I am not too happy with the way options are added in files se.py and fs.py
currently. This patch moves all the options to the file Options.py, functions
from which are called when required.
With the SE/FS merge, interrupt controller is created irrespective of the
mode. This patch creates the interrupt controller when Ruby is used and
connects its ports.
Enables the CheckerCPU to be selected at runtime with the --checker option
from the configs/example/fs.py and configs/example/se.py configuration
files. Also merges with the SE/FS changes.
This patch cleans up a number of remaining uses of bus.port which
is now split into bus.master and bus.slave. The only non-trivial change
is the memtest where the level building now has to be aware of the role
of the ports used in the previous level.
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
This patch moves the connection of the system port to create_system in
Ruby.py. Thereby it allows the failing Ruby test (and other Ruby
systems) to run again.
This patch fixes the currently broken fs.py by specifying the size of
the bridge range rather than the end address. This effectively
subtracts one when determining the address range for the IO bridge
(from IO bus to membus), and thus avoids the overlapping ranges.
This patch makes the bus bridge uni-directional and specialises the
bus ports to be a master port and a slave port. This greatly
simplifies the assumptions on both sides as either port only has to
deal with requests or responses. The following patches introduce the
notion of master and slave ports, and would not be possible without
this split of responsibilities.
In making the bridge unidirectional, the address range mechanism of
the bridge is also changed. For the cases where communication is
taking place both ways, an additional bridge is needed. This causes
issues with the existing mechanism, as the busses cannot determine
when to stop iterating the address updates from the two bridges. To
avoid this issue, and also greatly simplify the specification, the
bridge now has a fixed set of address ranges, specified at creation
time.
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.
The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
This patch adds a new option for cpu type. This option is of type 'choice'
which is similar to a C++ enum, except that it takes string values as
possible choices. Following options are being removed -- detailed, timing,
inorder.
--HG--
extra : rebase_source : 58885e2e8a88b6af8e6ff884a5922059dbb1a6cb
When a change in the frame buffer from the VNC server is detected, the new
frame is stored out to the m5out/frames_*/ directory. Specifiy the flag
"--frame-capture" when running configs/example/fs.py to enable this behavior.
--HG--
extra : rebase_source : d4e08e83f4fa6ff79f3dc9c433fc1f0487e057fc
This patch drops RUBY as a compile time option. Instead the PROTOCOL option
is used to figure out whether or not to build Ruby. If the specified protocol
is 'None', then Ruby is not compiled.
This patch rpovides functional access support in Ruby. Currently only
the M5Port of RubyPort supports functional accesses. The support for
functional through the PioPort will be added as a separate patch.
Re-enabling implicit parenting (see previous patch) causes current
Ruby config scripts to create some strange hierarchies and generate
several warnings. This patch makes three general changes to address
these issues.
1. The order of object creation in the ruby config files makes the L1
caches children of the sequencer rather than the controller; these
config ciles are rewritten to assign the L1 caches to the
controller first.
2. The assignment of the sequencer list to system.ruby.cpu_ruby_ports
causes the sequencers to be children of system.ruby, generating
warnings because they are already parented to their respective
controllers. Changing this attribute to _cpu_ruby_ports fixes this
because the leading underscore means this is now treated as a plain
Python attribute rather than a child assignment. As a result, the
configuration hierarchy changes such that, e.g.,
system.ruby.cpu_ruby_ports0 becomes system.l1_cntrl0.sequencer.
3. In the topology classes, the routers become children of some random
internal link node rather than direct children of the topology.
The topology classes are rewritten to assign the routers to the
topology object first.
A recent patch broke the ruby network tester by adding -p inside Options.py
which conflicts with the -p inside ruby_network_test.py.
Have removed -p from ruby_network_test.py
The network tester terminates after injecting for sim_cycles
(default=1000), instead of having to explicitly pass --maxticks from the
command line as before. If fixed_pkts is enabled, the tester only
injects maxpackets number of packets, else it keeps injecting till sim_cycles.
The tester also works with zero command line arguments now.
The tester code is in testers/networktest.
