This patch removes the store buffer from Ruby. It is not in use currently.
Since libruby is being and store buffer makes calls to libruby, it is not
possible to maintain it until substantial changes are made.
This patch changes Address.hh so that it is not dependent on RubySystem.
This dependence seems unecessary. All those functions that depend on
RubySystem have been moved to Address.cc file.
This patch changes DataBlock.hh so that it is not dependent on RubySystem.
This dependence seems unecessary. All those functions that depende on
RubySystem have been moved to DataBlock.cc file.
This patch integrates permissions with cache and memory states, and then
automates the setting of permissions within the generated code. No longer
does one need to manually set the permissions within the setState funciton.
This patch will faciliate easier functional access support by always correctly
setting permissions for both cache and memory states.
--HG--
rename : src/mem/slicc/ast/EnumDeclAST.py => src/mem/slicc/ast/StateDeclAST.py
rename : src/mem/slicc/ast/TypeFieldEnumAST.py => src/mem/slicc/ast/TypeFieldStateAST.py
Overall, continue to progress Ruby debug messages to more of the normal M5
debug message style
- add a name() to the Ruby Throttle & PerfectSwitch objects so that the debug output
isn't littered w/"global:" everywhere.
- clean up messages that print over multiple lines when possible
- clean up duplicate prints in the message buffer
Currently the wakeup function for the PerfectSwitch contains three loops -
loop on number of virtual networks
loop on number of incoming links
loop till all messages for this (link, network) have been routed
With an 8 processor mesh network and Hammer protocol, about 11-12% of the
was observed to have been spent in this function, which is the highest
amongst all the functions. It was found that the innermost loop is executed
about 45 times per invocation of the wakeup function, when each invocation
of the wakeup function processes just about one message.
The patch tries to do away with the redundant executions of the innermost
loop. Counters have been added for each virtual network that record the
number of messages that need to be routed for that virtual network. The
inner loops are only executed when the number of messages for that particular
virtual network > 0. This does away with almost 80% of the executions of the
innermost loop. The function now consumes about 5-6% of the total execution
time.
The code for Orion 2.0 makes use of printf() at several places where there as
an error in configuration of the model. These have been replaced with fatal().
By stalling and waiting the mandatory queue instead of recycling it, one can
ensure that no incoming messages are starved when the mandatory queue puts
signficant of pressure on the L1 cache controller (i.e. the ruby memtester).
--HG--
rename : src/mem/slicc/ast/WakeUpDependentsStatementAST.py => src/mem/slicc/ast/WakeUpAllDependentsStatementAST.py
The packet now identifies whether static or dynamic data has been allocated and
is used by Ruby to determine whehter to copy the data pointer into the ruby
request. Subsequently, Ruby can be told not to update phys memory when
receiving packets.
Separate data VCs and ctrl VCs in garnet, as ctrl VCs have 1 buffer per VC,
while data VCs have > 1 buffers per VC. This is for correct power estimations.
The purpose of this patch is to change the way CacheMemory interfaces with
coherence protocols. Currently, whenever a cache controller (defined in the
protocol under consideration) needs to carry out any operation on a cache
block, it looks up the tag hash map and figures out whether or not the block
exists in the cache. In case it does exist, the operation is carried out
(which requires another lookup). As observed through profiling of different
protocols, multiple such lookups take place for a given cache block. It was
noted that the tag lookup takes anything from 10% to 20% of the simulation
time. In order to reduce this time, this patch is being posted.
I have to acknowledge that the many of the thoughts that went in to this
patch belong to Brad.
Changes to CacheMemory, TBETable and AbstractCacheEntry classes:
1. The lookup function belonging to CacheMemory class now returns a pointer
to a cache block entry, instead of a reference. The pointer is NULL in case
the block being looked up is not present in the cache. Similar change has
been carried out in the lookup function of the TBETable class.
2. Function for setting and getting access permission of a cache block have
been moved from CacheMemory class to AbstractCacheEntry class.
3. The allocate function in CacheMemory class now returns pointer to the
allocated cache entry.
Changes to SLICC:
1. Each action now has implicit variables - cache_entry and tbe. cache_entry,
if != NULL, must point to the cache entry for the address on which the action
is being carried out. Similarly, tbe should also point to the transaction
buffer entry of the address on which the action is being carried out.
2. If a cache entry or a transaction buffer entry is passed on as an
argument to a function, it is presumed that a pointer is being passed on.
3. The cache entry and the tbe pointers received __implicitly__ by the
actions, are passed __explicitly__ to the trigger function.
4. While performing an action, set/unset_cache_entry, set/unset_tbe are to
be used for setting / unsetting cache entry and tbe pointers respectively.
5. is_valid() and is_invalid() has been made available for testing whether
a given pointer 'is not NULL' and 'is NULL' respectively.
6. Local variables are now available, but they are assumed to be pointers
always.
7. It is now possible for an object of the derieved class to make calls to
a function defined in the interface.
8. An OOD token has been introduced in SLICC. It is same as the NULL token
used in C/C++. If you are wondering, OOD stands for Out Of Domain.
