Translating MSR addresses into MSR register indices took a lot of space in the
TLB source and made looking around in that file awkward. This change moves
the lookup into its own file to get it out of the way. It also changes it from
a switch statement to a hash map which should hopefully be a little more
efficient.
The decoder now checks the value of FULL_SYSTEM in a switch statement to
decide whether to return a real syscall instruction or one that triggers
syscall emulation (or a panic in FS mode). The switch statement should devolve
into an if, and also should be optimized out since it's based on constant
input.
Having two StaticInst classes, one nominally ISA dependent and the other ISA
dependent, has not been historically useful and makes the StaticInst class
more complicated that it needs to be. This change merges StaticInstBase into
StaticInst.
Do some minor cleanup of some recently added comments, a warning, and change
other instances of stack extension to be like what's now being done for x86.
The way flag bits were being set for microops in x86 ended up implicitly
calling the bitset constructor which was truncating flags beyond the width of
an unsigned long. This change sets the bits in chunks which are always small
enough to avoid being truncated. On 64 bit machines this should reduce to be
the same as before, and on 32 bit machines it should work properly and not be
unreasonably inefficient.
When an instruction is translated in the x86 TLB, a variable called
delayedResponse is passed back and forth which tracks whether a translation
could be completed immediately, or if there's going to be callback that will
finish things up. If a read was to the internal memory space, memory mapped
registers used to implement things like MSRs, the function hadn't yet gotten
to where delayedResponse was set to false, it's default. That meant that the
value was never set, and the TLB could start waiting for a callback that would
never come. This change simply moves the assignment to above where control
can divert to translateInt().
Nothing big here, but when you have an address that is not in the page table request to be allocated, if it falls outside of the maximum stack range all you get is a page fault and you don't know why. Add a little warn() to explain it a bit. Also add some comments and alter logic a little so that you don't totally ignore the return value of checkAndAllocNextPage().
Control register operands are set up so that writing to them is serialize
after, serialize before, and non-speculative. These are probably overboard,
but they should usually be safe. Unfortunately there are times when even these
aren't enough. If an instruction modifies state that affects fetch, later
serialized instructions which come after it might have already gone through
fetch and decode by the time it commits. These instructions may have been
translated incorrectly or interpretted incorrectly and need to be destroyed.
This change modifies instructions which will or may have this behavior so that
they use the IsSquashAfter flag when necessary.
This patch implements the copyRegs() function for the x86 architecture.
The patch assumes that no side effects other than TLB invalidation need
to be considered while copying the registers. This may not hold true in
future.
readBytes and writeBytes had the word "bytes" in their names because they
accessed blobs of bytes. This distinguished them from the read and write
functions which handled higher level data types. Because those functions don't
exist any more, this change renames readBytes and writeBytes to more general
names, readMem and writeMem, which reflect the fact that they are how you read
and write memory. This also makes their names more consistent with the
register reading/writing functions, although those are still read and set for
some reason.
A significant contributor to the need for adoptOrphanParams()
is the practice of appending to SimObjectVectors which have
already been assigned as children. This practice sidesteps the
assignment operation for those appended SimObjects, which is
where parent/child relationships are typically established.
This patch reworks the config scripts that use append() on
SimObjectVectors, which all happen to be in the x86 system
configuration. At some point in the future, I hope to make
SimObjectVectors immutable (by deriving from tuple rather than
list), at which time this patch will be necessary for correct
operation. For now, it just avoids some of the warning
messages that get printed in adoptOrphanParams().
Debug flags are ExecUser, ExecKernel, and ExecAsid. ExecUser and
ExecKernel are set by default when Exec is specified. Use minus
sign with ExecUser or ExecKernel to remove user or kernel tracing
respectively.
This change makes the decoder figure out if an instruction that only supports
memory is using a register encoding and decodes directly to "Unknown" which will
behave appropriately. This prevents other parts of the instruction creation
process from seeing the mismatch and asserting.
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
***
(1): get rid of expandForMT function
MIPS is the only ISA that cares about having a piece of ISA state integrate
multiple threads so add constants for MIPS and relieve the other ISAs from having
to define this. Also, InOrder was the only core that was actively calling
this function
* * *
(2): get rid of corespecific type
The CoreSpecific type was used as a proxy to pass in HW specific params to
a MIPS CPU, but since MIPS FS hasnt been touched for awhile, it makes sense
to not force every other ISA to use CoreSpecific as well use a special
reset function to set it. That probably should go in a PowerOn reset fault
anyway.
The internet says this instruction was created by accident when an Intel CPU
failed to decode x87 instructions properly. It's been documented on a few rare
occasions and has generally worked to ensure backwards compatability. One
source claims that the gcc toolchain is basically the only thing that emits
it, and that emulators/binary translators like qemu and bochs implement it.
We won't actually implement it here since we're hardly implementing any other
x87 instructions either. If we were to implement it, it would behave the same
as ffree but then also pop the register stack.
http://www.pagetable.com/?p=16
There may not be a formally correct spelling for the past tense of mmap, but
mmapped is the spelling Google doesn't try to autocorrect. This makes sense
because it mirrors the past tense of map->mapped and not the past tense of
cape->caped.
