This patch allows ruby to have multiple clock domains. As I understand
with this patch, controllers can have different frequencies. The entire
network needs to run at a single frequency.
The idea is that with in an object, time is treated in terms of cycles.
But the messages that are passed from one entity to another should contain
the time in Ticks. As of now, this is only true for the message buffers,
but not for the links in the network. As I understand the code, all the
entities in different networks (simple, garnet-fixed, garnet-flexible) should
be clocked at the same frequency.
Another problem is that the directory controller has to operate at the same
frequency as the ruby system. This is because the memory controller does
not make use of the Message Buffer, and instead implements a buffer of its
own. So, it has no idea of the frequency at which the directory controller
is operating and uses ruby system's frequency for scheduling events.
This patch is as of now the final patch in the series of patches that replace
Time with Cycles.This patch further replaces Time with Cycles in Sequencer,
Profiler, different protocols and related entities.
Though Time has not been completely removed, the places where it is in use
seem benign as of now.
The patch started of with replacing Time with Cycles in the Consumer class.
But to get ruby to compile, the rest of the changes had to be carried out.
Subsequent patches will further this process, till we completely replace
Time with Cycles.
This patch modifies the Histogram class' add() function so that it can add
linear histograms as well. The function assumes that the left end point of
the ranges of the two histograms are the same. It also assumes that when
the ranges of the two histogram are changed to accomodate an element not in
the range, the factor used in changing the range is same for both the
histograms.
This function is then used in removing one of the calls to the global
profiler*. The histograms for recording the delays incurred in processing
different requests are now maintained by the controllers. The profiler
adds these histograms when it needs to print the stats.
This patch does several things. First, the counter for fully busy cycles for a
controller is now kept with in the controller, instead of being part of the profiler.
Second, the topology class no longer keeps an array of controllers which was only
used for printing stats. Instead, ruby system will now ask each controller to print
the stats. Thirdly, the statistical variable for recording how many different types
were created is being moved in to the controller from the profiler. Note that for
printing, the profiler will collate results from different controllers.
The number of bits required for an address was set to floorLog2(memory size).
This is correct under the assumption that the memory size is a power of 2,
which is not always true. Hence, floorLog2 is being replaced with ceilLog2.
This patch converts the panic() print outs in the Sequencer::wakeup()
call from ruby cycles to Ticks(). This makes it easier to debug deadlocks
with the ProtocolTrace flag so the issue time indicated in the panic message
can be quickly searched for.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This patch was initiated so as to remove reference to g_system_ptr,
the pointer to Ruby System that is used for getting the current time.
That simple change actual requires changing a lot many things in slicc and
garnet. All these changes are related to how time is handled.
In most of the places, g_system_ptr has been replaced by another clock
object. The changes have been done under the assumption that all the
components in the memory system are on the same clock frequency, but the
actual clocks might be distributed.
Many Ruby structures inherit from the Consumer, which is used for scheduling
events. The Consumer used to relay on an Event Manager for scheduling events
and on g_system_ptr for time. With this patch, the Consumer will now use a
ClockedObject to schedule events and to query for current time. This resulted
in several structures being converted from SimObjects to ClockedObjects. Also,
the MessageBuffer class now requires a pointer to a ClockedObject so as to
query for time.
This patch addresses a warning related to the swig interface
generation for the Switch class. The cxx_header is now specified
correctly, and the header in question has got a few includes added to
make it all compile.
The patch adds support to slicc for recognizing arguments that should be
passed to the constructor of a class. I did not like the fact that an explicit
check was being carried on the type 'TBETable' to figure out the arguments to
be passed to the constructor.
The patch also moves some of the member variables that are declared for all
the controllers to the base class AbstractController.
This patch adds a prefetcher for the ruby memory system. The prefetcher
is based on a prefetcher implemented by others (well, I don't know
who wrote the original). The prefetcher does stride-based prefetching,
both unit and non-unit. It obseves the misses in the cache and trains on
these. After the training period is over, the prefetcher starts issuing
prefetch requests to the controller.
This patch adds a _curTick variable to an eventq. This variable is updated
whenever an event is serviced in function serviceOne(), or all events upto
a particular time are processed in function serviceEvents(). This change
helps when there are eventqs that do not make use of curTick for scheduling
events.
Recent changes to functionalRead() in the memory system was not correct.
The change allowed for returning data from the first message found in
the buffers of the memory system. This is not correct since it is possible
that a timing message has data from an older state of the block.
The changes are being reverted.
This patch adds support to ruby so that the statistics maintained by ruby
are reset/dumped when the statistics for the rest of the system are
reset/dumped. For resetting the statistics, ruby now provides the
resetStats() function that a sim object can provide. As a consequence, the
clearStats() function has been removed from RubySystem. For dumping stats,
Ruby now adds a callback event to the dumpStatsQueue. The exit callback that
ruby used to add earlier is being removed.
Created by: Hamid Reza Khaleghzadeh.
Improved by: Lluc Alvarez, Nilay Vaish
Committed by: Nilay Vaish
This patch moves the draining interface from SimObject to a separate
class that can be used by any object needing draining. However,
objects not visible to the Python code (i.e., objects not deriving
from SimObject) still depend on their parents informing them when to
drain. This patch also gets rid of the CountedDrainEvent (which isn't
really an event) and replaces it with a DrainManager.
When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.
This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
This patch adds support to different entities in the ruby memory system
for more reliable functional read/write accesses. Only the simple network
has been augmented as of now. Later on Garnet will also support functional
accesses.