The tester can be invoked by configs/example/ruby_network_test.py.
A dummy coherence protocol called Network_test is also addded for network-only simulations and testing. The protocol takes in messages from the tester and just pushes them into the network in the appropriate vnet, without storing any state.
Now, instead of --bench benchname, you can do --bench bench1-bench2-bench3 and it will
set up a simulation that instantiates those three workloads. Only caveat is that now,
for sanity checking, your -n X must match the number of benches in the list.
makeArmSystem creates both bare-metal and Linux systems more cleanly.
machine_type was never optional though listed as an optional argument; a system
such as "RealView_PBX" must now be explicitly specified. Now that it is a
required argument, the placement of the arguments has changed slightly
requiring some changes to calls that create ARM systems.
This way things that don't care about work count options and/or aren't called
by something that has those command line options set up doesn't have to build
a fake object to carry in inert values.
This makes sure that the address ranges requested for caches and uncached ports
don't conflict with each other, and that accesses which are always uncached
(message signaled interrupts for instance) don't waste time passing through
caches.
M5 skips over any simulated time where it doesn't have any work to do. When
the simulation is active, the time skipped is short and the work done at any
point in time is relatively substantial. If the time between events is long
and/or the work to do at each event is small, it's possible for simulated time
to pass faster than real time. When running a benchmark that can be good
because it means the simulation will finish sooner in real time. When
interacting with the real world through, for instance, a serial terminal or
bridge to a real network, this can be a problem. Human or network response time
could be greatly exagerated from the perspective of the simulation and make
simulated events happen "too soon" from an external perspective.
This change adds the capability to force the simulation to run no faster than
real time. It does so by scheduling a periodic event that checks to see if
its simulated period is shorter than its real period. If it is, it stalls the
simulation until they're equal. This is called time syncing.
A future change could add pseudo instructions which turn time syncing on and
off from within the simulation. That would allow time syncing to be used for
the interactive parts of a session but then turned off when running a
benchmark using the m5 utility program inside a script. Time syncing would
probably not happen anyway while running a benchmark because there would be
plenty of work for M5 to do, but the event overhead could be avoided.
The previous slower ruby latencies created a mismatch between the faster M5
cpu models and the much slower ruby memory system. Specifically smp
interrupts were much slower and infrequent, as well as cpus moving in and out
of spin locks. The result was many cpus were idle for large periods of time.
These changes fix the latency mismatch.
This patch adds DMA testing to the Memtester and is inherits many changes from
Polina's old tester_dma_extension patch. Since Ruby does not work in atomic
mode, the atomic mode options are removed.
This patch attaches ruby objects to the system before the topology is
created so that their simobject names read their meaningful variable
names instead of their topology name.
Enforce that the Python Root SimObject is instantiated only
once. The C++ Root object already panics if more than one is
created. This change avoids the need to track what the root
object is, since it's available from Root.getInstance() (if it
exists). It's now redundant to have the user pass the root
object to functions like instantiate(), checkpoint(), and
restoreCheckpoint(), so that arg is gone. Users who use
configs/common/Simulate.py should not notice.
Most of these frontend configurations share cache configuration code, pull it out so that
changes to caches don't have to require changing multiple config files.
On the config end, if a shared L2 is created for the system, it is
parameterized to have n sharers as defined by option.num_cpus. In addition to
making the cache sharing aware so that discriminating tag policies can make use
of context_ids to make decisions, I added an occupancy AverageStat and an occ %
stat to each cache so that you could know which contexts are occupying how much
cache on average, both in terms of blocks and percentage. Note that since
devices have context_id -1, having an array of occ stats that correspond to
each context_id will break here, so in FS mode I add an extra bucket for device
blocks. This bucket is explicitly not added in SE mode in order to not only
avoid ugliness in the stats.txt file, but to avoid broken stats (some formulas
break when a bucket is 0).
Reorganized ruby python configuration so that protocol and ruby memory system
configuration code can be shared by multiple front-end configuration files
(i.e. memory tester, full system, and hopefully the regression tester). This
code works for memory tester, but have not tested fs mode.
