPageSize);
return physmem.totalSize() - (pagePtr << LogVMPageSize);
}
bool
System::isMemory(const Addr addr) const
System::isMemAddr(Addr addr) const
{
std::list<Range<Addr> >::const_iterator i;
for (i = memRanges.begin(); i != memRanges.end(); i++) {
if (*i == addr)
return true;
}
return false;
return physmem.isMemAddr(addr);
}
void

View file

@ -59,13 +59,13 @@
#include "mem/fs_translating_port_proxy.hh"
#include "mem/mem_object.hh"
#include "mem/port.hh"
#include "mem/physical.hh"
#include "params/System.hh"
class BaseCPU;
class BaseRemoteGDB;
class GDBListener;
class ObjectFile;
class PhysicalMemory;
class Platform;
class ThreadContext;
@ -138,7 +138,6 @@ class System : public MemObject
*/
void setMemoryMode(Enums::MemoryMode mode);
PhysicalMemory *physmem;
PCEventQueue pcEventQueue;
std::vector<ThreadContext *> threadContexts;
@ -159,14 +158,6 @@ class System : public MemObject
* system. These threads could be Active or Suspended. */
int numRunningContexts();
/** List to store ranges of memories in this system */
AddrRangeList memRanges;
/** check if an address points to valid system memory
* and thus we can fetch instructions out of it
*/
bool isMemory(const Addr addr) const;
Addr pagePtr;
uint64_t init_param;
@ -208,13 +199,28 @@ class System : public MemObject
return nextPID++;
}
/** Get a pointer to access the physical memory of the system */
PhysicalMemory& getPhysMem() { return physmem; }
/** Amount of physical memory that is still free */
Addr freeMemSize();
Addr freeMemSize() const;
/** Amount of physical memory that exists */
Addr memSize();
Addr memSize() const;
/**
* Check if a physical address is within a range of a memory that
* is part of the global address map.
*
* @param addr A physical address
* @return Whether the address corresponds to a memory
*/
bool isMemAddr(Addr addr) const;
protected:
PhysicalMemory physmem;
Enums::MemoryMode memoryMode;
uint64_t workItemsBegin;
uint64_t workItemsEnd;

View file

@ -48,7 +48,7 @@ cpu.addTwoLevelCacheHierarchy(MyL1Cache(size = '128kB'),
cpu.clock = '2GHz'
system = System(cpu = cpu,
physmem = PhysicalMemory(),
physmem = SimpleMemory(),
membus = Bus())
system.system_port = system.membus.slave
system.physmem.port = system.membus.master

View file

@ -77,8 +77,8 @@ options.num_cpus = nb_cores
# system simulated
system = System(cpu = cpus,
funcmem = PhysicalMemory(),
physmem = PhysicalMemory())
funcmem = SimpleMemory(in_addr_map = False),
physmem = SimpleMemory())
Ruby.create_system(options, system)

View file

@ -56,8 +56,8 @@ nb_cores = 8
cpus = [ MemTest() for i in xrange(nb_cores) ]
# system simulated
system = System(cpu = cpus, funcmem = PhysicalMemory(),
physmem = PhysicalMemory(),
system = System(cpu = cpus, funcmem = SimpleMemory(in_addr_map = False),
physmem = SimpleMemory(),
membus = Bus(clock="500GHz", width=16))
# l2cache & bus

View file

@ -59,7 +59,7 @@ cpu.addTwoLevelCacheHierarchy(MyL1Cache(size = '128kB'),
cpu.clock = '2GHz'
system = System(cpu = cpu,
physmem = PhysicalMemory(),
physmem = SimpleMemory(),
membus = Bus())
system.system_port = system.membus.slave
system.physmem.port = system.membus.master

View file

@ -56,8 +56,7 @@ nb_cores = 4
cpus = [ DerivO3CPU(cpu_id=i) for i in xrange(nb_cores) ]
# system simulated
system = System(cpu = cpus, physmem = PhysicalMemory(), membus =
Bus())
system = System(cpu = cpus, physmem = SimpleMemory(), membus = Bus())
# l2cache & bus
system.toL2Bus = Bus()

View file

@ -48,7 +48,7 @@ cpu.addTwoLevelCacheHierarchy(MyL1Cache(size = '128kB'),
cpu.clock = '2GHz'
system = System(cpu = cpu,
physmem = PhysicalMemory(),
physmem = SimpleMemory(),
membus = Bus())
system.system_port = system.membus.slave
system.physmem.port = system.membus.master

View file

@ -70,7 +70,7 @@ options.l3_assoc=2
#
tester = RubyTester(checks_to_complete = 100, wakeup_frequency = 10)
system = System(tester = tester, physmem = PhysicalMemory())
system = System(tester = tester, physmem = SimpleMemory())
Ruby.create_system(options, system)

View file

@ -39,7 +39,7 @@ import m5
from m5.objects import *
system = System(cpu = AtomicSimpleCPU(cpu_id=0),
physmem = PhysicalMemory(),
physmem = SimpleMemory(),
membus = Bus())
system.system_port = system.membus.slave
system.physmem.port = system.membus.master

View file

@ -55,8 +55,9 @@ nb_cores = 4
cpus = [ AtomicSimpleCPU(cpu_id=i) for i in xrange(nb_cores) ]
# system simulated
system = System(cpu = cpus, physmem = PhysicalMemory(range = AddrRange('1024MB')), membus =
Bus())
system = System(cpu = cpus,
physmem = SimpleMemory(range = AddrRange('1024MB')),
membus = Bus())
# l2cache & bus
system.toL2Bus = Bus()

View file

@ -30,7 +30,7 @@ import m5
from m5.objects import *
system = System(cpu = AtomicSimpleCPU(cpu_id=0),
physmem = PhysicalMemory(),
physmem = SimpleMemory(),
membus = Bus())
system.system_port = system.membus.slave
system.physmem.port = system.membus.master

View file

@ -70,7 +70,7 @@ cpus = [ TimingSimpleCPU(cpu_id=i) for i in xrange(nb_cores) ]
options.num_cpus = nb_cores
# system simulated
system = System(cpu = cpus, physmem = PhysicalMemory())
system = System(cpu = cpus, physmem = SimpleMemory())
Ruby.create_system(options, system)

View file

@ -55,8 +55,7 @@ nb_cores = 4
cpus = [ TimingSimpleCPU(cpu_id=i) for i in xrange(nb_cores) ]
# system simulated
system = System(cpu = cpus, physmem = PhysicalMemory(), membus =
Bus())
system = System(cpu = cpus, physmem = SimpleMemory(), membus = Bus())
# l2cache & bus
system.toL2Bus = Bus()

View file

@ -66,7 +66,7 @@ options.l3_assoc=2
options.num_cpus = 1
cpu = TimingSimpleCPU(cpu_id=0)
system = System(cpu = cpu, physmem = PhysicalMemory())
system = System(cpu = cpu, physmem = SimpleMemory())
Ruby.create_system(options, system)

View file

@ -44,7 +44,7 @@ cpu.addTwoLevelCacheHierarchy(MyL1Cache(size = '128kB'),
MyL1Cache(size = '256kB'),
MyCache(size = '2MB', latency='10ns'))
system = System(cpu = cpu,
physmem = PhysicalMemory(),
physmem = SimpleMemory(),
membus = Bus())
system.system_port = system.membus.slave
system.physmem.port = system.membus.master