The patch adds functional access code to all the different types of messages
that protocols can send around. These messages are functionally accessed
by going through the buffers maintained by the network entities.
The patch also rectifies some of the bugs found in coherence protocols while
testing the patch.
With this patch applied, functional writes always succeed. But functional
reads can still fail.
Currently the Ruby System maintains pointer to only one of the memory
controllers. But there can be multiple controllers in the system. This
patch adds a vector of memory controllers.
It seems unecessary that the BankedArray class needs to schedule an event
to figure out when the access ends. Instead only the time for the end of access
needs to be tracked.
Ruby system was recently converted to a clocked object. Such objects maintain
state related to the time that has passed so far. During the cache warmup, Ruby
system changes its own time and the global time. Later on, the global time is
restored. So Ruby system also needs to reset its own time.
This patch adds an additional level of ports in the inheritance
hierarchy, separating out the protocol-specific and protocl-agnostic
parts. All the functionality related to the binding of ports is now
confined to use BaseMaster/BaseSlavePorts, and all the
protocol-specific parts stay in the Master/SlavePort. In the future it
will be possible to add other protocol-specific implementations.
The functions used in the binding of ports, i.e. getMaster/SlavePort
now use the base classes, and the index parameter is updated to use
the PortID typedef with the symbolic InvalidPortID as the default.
This patch moves the code for functional accesses to ruby system. This is
because the subsequent patches add support for making functional accesses
to the messages in the interconnect. Making those accesses from the ruby port
would be cumbersome.
Fix the drain functionality of the RubyPort to only call drain on child ports
during a system-wide drain process, instead of calling each time that a
ruby_hit_callback is executed.
This fixes the issue of the RubyPort ports being reawakened during the drain
simulation, possibly with work they didn't previously have to complete. If
they have new work, they may call process on the drain event that they had
not registered work for, causing an assertion failure when completing the
drain event.
Also, in RubyPort, set the drainEvent to NULL when there are no events
to be drained. If not set to NULL, the drain loop can result in stale
drainEvents used.
This patch removes the use of g_system_ptr for event scheduling. Each consumer
object now needs to specify upfront an EventManager object it would use for
scheduling events. This makes the ruby memory system more amenable for a
multi-threaded simulation.
This patch shifts the version of gcc for which we enable c++0x from
4.6 to 4.4 The more long term plan is to see what the c++0x features
can bring and what level of support would be enabled simply by bumping
the required version of gcc from 4.3 to 4.4.
A few minor things had to be fixed in the code base, most notably the
choice of a hashmap implementation. In the Ruby Sequencer there were
also a few minor issues that gcc 4.4 was not too happy about.
This patch addresses a few minor issues reported by the clang static
analyzer.
The analysis was run with:
scan-build -disable-checker deadcode \
-enable-checker experimental.core \
-disable-checker experimental.core.CastToStruct \
-enable-checker experimental.cpluscplus
This patch is a first step to using Cycles as a parameter type. The
main affected modules are the CPUs and the Ruby caches. There are
definitely plenty more places that are affected, but this patch serves
as a starting point to making the transition.
An important part of this patch is to actually enable parameters to be
specified as Param.Cycles which involves some changes to params.py.
The =operator for the DataBlock class was incorrectly interpreting the class
member m_alloc. This variable stands for whether the assigned memory for the
data block needs to be freed or not by the class itself. It seems that the
=operator interpreted the variable as whether the memory is assigned to the
data block. This wrong interpretation was causing values not to propagate
to RubySystem::m_mem_vec_ptr. This caused major issues with restoring from
checkpoints when using a protocol which verified that the cache data was
consistent with the backing store (i.e. MOESI-hammer).
The memory size variable was a 32-bit int. This meant that the size of the
memory was limited to 4GB. This patch changes the type of the variable to
64-bit to support larger memory sizes. Thanks to Raghuraman Balasubramanian
for bringing this to notice.
This patch extends the queued port interfaces with methods for
scheduling the transmission of a timing request/response. The methods
are named similar to the corresponding sendTiming(Snoop)Req/Resp,
replacing the "send" with "sched". As the queues are currently
unbounded, the methods always succeed and hence do not return a value.
This functionality was previously provided in the subclasses by
calling PacketQueue::schedSendTiming with the appropriate
parameters. With this change, there is no need to introduce these
extra methods in the subclasses, and the use of the queued interface
is more uniform and explicit.
This patch fixes some problems with the drain/switchout functionality
for the O3 cpu and for the ARM ISA and adds some useful debug print
statements.
This is an incremental fix as there are still a few bugs/mem leaks with the
switchout code. Particularly when switching from an O3CPU to a
TimingSimpleCPU. However, when switching from O3 to O3 cores with the ARM ISA
I haven't encountered any more assertion failures; now the kernel will
typically panic inside of simulation.
This patch moves instantiateTopology into Ruby.py and removes the
mem/ruby/network/topologies directory. It also adds some extra inheritance to
the topologies to clean up some issues in the existing topologies.
This patch removes printConfig() functions from all structures in Ruby.
Most of the information is already part of config.ini, and where ever it
is not, it would become in due course.
This patch models a cache as separate tag and data arrays. The patch exposes
the banked array as another resource that is checked by SLICC before a
transition is allowed to execute. This is similar to how TBE entries and slots
in output ports are modeled.
Updates to Ruby to support statistics counting of cache accesses. This feature
serves multiple purposes beyond simple stats collection. It provides the
foundation for ruby to model the cache tag and data arrays as physical
resources, as well as provide the necessary input data for McPAT power
modeling.