This patch includes a rather substantial change to the memory controller
profiler in order to work with the new configuration system. Most
noteably, the mem_cntrl_profiler no longer uses a string map, but instead
a vector. Eventually this support should be removed from the main
profiler and go into a separate object. Each memory controller should have
a pointer to that new mem_cntrl profile object.
This patch includes the necessary changes to connect ruby objects using
the python configuration system. Mainly it consists of removing
unnecessary ruby object pointers and connecting the necessary object
pointers using the generated param objects. This patch includes the
slicc changes necessary to connect generated ruby objects together using
the python configuraiton system.
The necessary companion conversion of Ruby objects generated by SLICC
are converted to M5 SimObjects in the following patch, so this patch
alone does not compile.
Conversion of Garnet network models is also handled in a separate
patch; that code is temporarily disabled from compiling to allow
testing of interim code.
Connects M5 cpu and dma ports directly to ruby sequencers and dma
sequencers. Rubymem also includes a pio port so that pio requests
and be forwarded to a special pio bus connecting to device pio
ports.
Get rid of misc.py and just stick misc things in __init__.py
Move utility functions out of SCons files and into m5.util
Move utility type stuff from m5/__init__.py to m5/util/__init__.py
Remove buildEnv from m5 and allow access only from m5.defines
Rename AddToPath to addToPath while we're moving it to m5.util
Rename read_command to readCommand while we're moving it
Rename compare_versions to compareVersions while we're moving it.
--HG--
rename : src/python/m5/convert.py => src/python/m5/util/convert.py
rename : src/python/m5/smartdict.py => src/python/m5/util/smartdict.py
fix bug with 'numThreads=len(workloads)' which was counting characters of command-line not counting threads as intended.
Update numThreads for inorder/o3 cases and default to 1 for all other cases.
This changeset also includes a lot of work from Derek Hower <drh5@cs.wisc.edu>
RubyMemory is now both a driver for Ruby and a port for M5. Changed
makeRequest/hitCallback interface. Brought packets (superficially)
into the sequencer. Modified tester infrastructure to be packet based.
and Ruby can be used together through the example ruby_se.py
script. SPARC parallel applications work, and the timing *seems* right
from combined M5/Ruby debug traces. To run,
% build/ALPHA_SE/m5.debug configs/example/ruby_se.py -c
tests/test-progs/hello/bin/alpha/linux/hello -n 4 -t
Previously there was one per bus, which caused some coherence problems
when more than one decided to respond. Now there is just one on
the main memory bus. The default bus responder on all other buses
is now the downstream cache's cpu_side port. Caches no longer need
to do address range filtering; instead, we just have a simple flag
to prevent snoops from propagating to the I/O bus.
- Add the option of redirecting stderr to a file. With the old
behaviour, stderr would follow stdout if stdout was to a file, but
stderr went to the host stderr if stdout went to the host stdout. The
new default maintains stdout and stderr going to the host. Now the
two can specify different files, but they will share a file descriptor
if the name of the files is the same.
- Add --output and --errout options to se.py to go with --input.
timing mode still broken.
configs/example/memtest.py:
Revamp options.
src/cpu/memtest/memtest.cc:
No need for memory initialization.
No need to make atomic response... memory system should do that now.
src/cpu/memtest/memtest.hh:
MemTest really doesn't want to snoop.
src/mem/bridge.cc:
checkFunctional() cleanup.