--HG--
rename : src/arch/alpha/mmaped_ipr.hh => src/arch/alpha/mmapped_ipr.hh
rename : src/arch/arm/mmaped_ipr.hh => src/arch/arm/mmapped_ipr.hh
rename : src/arch/mips/mmaped_ipr.hh => src/arch/mips/mmapped_ipr.hh
rename : src/arch/power/mmaped_ipr.hh => src/arch/power/mmapped_ipr.hh
rename : src/arch/sparc/mmaped_ipr.hh => src/arch/sparc/mmapped_ipr.hh
rename : src/arch/x86/mmaped_ipr.hh => src/arch/x86/mmapped_ipr.hh
In x86, 32 and 64 bit writes to registers in which registers appear to be 32 or
64 bits wide overwrite all bits of the destination register. This change
removes false dependencies in these cases where the previous value of a
register doesn't need to be read to write a new value. New versions of most
microops are created that have a "Big" suffix which simply overwrite their
destination, and the right version to use is selected during microop
allocation based on the selected data size.
This does not change the performance of the O3 CPU model significantly, I
assume because there are other false dependencies from the condition code bits
in the flags register.
These faults can panic/warn/warn_once, etc., instead of instructions doing
that themselves directly. That way, instructions can be speculatively
executed, and only if they're actually going to commit will their fault be
invoked and the panic, etc., happen.
When redirecting fetch to handle branches, the npc of the current pc state
needs to be left alone. This change makes the pc state record whether or not
the npc already reflects a real value by making it keep track of the current
instruction size, or if no size has been set.
JMP_FAR_I was unpacking its far pointer operand using sll instead of srl like
it should, and also putting the components in the wrong registers for use by
other microcode.
During iret access LDT/GDT at CPL0 rather than after transition to user mode
(if I'm reading the Intel IA-64 architecture spec correctly, the contents of
the descriptor table are read before the CPL is updated).
Move page table walker state to its own object type, and make the
walker instantiate state for each outstanding walk. By storing the
states in a queue, the walker is able to handle multiple outstanding
timing requests. Note that functional walks use separate state
elements.
Double packet delete problem is due to an interrupt device deleting a packet that the SimpleTimingPort also deletes. Since MessagePort descends from SimpleTimingPort, simply reimplement the failing code from SimpleTimingPort: recvTiming.
Ran all the source files through 'perl -pi' with this script:
s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|;
s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|;
s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|;
Also did a little manual editing on some of the arch/*/isa_traits.hh files
and src/SConscript.
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.
PC type:
Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.
These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.
Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.
Advancing the PC:
The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.
One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.
Variable length instructions:
To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.
ISA parser:
To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.
Return address stack:
The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.
Change in stats:
There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.
TODO:
Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
Code in the CPUs that need a nop to carry a fault can't easily deal with a
microcoded nop. This instruction format provides for one that isn't.
--HG--
rename : src/arch/x86/isa/formats/syscall.isa => src/arch/x86/isa/formats/nop.isa
In the process make add skipFuction() to handle isa specific function skipping
instead of ifdefs and other ugliness. For almost all ABIs, 64 bit arguments can
only start in even registers. Size is now passed to getArgument() so that 32
bit systems can make decisions about register selection for 64 bit arguments.
The number argument is now passed by reference because getArgument() will need
to change it based on the size of the argument and the current argument number.
For ARM, if the argument number is odd and a 64-bit register is requested the
number must first be incremented to because all 64 bit arguments are passed
in an even argument register. Then the number will be incremented again to
access both halves of the argument.
This reduces the scope of those includes and makes it less likely for there to
be a dependency loop. This also moves the hashing functions associated with
ExtMachInst objects to be with the ExtMachInst definitions and out of
utility.hh.
Also move the "Fault" reference counted pointer type into a separate file,
sim/fault.hh. It would be better to name this less similarly to sim/faults.hh
to reduce confusion, but fault.hh matches the name of the type. We could change
Fault to FaultPtr to match other pointer types, and then changing the name of
the file would make more sense.
When decoding a srs instruction, invalid mode encoding returns invalid instruction.
This can happen when garbage instructions are fetched from mispredicted path
This is to help tidy up arch/x86. These files should not be used external to
the ISA.
--HG--
rename : src/arch/x86/apicregs.hh => src/arch/x86/regs/apic.hh
rename : src/arch/x86/floatregs.hh => src/arch/x86/regs/float.hh
rename : src/arch/x86/intregs.hh => src/arch/x86/regs/int.hh
rename : src/arch/x86/miscregs.hh => src/arch/x86/regs/misc.hh
rename : src/arch/x86/segmentregs.hh => src/arch/x86/regs/segment.hh
This single parameter replaces the collection of bools that set up various
flavors of microops. A flag parameter also allows other flags to be set like
the serialize before/after flags, etc., without having to change the
constructor.
This allows one two different OS requirements for the same ISA to be handled.
Some OSes are compiled for a virtual address and need to be loaded into physical
memory that starts at address 0, while other bare metal tools generate
images that start at address 0.
Replace direct call to unserialize() on each SimObject with a pair of
calls for better control over initialization in both ckpt and non-ckpt
cases.
If restoring from a checkpoint, loadState(ckpt) is called on each
SimObject. The default implementation simply calls unserialize() if
there is a corresponding checkpoint section, so we get backward
compatibility for existing objects. However, objects can override
loadState() to get other behaviors, e.g., doing other programmed
initializations after unserialize(), or complaining if no checkpoint
section is found. (Note that the default warning for a missing
checkpoint section is now gone.)
If not restoring from a checkpoint, we call the new initState() method
on each SimObject instead. This provides a hook for state
initializations that are only required when *not* restoring from a
checkpoint.
Given this new framework, do some cleanup of LiveProcess subclasses
and X86System, which were (in some cases) emulating initState()
behavior in startup via a local flag or (in other cases) erroneously
doing initializations in startup() that clobbered state loaded earlier
by unserialize().