9. static_cast can now taken an optional parameter that asks for casting the
given variable to a pointer of the given type.
10. Functions can be annotated with 'return_by_pointer=yes' to return a
pointer.
11. StateMachine has two new variables, EntryType and TBEType. EntryType is
set to the type which inherits from 'AbstractCacheEntry'. There can only be
one such type in the machine. TBEType is set to the type for which 'TBE' is
used as the name.
All the protocols have been modified to conform with the new interface.
Ran all the source files through 'perl -pi' with this script:
s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|;
s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|;
s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|;
Also did a little manual editing on some of the arch/*/isa_traits.hh files
and src/SConscript.
Two functions in src/mem/ruby/system/PerfectCacheMemory.hh, tryCacheAccess()
and cacheProbe(), end with calls to panic(). Both of these functions have
return type other than void. Any file that includes this header file fails
to compile because of the missing return statement. This patch adds dummy
values so as to avoid the compiler warnings.
This diff is for changing the way ASSERT is handled in Ruby. m5.fast
compiles out the assert statements by using the macro NDEBUG. Ruby uses the
macro RUBY_NO_ASSERT to do so. This macro has been removed and NDEBUG has
been put in its place.
This patch allows messages to be stalled in their input buffers and wait
until a corresponding address changes state. In order to make this work,
all in_ports must be ranked in order of dependence and those in_ports that
may unblock an address, must wake up the stalled messages. Alot of this
complexity is handled in slicc and the specification files simply
annotate the in_ports.
--HG--
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/StallAndWaitStatementAST.py
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/WakeUpDependentsStatementAST.py
Patch allows each individual message buffer to have different recycle latencies
and allows the overall recycle latency to be specified at the cmd line. The
patch also adds profiling info to make sure no one processor's requests are
recycled too much.
The main purpose for clearing stats in the unserialize process is so
that the profiler can correctly set its start time to the unserialized
value of curTick.
This patch adds back to ruby the capability to understand the response time
for messages that hit in different levels of the cache heirarchy.
Specifically add support for the MI_example, MOESI_hammer, and MOESI_CMP_token
protocols.
This patch adds DMA testing to the Memtester and is inherits many changes from
Polina's old tester_dma_extension patch. Since Ruby does not work in atomic
mode, the atomic mode options are removed.
One big difference is that PrioHeap puts the smallest element at the
top of the heap, whereas stl puts the largest element on top, so I
changed all comparisons so they did the right thing.
Some usage of PrioHeap was simply changed to a std::vector, using sort
at the right time, other usage had me just use the various heap functions
in the stl.
This was somewhat tricky because the RefCnt API was somewhat odd. The
biggest confusion was that the the RefCnt object's constructor that
took a TYPE& cloned the object. I created an explicit virtual clone()
function for things that took advantage of this version of the
constructor. I was conservative and used clone() when I was in doubt
of whether or not it was necessary. I still think that there are
probably too many instances of clone(), but hopefully not too many.
I converted several instances of const MsgPtr & to a simple MsgPtr.
If the function wants to avoid the overhead of creating another
reference, then it should just use a regular pointer instead of a ref
counting ptr.
There were a couple of instances where refcounted objects were created
on the stack. This seems pretty dangerous since if you ever
accidentally make a reference to that object with a ref counting
pointer, bad things are bound to happen.
Further cleanup should probably be done to make this class be non-Ruby
specific and put it in src/base.
There are probably several cases where this class is used, std::bitset
could be used instead.
In addition to obvious changes, this required a slight change to the slicc
grammar to allow types with :: in them. Otherwise slicc barfs on std::string
which we need for the headers that slicc generates.
Previously, the set size was set to 4. This was mostly do to the fact that a
crazy graduate student use to create networks with 256 l2 cache banks. Now it
is far more likely that users will create systems with less than 64 of any
particular controller type. Therefore Ruby should be optimized for a set size
of 1.
Removed the dummy power function implementations so that Orion can implement
them correctly. Since Orion lacks modular design, this patch simply enables
scons to compile it. There are no python configuration changes in this patch.
Cleaned up the ruby profilers by moving the memory controller profiling code
out of the main profiler object and into a separate object similar to the
current CacheProfiler. Both the CacheProfiler and MemCntrlProfiler are
specific to a particular Ruby object, CacheMemory and MemoryControl
respectively. Therefore, these profilers should not be SimObjects and
created by the python configuration system, but instead private objects. This
simplifies the creation of these profilers.
Modified ruby's tracing support to no longer rely on the RubySystem map
to convert a sequencer string name to a sequencer pointer. As a
temporary solution, the code uses the sim_object find function.
Eventually, we should develop a better fix.
This patch includes a rather substantial change to the memory controller
profiler in order to work with the new configuration system. Most
noteably, the mem_cntrl_profiler no longer uses a string map, but instead
a vector. Eventually this support should be removed from the main
profiler and go into a separate object. Each memory controller should have
a pointer to that new mem_cntrl profile object.