src/mem/bus.cc:
src/mem/bus.hh:
src/mem/cache/base_cache.cc:
src/mem/cache/base_cache.hh:
src/mem/cache/cache.cc:
src/mem/cache/cache.hh:
src/mem/cache/cache_blk.hh:
src/mem/cache/cache_builder.cc:
src/mem/cache/cache_impl.hh:
src/mem/cache/coherence/coherence_protocol.cc:
src/mem/cache/coherence/coherence_protocol.hh:
src/mem/cache/coherence/simple_coherence.hh:
src/mem/cache/miss/SConscript:
src/mem/cache/miss/mshr.cc:
src/mem/cache/miss/mshr.hh:
src/mem/cache/miss/mshr_queue.cc:
src/mem/cache/miss/mshr_queue.hh:
src/mem/cache/prefetch/base_prefetcher.cc:
src/mem/cache/tags/fa_lru.cc:
src/mem/cache/tags/fa_lru.hh:
src/mem/cache/tags/iic.cc:
src/mem/cache/tags/iic.hh:
src/mem/cache/tags/lru.cc:
src/mem/cache/tags/lru.hh:
src/mem/cache/tags/split.cc:
src/mem/cache/tags/split.hh:
src/mem/cache/tags/split_lifo.cc:
src/mem/cache/tags/split_lifo.hh:
src/mem/cache/tags/split_lru.cc:
src/mem/cache/tags/split_lru.hh:
src/mem/packet.cc:
src/mem/packet.hh:
src/mem/physical.cc:
src/mem/physical.hh:
src/mem/tport.cc:
More major reorg. Seems to work for atomic mode now,
timing mode still broken.
--HG--
extra : convert_revision : 7e70dfc4a752393b911880ff028271433855ae87
Make clocks more reasonable.
Fix bug in sense of options.timing flag.
configs/example/memtest.py:
Fix bug in sense of options.timing flag.
configs/example/memtest.py:
Make clocks more reasonable.
--HG--
extra : convert_revision : 3715697988c56e92a4da129b42026d0623f5e85e
configs/example/memtest.py:
PhysicalMemory has vector of uniform ports instead of one special one.
Other updates to fix obsolete brokenness.
src/mem/physical.cc:
src/mem/physical.hh:
src/python/m5/objects/PhysicalMemory.py:
Have vector of uniform ports instead of one special one.
src/python/swig/pyobject.cc:
Add comment.
--HG--
extra : convert_revision : a4a764dcdcd9720bcd07c979d0ece311fc8cb4f1
directly configured by python. Move stuff from root.(cc|hh) to
core.(cc|hh) since it really belogs there now.
In the process, simplify how ticks are used in the python code.
--HG--
extra : convert_revision : cf82ee1ea20f9343924f30bacc2a38d4edee8df3
configs/example/fs.py:
make it an automatic system build for alpha vs. sparc.
--HG--
extra : convert_revision : 4c217cf9309c6209be7f80e358f6640857a785e8
configs/common/Simulation.py:
Atomic CPU now works properly with caches, so we don't have to do extra parsing to hook up caches only to the timing CPU.
However the O3CPU must always use caches, so a check for that must still exist.
Also change the switch_cpus to be placed at the system level, now that Steve changed how the IntrController gets its CPU.
configs/example/fs.py:
configs/example/se.py:
Atomic CPU now handles caches.
--HG--
extra : convert_revision : 534ded558ef96cafd76b4b5c5317bd8f4d05076e
configs/common/Simulation.py:
enable going from checkpoint into arbitrary CPU with or without caches.
--HG--
extra : convert_revision : 02e7ff8982fdb3a08bc609f89bd58df5b3a581b2
configs/common/Simulation.py:
Remove mem parameter.
configs/example/se.py:
Remove debug output that got included in my other push.
--HG--
extra : convert_revision : 643c34147f6c6cbb98b8e6d6e8206b9859593ab0
into zamp.eecs.umich.edu:/z/ktlim2/clean/newmem-busfix
configs/example/fs.py:
configs/example/se.py:
src/mem/tport.hh:
Hand merge.
--HG--
extra : convert_revision : b9df95534d43b3b311f24ae24717371d03d615bf
configs/example/fs.py:
configs/example/se.py:
src/cpu/simple/base.cc:
src/cpu/simple/base.hh:
src/cpu/simple/timing.cc:
src/cpu/simple_thread.cc:
src/cpu/simple_thread.hh:
src/cpu/thread_state.cc:
src/cpu/thread_state.hh:
tests/configs/o3-timing-mp.py:
tests/configs/o3-timing.py:
tests/configs/simple-atomic-mp.py:
tests/configs/simple-atomic.py:
tests/configs/simple-timing-mp.py:
tests/configs/simple-timing.py:
tests/configs/tsunami-simple-atomic-dual.py:
tests/configs/tsunami-simple-atomic.py:
tests/configs/tsunami-simple-timing-dual.py:
tests/configs/tsunami-simple-timing.py:
No need for mem parameter any more.