Instead of just passing a list of controllers to the makeTopology function
in src/mem/ruby/network/topologies/<Topo>.py we pass in a function pointer
which knows how to make the topology, possibly with some extra state set
in the configs/ruby/<protocol>.py file. Thus, we can move all of the files
from network/topologies to configs/topologies. A new class BaseTopology
is added which all topologies in configs/topologies must inheirit from and
follow its API.
--HG--
rename : src/mem/ruby/network/topologies/Crossbar.py => configs/topologies/Crossbar.py
rename : src/mem/ruby/network/topologies/Mesh.py => configs/topologies/Mesh.py
rename : src/mem/ruby/network/topologies/MeshDirCorners.py => configs/topologies/MeshDirCorners.py
rename : src/mem/ruby/network/topologies/Pt2Pt.py => configs/topologies/Pt2Pt.py
rename : src/mem/ruby/network/topologies/Torus.py => configs/topologies/Torus.py
This patch makes getAddrRanges const throughout the code base. There
is no reason why it should not be, and making it const prevents adding
any unintentional side-effects.
This patch adds isSnooping to the slave port, and thus avoids going
through getMasterPort to be able to ask the master. Over the course of
the next few patches, all getMasterPort/getSlavePort in Port and
MemObject are to be protocol agnostic, and the snooping is part of the
protocol layer.
The function is already present on the master port, where it is
implemented by the module itself, e.g. a cache. On the slave side, it
is merely asking the connected master port. The same name is used by
both functions despite their difference in behaviour. The initial
design used isMasterSnooping on the slave port side, but the more
verbose function name was later changed.
The scheduling of the deadlock check event was being done incorrectly as the
clock was not being multiplied, so as to convert the time into ticks. This
patch removes that bug.
This patch fixes a bug that caused snoop requests to be placed in a
packet queue. Instead, the packet is now sent immediately using
sendTimingSnoopReq, thus bypassing the packet queue and any normal
responses waiting to be sent.
This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.
For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).
The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.
With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
This patch simplifies the packet by removing the broadcast flag and
instead more firmly relying on (and enforcing) the semantics of
transactions in the classic memory system, i.e. request packets are
routed from a master to a slave based on the address, and when they
are created they have neither a valid source, nor destination. On
their way to the slave, the request packet is updated with a source
field for all modules that multiplex packets from multiple master
(e.g. a bus). When a request packet is turned into a response packet
(at the final slave), it moves the potentially populated source field
to the destination field, and the response packet is routed through
any multiplexing components back to the master based on the
destination field.
Modules that connect multiplexing components, such as caches and
bridges store any existing source and destination field in the sender
state as a stack (just as before).
The packet constructor is simplified in that there is no longer a need
to pass the Packet::Broadcast as the destination (this was always the
case for the classic memory system). In the case of Ruby, rather than
using the parameter to the constructor we now rely on setDest, as
there is already another three-argument constructor in the packet
class.
In many places where the packet information was printed as part of
DPRINTFs, request packets would be printed with a numeric "dest" that
would always be -1 (Broadcast) and that field is now removed from the
printing.
This patch introduces port access methods that separates snoop
request/responses from normal memory request/responses. The
differentiation is made for functional, atomic and timing accesses and
builds on the introduction of master and slave ports.
Before the introduction of this patch, the packets belonging to the
different phases of the protocol (request -> [forwarded snoop request
-> snoop response]* -> response) all use the same port access
functions, even though the snoop packets flow in the opposite
direction to the normal packet. That is, a coherent master sends
normal request and receives responses, but receives snoop requests and
sends snoop responses (vice versa for the slave). These two distinct
phases now use different access functions, as described below.
Starting with the functional access, a master sends a request to a
slave through sendFunctional, and the request packet is turned into a
response before the call returns. In a system without cache coherence,
this is all that is needed from the functional interface. For the
cache-coherent scenario, a slave also sends snoop requests to coherent
masters through sendFunctionalSnoop, with responses returned within
the same packet pointer. This is currently used by the bus and caches,
and the LSQ of the O3 CPU. The send/recvFunctional and
send/recvFunctionalSnoop are moved from the Port super class to the
appropriate subclass.
Atomic accesses follow the same flow as functional accesses, with
request being sent from master to slave through sendAtomic. In the
case of cache-coherent ports, a slave can send snoop requests to a
master through sendAtomicSnoop. Just as for the functional access
methods, the atomic send and receive member functions are moved to the
appropriate subclasses.
The timing access methods are different from the functional and atomic
in that requests and responses are separated in time and
send/recvTiming are used for both directions. Hence, a master uses
sendTiming to send a request to a slave, and a slave uses sendTiming
to send a response back to a master, at a later point in time. Snoop
requests and responses travel in the opposite direction, similar to
what happens in functional and atomic accesses. With the introduction
of this patch, it is possible to determine the direction of packets in
the bus, and no longer necessary to look for both a master and a slave
port with the requested port id.
In contrast to the normal recvFunctional, recvAtomic and recvTiming
that are pure virtual functions, the recvFunctionalSnoop,
recvAtomicSnoop and recvTimingSnoop have a default implementation that
calls panic. This is to allow non-coherent master and slave ports to
not implement these functions.
This patch addresses a number of minor issues that cause problems when
compiling with clang >= 3.0 and gcc >= 4.6. Most importantly, it
avoids using the deprecated ext/hash_map and instead uses
unordered_map (and similarly so for the hash_set). To make use of the
new STL containers, g++ and clang has to be invoked with "-std=c++0x",
and this is now added for all gcc versions >= 4.6, and for clang >=
3.0. For gcc >= 4.3 and <= 4.5 and clang <= 3.0 we use the tr1
unordered_map to avoid the deprecation warning.