This patch includes the necessary changes to connect ruby objects using
the python configuration system. Mainly it consists of removing
unnecessary ruby object pointers and connecting the necessary object
pointers using the generated param objects. This patch includes the
slicc changes necessary to connect generated ruby objects together using
the python configuraiton system.
The necessary companion conversion of Ruby objects generated by SLICC
are converted to M5 SimObjects in the following patch, so this patch
alone does not compile.
Conversion of Garnet network models is also handled in a separate
patch; that code is temporarily disabled from compiling to allow
testing of interim code.
This patch changes the way that Ruby handles atomic RMW instructions. This implementation, unlike the prior one, is protocol independent. It works by locking an address from the sequencer immediately after the read portion of an RMW completes. When that address is locked, the coherence controller will only satisfy requests coming from one port (e.g., the mandatory queue) and will ignore all others. After the write portion completed, the line is unlocked. This should also work with multi-line atomics, as long as the blocks are always acquired in the same order.
Connects M5 cpu and dma ports directly to ruby sequencers and dma
sequencers. Rubymem also includes a pio port so that pio requests
and be forwarded to a special pio bus connecting to device pio
ports.
This mostly was a matter of changing the license owner to Princeton
which is as it should have been. The code was originally licensed
under the GPL but was relicensed as BSD by Li-Shiuan Peh on July 27,
2009. This relicensing was in an explicit e-mail to Nathan Binkert,
Brad Beckmann, Mark Hill, David Wood, and Steve Reinhardt.
This changeset contains a lot of different changes that are too
mingled to separate. They are:
1. Added MOESI_CMP_directory
I made the changes necessary to bring back MOESI_CMP_directory,
including adding a DMA controller. I got rid of MOESI_CMP_directory_m
and made MOESI_CMP_directory use a memory controller. Added a new
configuration for two level protocols in general, and
MOESI_CMP_directory in particular.
2. DMA Sequencer uses a generic SequencerMsg
I will eventually make the cache Sequencer use this type as well. It
doesn't contain an offset field, just a physical address and a length.
MI_example has been updated to deal with this.
3. Parameterized Controllers
SLICC controllers can now take custom parameters to use for mapping,
latencies, etc. Currently, only int parameters are supported.
Caches are now responsible for their own statistic gathering. This
requires a direct callback from the protocol on misses, and so all
future protocols need to take this into account.
The DMASequencer was still using a parameter from the old RubyConfig,
causing an offset error when the requested data wasn't block aligned.
This changeset also includes a fix to MI_example for a similar bug.
2. Reintroduced RMW_Read and RMW_Write
3. Defined -2 in the Sequencer as well as made a note about mandatory queue
Did not address the issues in the slicc because remaking the atomics altogether to allow
multiple processors to issue atomic requests at once
This also includes a change to the default Ruby random seed, which was
previously set using the wall clock. It is now set to 1234 so that
the stat files don't change for the regression tester.
This was done with an automated process, so there could be things that were
done in this tree in the past that didn't make it. One known regression
is that atomic memory operations do not seem to work properly anymore.
This changeset also includes a lot of work from Derek Hower <drh5@cs.wisc.edu>
RubyMemory is now both a driver for Ruby and a port for M5. Changed
makeRequest/hitCallback interface. Brought packets (superficially)
into the sequencer. Modified tester infrastructure to be packet based.
and Ruby can be used together through the example ruby_se.py
script. SPARC parallel applications work, and the timing *seems* right
from combined M5/Ruby debug traces. To run,
% build/ALPHA_SE/m5.debug configs/example/ruby_se.py -c
tests/test-progs/hello/bin/alpha/linux/hello -n 4 -t
1. removed checks from tester files
2. removed else clause in Sequencer and DirectoryMemory else clause is
needed by the tester, it is up to Derek to revive it elsewhere when he
gets to it
Also:
1. Changed m_entries in DirectoryMemory to a map
2. And replaced SIMICS_read_physical_memory with a call to now-dummy
Derek's-to-be readPhysMem function
Add the PROTOCOL sticky option sets the coherence protocol that slicc
will parse and therefore ruby will use. This whole process was made
difficult by the fact that the set of files that are output by slicc
are not easily known ahead of time. The easiest thing wound up being
to write a parser for slicc that would tell me. Incidentally this
means we now have a slicc grammar written in python.
This basically means changing all #include statements and changing
autogenerated code so that it generates the correct paths. Because
slicc generates #includes, I had to hard code the include paths to
mem/protocol.
1) Removing files from the ruby build left some unresovled
symbols. Those have been fixed.
2) Most of the dependencies on Simics data types and the simics
interface files have been removed.
3) Almost all mention of opal is gone.
4) Huge chunks of LogTM are now gone.
5) Handling 1-4 left ~hundreds of unresolved references, which were
fixed, yielding a snowball effect (and the massive size of this
delta).
I did the macro cleanup because I was worried that the SCons scanner
would get confused. This code will hopefully go away soon anyway.
--HG--
rename : src/mem/ruby/config/config.include => src/mem/ruby/config/config.hh