src/cpu/checker/cpu.cc:
Use new constructor for simple thread (no more MemObject parameter).
src/cpu/checker/cpu.hh:
Remove MemObject parameter.
src/cpu/memtest/memtest.hh:
Ports now take in their MemObject owner.
src/cpu/o3/alpha/cpu_builder.cc:
Remove mem parameter.
src/cpu/o3/alpha/cpu_impl.hh:
Remove memory parameter and clean up handling of TranslatingPort.
src/cpu/o3/cpu.cc:
src/cpu/o3/cpu.hh:
src/cpu/o3/fetch.hh:
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/mips/cpu_builder.cc:
src/cpu/o3/mips/cpu_impl.hh:
src/cpu/o3/params.hh:
src/cpu/o3/thread_state.hh:
src/cpu/ozone/cpu.hh:
src/cpu/ozone/cpu_builder.cc:
src/cpu/ozone/cpu_impl.hh:
src/cpu/ozone/front_end.hh:
src/cpu/ozone/front_end_impl.hh:
src/cpu/ozone/lw_lsq.hh:
src/cpu/ozone/lw_lsq_impl.hh:
src/cpu/ozone/simple_params.hh:
src/cpu/ozone/thread_state.hh:
src/cpu/simple/atomic.cc:
Remove memory parameter.
--HG--
extra : convert_revision : 43cb44a33b31320d44b69679dcf646c0380d07d3
configs/example/fs.py:
factor out common code.
configs/example/se.py:
factor out common code
--HG--
extra : convert_revision : 72a1f653c84eae1b7d281e0a5e60ee116ad6b27d
1) rearrange the options to be in a nice logical order
2) add an option for what i call "standard switch", which is from simple->timing->detailed
3) make checkpointing code such that checkpoints taken from the command line override checkpoint instructions compiled into binaries.
4) add an option for maximum number of checkpoints - simulation will stop at max or maxtick, whichever is first
--HG--
extra : convert_revision : 8d905e1b297ae664d60f8c8ba48b2aac25437fc6
1) rearrange the options to be in a nice logical order
2) add an option for what i call "standard switch", which is from simple->timing->detailed
3) change the client/server naming system to testsys/drivesys
4) make checkpointing code such that checkpoints taken from the command line override checkpoint instructions compiled into binaries.
5) add an option for maximum number of checkpoints - simulation will stop at max or maxtick, whichever is first
doesn't fully work because of a caching issue, but the python side of things i think should work - the counterpart of se.py does work.
i think i should factor out a lot of the common code in both, but i'll do that after this checkin, just to get this in the tree.
configs/example/fs.py:
1) rearrange the options to be in a nice logical order
2) add an option for what i call "standard switch", which is from simple->timing->detailed
3) change the client/server naming system to testsys/drivesys
4) make checkpointing code such that checkpoints taken from the command line override checkpoint instructions compiled into binaries.
5) add an option for maximum number of checkpoints - simulation will stop at max or maxtick, whichever is first
--HG--
extra : convert_revision : 078e22800ff83f6e950bf5cc6fb16a98320e7c51
configs/example/fs.py:
Add MOESI protocol to caches (uni coherence not quite working w/FS yet).
--HG--
extra : convert_revision : 7bef7d9c5b24bf7241cc810df692408837b06b86
configs/example/fs.py:
Add flag for MP server systems.
src/python/m5/objects/AlphaConsole.py:
src/python/m5/objects/IntrControl.py:
Change CPU from 'any' to 'cpu[0]' to work better with MP sytems.
tests/configs/tsunami-simple-atomic-dual.py:
tests/configs/tsunami-simple-timing-dual.py:
Don't need to set console & intrcontrol cpu
params anymore (default is fixed now).
--HG--
extra : convert_revision : 9417b12b1b395ff7d6a9f2894e4123923c754daf