The addition of c++0x in turn causes a few problems, as the
compiler is more stringent and adds a number of new warnings. Below,
the most important issues are enumerated:
1) the use of namespaces is more strict, e.g. for isnan, and all
headers opening the entire namespace std are now fixed.
2) another other issue caused by the more stringent compiler is the
narrowing of the embedded python, which used to be a char array,
and is now unsigned char since there were values larger than 128.
3) a particularly odd issue that arose with the new c++0x behaviour is
found in range.hh, where the operator< causes gcc to complain about
the template type parsing (the "<" is interpreted as the beginning
of a template argument), and the problem seems to be related to the
begin/end members introduced for the range-type iteration, which is
a new feature in c++11.
As a minor update, this patch also fixes the build flags for the clang
debug target that used to be shared with gcc and incorrectly use
"-ggdb".
This patch fixes a bug in Ruby that caused non-deterministic
simulation when changing the underlying hash map implementation. The
reason is order-dependent behaviour in combination with iteration over
the hash map contents. The two locations where a sorted container is
assumed are now changed to make use of a std::map instead of the
unordered hash map.
With this change, the stats changes slightly and the follow-on
changeset will update the relevant statistics.
Fixes checkpointing with respect to lost events after swapping event queues.
Also adds DPRINTFs to better understand what's going on when Ruby serializes
and unserializes.
This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.
All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.
To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.
Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
--HG--
rename : src/mem/PhysicalMemory.py => src/mem/AbstractMemory.py
rename : src/mem/PhysicalMemory.py => src/mem/SimpleMemory.py
rename : src/mem/physical.cc => src/mem/abstract_mem.cc
rename : src/mem/physical.hh => src/mem/abstract_mem.hh
rename : src/mem/physical.cc => src/mem/simple_mem.cc
rename : src/mem/physical.hh => src/mem/simple_mem.hh
This patch removes the physMemPort from the RubySequencer and instead
uses the system pointer to access the physmem. The system already
keeps track of the physmem and the valid memory address ranges, and
with this patch we merely make use of that existing functionality. The
memory is modified so that it is possible to call the access functions
(atomic and functional) without going through the port, and the memory
is allowed to be unconnected, i.e. have no ports (since Ruby does not
attach it like the conventional memory system).
This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.
The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.
The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.
The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
This patch decouples the queueing and the port interactions to
simplify the introduction of the master and slave ports. By separating
the queueing functionality from the port itself, it becomes much
easier to distinguish between master and slave ports, and still retain
the queueing ability for both (without code duplication).
As part of the split into a PacketQueue and a port, there is now also
a hierarchy of two port classes, QueuedPort and SimpleTimingPort. The
QueuedPort is useful for ports that want to leave the packet
transmission of outgoing packets to the queue and is used by both
master and slave ports. The SimpleTimingPort inherits from the
QueuedPort and adds the implemention of recvTiming and recvFunctional
through recvAtomic.
The PioPort and MessagePort are cleaned up as part of the changes.
--HG--
rename : src/mem/tport.cc => src/mem/packet_queue.cc
rename : src/mem/tport.hh => src/mem/packet_queue.hh
This patch removes the overriding of "-Werror" in a handful of
cases. The code compiles with gcc 4.6.3 and clang 3.0 without any
warnings, and thus without any errors. There are no functional changes
introduced by this patch. In the future, rather than ypassing
"-Werror", address the warnings.
This patch renames the sendTiming member function in the RubyPort to
avoid inadvertently hiding Port::sendTiming (discovered through some
rather painful debugging). The RubyPort does, in fact, rely on the
functionality of the queued port and the implementation merely
schedules a send the next cycle. The new name for the member function
is sendNextCycle to better reflect this behaviour.
In the unlikely event that we ever shift to using C++11 the member
functions in Port should have a "final" identifier to prevent any
overriding in derived classes.
This patch moves all port creation from the getPort method to be
consistently done in the MemObject's constructor. This is possible
thanks to the Swig interface passing the length of the vector ports.
Previously there was a mix of: 1) creating the ports as members (at
object construction time) and using getPort for the name resolution,
or 2) dynamically creating the ports in the getPort call. This is now
uniform. Furthermore, objects that would not be complete without a
port have these ports as members rather than having pointers to
dynamically allocated ports.
This patch also enables an elaboration-time enumeration of all the
ports in the system which can be used to determine the masterId.
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
This change adds a master id to each request object which can be
used identify every device in the system that is capable of issuing a request.
This is part of the way to removing the numCpus+1 stats in the cache and
replacing them with the master ids. This is one of a series of changes
that make way for the stats output to be changed to python.
This patch removes the calls to isTagPresent() from Sequencer.cc. These
calls are made just for setting the cache block to have been most recently
used. The calls have been folded in to the function setMRU().
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).
clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
This patch makes the physMemPort of the RubyPort a PioPort rather than
an M5Port. This reflects the fact that the M5Port and PioPort have
different roles. The M5Port is really a coherent slave that is
connected to the CPUs and other coherent masters of the system,
e.g. DMA ports. The PioPort, on the other hand, is a master port that
is connected to the memory and other slaves, for example the pio
devices.
This simplifies future changes into master/slave ports and is
consistent with the port roles throughout the system.
This patch implements the functionality for forwarding invalidations and
replacements from the L1 cache of the Ruby memory system to the O3 CPU. The
implementation adds a list of ports to RubyPort. Whenever a replacement or an
invalidation is performed, the L1 cache forwards this to all the ports, which
is the LSQ in case of the O3 CPU.
The functional ports are no longer used and this patch cleans up the
legacy that is still present in buses, memories, CPUs etc. Note that
this does not refer to the class FunctionalPort (already removed), but
rather ports with the name (and use) functional.
This patch simplifies the address-range determination mechanism and
also unifies the naming across ports and devices. It further splits
the queries for determining if a port is snooping and what address
ranges it responds to (aiming towards a separation of
cache-maintenance ports and pure memory-mapped ports). Default
behaviours are such that most ports do not have to define isSnooping,
and master ports need not implement getAddrRanges.
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.
The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
The definition for the class CacheMsg was removed long back. Some declaration
had still survived, which was recently removed. Since the PerfectCacheMemory
class relied on this particular declaration, its absence let to compilation
breaking down. Hence this patch.
This patch resurrects ruby's cache warmup capability. It essentially
makes use of all the infrastructure that was added to the controllers,
memories and the cache recorder.
This patch adds function to the Sparse Memory so that the blocks can be
recorded in a cache trace. The blocks are added to the cache recorder
which can later write them into a file.
This patch adds functions to the memory vector class that can be used for
collating memory pages to raw trace and for populating pages from a raw
trace.
The SparseMemEntry structure includes just one void* pointer. It seems
unnecessary that we have a structure for this. The patch removes the
structure and makes use of a typedef on void* instead.
This constant is currently in System.hh, but is only used in Set.hh. It
is being moved to Set.hh to remove this artificial dependence of Set.hh
on System.hh.
--HG--
extra : rebase_source : 683c43a5eeaec4f5f523b3ea32953a07f65cfee7
This patch adds and removes included files from some of the files so as to
organize remove some false dependencies and include some files directly
instead of transitively.
--HG--
extra : rebase_source : 09b482ee9ae00b3a204ace0c63550bc3ca220134
SLICC uses pointers for cache and TBE entries but not for directory entries.
This patch changes the protocols, SLICC and Ruby memory system so that even
directory entries are referenced using pointers.
--HG--
extra : rebase_source : abeb4ac78033d003153751f216fd1948251fcfad
This patch changes the implementation of Ruby's recvTiming() function so
that it pushes a packet in to the Sequencer instead of a RubyRequest. This
requires changes in the Sequencer's makeRequest() and issueRequest()
functions, as they also need to operate on a Packet instead of RubyRequest.
This patch adds a fault model, which provides the probability of a number of
architectural faults in the interconnection network (e.g., data corruption,
misrouting). These probabilities can be used to realistically inject faults
in GARNET and faithfully evaluate the effectiveness of novel resilient NoC
architectures.
This patch removes some of the unused typedefs. It also moves
some of the typedefs from Global.hh to TypeDefines.hh. The patch
also eliminates the file NodeID.hh.
In RubySlicc_ComponentMapping.hh, certain '#define's have been used for
mapping MachineType to GenericMachineType. These '#define's are being
eliminated and the code will now be generated by SLICC instead. Also
are being eliminated some of the unused functions from
RubySlicc_ComponentMapping.sm.
Initialize flags via the Event constructor instead of calling
setFlags() in the body of the derived class's constructor. I
forget exactly why, but this made life easier when implementing
multi-queue support.
Also rename Event::getFlags() to isFlagSet() to better match
common usage, and get rid of some unused Event methods.
In the current implementation of Functional Accesses, it's very hard to
implement broadcast or snooping protocols where the memory has no idea if it
has exclusive access to a cache block or not. Without this knowledge, making
sure the RW vs. RO permissions are right are next to impossible. So we add a
new state called Backing_Store to enable the conveyance that this is the backup
storage for a block, so that it can be written if it is the only possibly RW
block in the system, or written even if there is another RW block in the
system, without causing problems.
Also, a small change to actually set the m_name field for each Controller so
that debugging can be easier. Now you can access a controller's name just by
controller->getName().
This patch replaces RUBY with PROTOCOL in all the SConscript files as
the environment variable that decides whether or not certain components
of the simulator are compiled.
This patch rpovides functional access support in Ruby. Currently only
the M5Port of RubyPort supports functional accesses. The support for
functional through the PioPort will be added as a separate patch.
The code for Set class was written under the assumption that
std::numeric_limits<long>::digits returns the number of bits used for
data type long, which was presumed to be either 32 or 64. But return value
is actually one less, that is, it is either 31 or 63. The value is now
being incremented by 1 so as to correctly set it.
The access permissions for the directory entries are not being set correctly.
This is because pointers are not used for handling directory entries.
function. get and set functions for access permissions have been added to the
Controller state machine. The changePermission() function provided by the
AbstractEntry and AbstractCacheEntry classes has been exposed to SLICC
code once again. The set_permission() functionality has been removed.
NOTE: Each protocol will have to define these get and set functions in order
to compile successfully.
Re-enabling implicit parenting (see previous patch) causes current
Ruby config scripts to create some strange hierarchies and generate
several warnings. This patch makes three general changes to address
these issues.
1. The order of object creation in the ruby config files makes the L1
caches children of the sequencer rather than the controller; these
config ciles are rewritten to assign the L1 caches to the
controller first.
2. The assignment of the sequencer list to system.ruby.cpu_ruby_ports
causes the sequencers to be children of system.ruby, generating
warnings because they are already parented to their respective
controllers. Changing this attribute to _cpu_ruby_ports fixes this
because the leading underscore means this is now treated as a plain
Python attribute rather than a child assignment. As a result, the
configuration hierarchy changes such that, e.g.,
system.ruby.cpu_ruby_ports0 becomes system.l1_cntrl0.sequencer.
3. In the topology classes, the routers become children of some random
internal link node rather than direct children of the topology.
The topology classes are rewritten to assign the routers to the
topology object first.
The virtual channels within "response" vnets are made buffers_per_data_vc
deep (default=4), while virtual channels within other vnets are made
buffers_per_ctrl_vc deep (default = 1). This is for accurate power estimates.
Identifying response vnets versus other vnets will allow garnet to
determine which vnets will carry data packets, and which will carry
ctrl packets, and use appropriate buffer sizes (since data packets are larger
than ctrl packets). This in turn allows the orion power model to accurately
estimate buffer power.
Renamed (message) class to vnet for consistency with rest of ruby.
Moved some parameters specific to fixed/flexible garnet networks into their
corresponding py files.
The RubyMemory flag wasnt used in the code, creating large gaps in trace output. Replace cprintfs w/dprintfs
using RubyMemory in memory controller. DPRINTF also deprecate the usage of the setDebug() pure virtual
function in the AbstractMemoryOrCache Class as well the m_debug/cprintf functions in MemoryControl.hh/cc
The simple network's endpoint bandwidth value is used to adjust the overall
bandwidth of the network. Specifically, the ration between endpoint bandwidth
and the MESSAGE_SIZE_MULTIPLIER determines the increase. By setting the value
to 1000, that means the bandwdith factor specified in the links translates to
the link bandwidth in bytes. Previously, it was increasing that value by 10.
This patch will likely require a reset of the ruby regression tester stats.
Moved the buffer_size, endpoint_bandwidth, and adaptive_routing params out of
the top-level parent network object and to only those networks that actually
use those parameters.
This patch ensures that both Garnet and the simple networks use the bw value
specified in the topology. To do so, the patch generalizes the specification
of bw for basic links. This value is then translated to the specific value
used by the simple and Garnet networks. Since Garent does not support
non-uniformed link bandwidth, the patch also adds a check to ensure all bws are
equal.
--HG--
rename : src/mem/ruby/network/BasicLink.cc => src/mem/ruby/network/simple/SimpleLink.cc
rename : src/mem/ruby/network/BasicLink.hh => src/mem/ruby/network/simple/SimpleLink.hh
rename : src/mem/ruby/network/BasicLink.py => src/mem/ruby/network/simple/SimpleLink.py
This patch converts links and switches from second class simobjects that were
virtually ignored by the networks (both simple and Garnet) to first class
simobjects that directly correspond to c++ ojbects manipulated by the
topology and network classes. This is especially true for Garnet, where the
links and switches directly correspond to specific C++ objects.
By making this change, many aspects of the Topology class were simplified.
--HG--
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/BasicLink.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/BasicLink.hh
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.hh
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.py
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/fixed-pipeline/GarnetRouter_d.py
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.hh
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.py
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/flexible-pipeline/GarnetRouter.py
Moved the Topology class to the top network directory because it is shared by
both the simple and Garnet networks.
--HG--
rename : src/mem/ruby/network/simple/Topology.cc => src/mem/ruby/network/Topology.cc
rename : src/mem/ruby/network/simple/Topology.hh => src/mem/ruby/network/Topology.hh
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
This function duplicates the functionality of allocate() exactly, except that it does not return
a return value. In protocols where you just want to allocate a block
but do not want that block to be your implicitly passed cache_entry, use this function.
Otherwise, SLICC will complain if you do not consume the pointer returned by allocate(),
and if you do a dummy assignment Entry foo := cache.allocate(address), the C++
compiler will complain of an unused variable. This is kind of a hack to get around
those issues, but suggestions welcome.
This is a substitute for MessageBuffers between controllers where you don't
want messages to actually go through the Network, because requests/responses can
always get reordered wrt to one another (even if you turn off Randomization and turn on Ordered)
because you are, after all, going through a network with contention. For systems where you model
multiple controllers that are very tightly coupled and do not actually go through a network,
it is a pain to have to write a coherence protocol to account for mixed up request/response orderings
despite the fact that it's completely unrealistic. This is *not* meant as a substitute for real
MessageBuffers when messages do in fact go over a network.
It is useful for Ruby to understand from whence request packets came.
This has all request packets going into Ruby pass the contextId value, if
it exists. This supplants the old libruby proc_id value passed around in
all the Messages, so I've also removed the unused unsigned proc_id; member
generated by SLICC for all Message types.
The goal of the patch is to do away with the CacheMsg class currently in use
in coherence protocols. In place of CacheMsg, the RubyRequest class will used.
This class is already present in slicc_interface/RubyRequest.hh. In fact,
objects of class CacheMsg are generated by copying values from a RubyRequest
object.
The tester code is in testers/networktest.
The tester can be invoked by configs/example/ruby_network_test.py.
A dummy coherence protocol called Network_test is also addded for network-only simulations and testing. The protocol takes in messages from the tester and just pushes them into the network in the appropriate vnet, without storing any state.
This patch fixes the problem where Ruby would fail to call sendRetry on ports
after it nacked the port. This patch is particularly helpful for bursty dma
requests which often include several packets.
None of the code in the ruby tester directory is compiled or referred to
outside of that directory. This change eliminates it. If it's needed in the
future, it can be revived from the history. In the mean time, this removes
clutter and the only use of the GEMS_ROOT scons variable.
At a couple of places in PerfectSwitch.cc and MessageBuffer.cc, DPRINTF()
has not been provided with correct number of arguments. The patch fixes these
bugs.
This patch removes the store buffer from Ruby. It is not in use currently.
Since libruby is being and store buffer makes calls to libruby, it is not
possible to maintain it until substantial changes are made.
This patch changes Address.hh so that it is not dependent on RubySystem.
This dependence seems unecessary. All those functions that depend on
RubySystem have been moved to Address.cc file.
This patch changes DataBlock.hh so that it is not dependent on RubySystem.
This dependence seems unecessary. All those functions that depende on
RubySystem have been moved to DataBlock.cc file.
This patch integrates permissions with cache and memory states, and then
automates the setting of permissions within the generated code. No longer
does one need to manually set the permissions within the setState funciton.
This patch will faciliate easier functional access support by always correctly
setting permissions for both cache and memory states.
--HG--
rename : src/mem/slicc/ast/EnumDeclAST.py => src/mem/slicc/ast/StateDeclAST.py
rename : src/mem/slicc/ast/TypeFieldEnumAST.py => src/mem/slicc/ast/TypeFieldStateAST.py
Overall, continue to progress Ruby debug messages to more of the normal M5
debug message style
- add a name() to the Ruby Throttle & PerfectSwitch objects so that the debug output
isn't littered w/"global:" everywhere.
- clean up messages that print over multiple lines when possible
- clean up duplicate prints in the message buffer
Currently the wakeup function for the PerfectSwitch contains three loops -
loop on number of virtual networks
loop on number of incoming links
loop till all messages for this (link, network) have been routed
With an 8 processor mesh network and Hammer protocol, about 11-12% of the
was observed to have been spent in this function, which is the highest
amongst all the functions. It was found that the innermost loop is executed
about 45 times per invocation of the wakeup function, when each invocation
of the wakeup function processes just about one message.
The patch tries to do away with the redundant executions of the innermost
loop. Counters have been added for each virtual network that record the
number of messages that need to be routed for that virtual network. The
inner loops are only executed when the number of messages for that particular
virtual network > 0. This does away with almost 80% of the executions of the
innermost loop. The function now consumes about 5-6% of the total execution
time.
The code for Orion 2.0 makes use of printf() at several places where there as
an error in configuration of the model. These have been replaced with fatal().
By stalling and waiting the mandatory queue instead of recycling it, one can
ensure that no incoming messages are starved when the mandatory queue puts
signficant of pressure on the L1 cache controller (i.e. the ruby memtester).
--HG--
rename : src/mem/slicc/ast/WakeUpDependentsStatementAST.py => src/mem/slicc/ast/WakeUpAllDependentsStatementAST.py
The packet now identifies whether static or dynamic data has been allocated and
is used by Ruby to determine whehter to copy the data pointer into the ruby
request. Subsequently, Ruby can be told not to update phys memory when
receiving packets.
Separate data VCs and ctrl VCs in garnet, as ctrl VCs have 1 buffer per VC,
while data VCs have > 1 buffers per VC. This is for correct power estimations.
The purpose of this patch is to change the way CacheMemory interfaces with
coherence protocols. Currently, whenever a cache controller (defined in the
protocol under consideration) needs to carry out any operation on a cache
block, it looks up the tag hash map and figures out whether or not the block
exists in the cache. In case it does exist, the operation is carried out
(which requires another lookup). As observed through profiling of different
protocols, multiple such lookups take place for a given cache block. It was
noted that the tag lookup takes anything from 10% to 20% of the simulation
time. In order to reduce this time, this patch is being posted.
I have to acknowledge that the many of the thoughts that went in to this
patch belong to Brad.
Changes to CacheMemory, TBETable and AbstractCacheEntry classes:
1. The lookup function belonging to CacheMemory class now returns a pointer
to a cache block entry, instead of a reference. The pointer is NULL in case
the block being looked up is not present in the cache. Similar change has
been carried out in the lookup function of the TBETable class.
2. Function for setting and getting access permission of a cache block have
been moved from CacheMemory class to AbstractCacheEntry class.
3. The allocate function in CacheMemory class now returns pointer to the
allocated cache entry.
Changes to SLICC:
1. Each action now has implicit variables - cache_entry and tbe. cache_entry,
if != NULL, must point to the cache entry for the address on which the action
is being carried out. Similarly, tbe should also point to the transaction
buffer entry of the address on which the action is being carried out.
2. If a cache entry or a transaction buffer entry is passed on as an
argument to a function, it is presumed that a pointer is being passed on.
3. The cache entry and the tbe pointers received __implicitly__ by the
actions, are passed __explicitly__ to the trigger function.
4. While performing an action, set/unset_cache_entry, set/unset_tbe are to
be used for setting / unsetting cache entry and tbe pointers respectively.
5. is_valid() and is_invalid() has been made available for testing whether
a given pointer 'is not NULL' and 'is NULL' respectively.
6. Local variables are now available, but they are assumed to be pointers
always.
7. It is now possible for an object of the derieved class to make calls to
a function defined in the interface.
8. An OOD token has been introduced in SLICC. It is same as the NULL token
used in C/C++. If you are wondering, OOD stands for Out Of Domain.
9. static_cast can now taken an optional parameter that asks for casting the
given variable to a pointer of the given type.
10. Functions can be annotated with 'return_by_pointer=yes' to return a
pointer.
11. StateMachine has two new variables, EntryType and TBEType. EntryType is
set to the type which inherits from 'AbstractCacheEntry'. There can only be
one such type in the machine. TBEType is set to the type for which 'TBE' is
used as the name.
All the protocols have been modified to conform with the new interface.
Ran all the source files through 'perl -pi' with this script:
s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|;
s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|;
s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|;
Also did a little manual editing on some of the arch/*/isa_traits.hh files
and src/SConscript.
Two functions in src/mem/ruby/system/PerfectCacheMemory.hh, tryCacheAccess()
and cacheProbe(), end with calls to panic(). Both of these functions have
return type other than void. Any file that includes this header file fails
to compile because of the missing return statement. This patch adds dummy
values so as to avoid the compiler warnings.
This diff is for changing the way ASSERT is handled in Ruby. m5.fast
compiles out the assert statements by using the macro NDEBUG. Ruby uses the
macro RUBY_NO_ASSERT to do so. This macro has been removed and NDEBUG has
been put in its place.
This patch allows messages to be stalled in their input buffers and wait
until a corresponding address changes state. In order to make this work,
all in_ports must be ranked in order of dependence and those in_ports that
may unblock an address, must wake up the stalled messages. Alot of this
complexity is handled in slicc and the specification files simply
annotate the in_ports.
--HG--
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/StallAndWaitStatementAST.py
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/WakeUpDependentsStatementAST.py
Patch allows each individual message buffer to have different recycle latencies
and allows the overall recycle latency to be specified at the cmd line. The
patch also adds profiling info to make sure no one processor's requests are
recycled too much.
The main purpose for clearing stats in the unserialize process is so
that the profiler can correctly set its start time to the unserialized
value of curTick.
This patch adds back to ruby the capability to understand the response time
for messages that hit in different levels of the cache heirarchy.
Specifically add support for the MI_example, MOESI_hammer, and MOESI_CMP_token
protocols.
This patch adds DMA testing to the Memtester and is inherits many changes from
Polina's old tester_dma_extension patch. Since Ruby does not work in atomic
mode, the atomic mode options are removed.
One big difference is that PrioHeap puts the smallest element at the
top of the heap, whereas stl puts the largest element on top, so I
changed all comparisons so they did the right thing.
Some usage of PrioHeap was simply changed to a std::vector, using sort
at the right time, other usage had me just use the various heap functions
in the stl.
This was somewhat tricky because the RefCnt API was somewhat odd. The
biggest confusion was that the the RefCnt object's constructor that
took a TYPE& cloned the object. I created an explicit virtual clone()
function for things that took advantage of this version of the
constructor. I was conservative and used clone() when I was in doubt
of whether or not it was necessary. I still think that there are
probably too many instances of clone(), but hopefully not too many.
I converted several instances of const MsgPtr & to a simple MsgPtr.
If the function wants to avoid the overhead of creating another
reference, then it should just use a regular pointer instead of a ref
counting ptr.
There were a couple of instances where refcounted objects were created
on the stack. This seems pretty dangerous since if you ever
accidentally make a reference to that object with a ref counting
pointer, bad things are bound to happen.
Further cleanup should probably be done to make this class be non-Ruby
specific and put it in src/base.
There are probably several cases where this class is used, std::bitset
could be used instead.
In addition to obvious changes, this required a slight change to the slicc
grammar to allow types with :: in them. Otherwise slicc barfs on std::string
which we need for the headers that slicc generates.
Previously, the set size was set to 4. This was mostly do to the fact that a
crazy graduate student use to create networks with 256 l2 cache banks. Now it
is far more likely that users will create systems with less than 64 of any
particular controller type. Therefore Ruby should be optimized for a set size
of 1.
Removed the dummy power function implementations so that Orion can implement
them correctly. Since Orion lacks modular design, this patch simply enables
scons to compile it. There are no python configuration changes in this patch.
Cleaned up the ruby profilers by moving the memory controller profiling code
out of the main profiler object and into a separate object similar to the
current CacheProfiler. Both the CacheProfiler and MemCntrlProfiler are
specific to a particular Ruby object, CacheMemory and MemoryControl
respectively. Therefore, these profilers should not be SimObjects and
created by the python configuration system, but instead private objects. This
simplifies the creation of these profilers.
Modified ruby's tracing support to no longer rely on the RubySystem map
to convert a sequencer string name to a sequencer pointer. As a
temporary solution, the code uses the sim_object find function.
Eventually, we should develop a better fix.
This patch includes a rather substantial change to the memory controller
profiler in order to work with the new configuration system. Most
noteably, the mem_cntrl_profiler no longer uses a string map, but instead
a vector. Eventually this support should be removed from the main
profiler and go into a separate object. Each memory controller should have
a pointer to that new mem_cntrl profile object.
This patch includes the necessary changes to connect ruby objects using
the python configuration system. Mainly it consists of removing
unnecessary ruby object pointers and connecting the necessary object
pointers using the generated param objects. This patch includes the
slicc changes necessary to connect generated ruby objects together using
the python configuraiton system.
The necessary companion conversion of Ruby objects generated by SLICC
are converted to M5 SimObjects in the following patch, so this patch
alone does not compile.
Conversion of Garnet network models is also handled in a separate
patch; that code is temporarily disabled from compiling to allow
testing of interim code.
This patch changes the way that Ruby handles atomic RMW instructions. This implementation, unlike the prior one, is protocol independent. It works by locking an address from the sequencer immediately after the read portion of an RMW completes. When that address is locked, the coherence controller will only satisfy requests coming from one port (e.g., the mandatory queue) and will ignore all others. After the write portion completed, the line is unlocked. This should also work with multi-line atomics, as long as the blocks are always acquired in the same order.