Commit graph

43 commits

Author SHA1 Message Date
Brad Beckmann
173a786921 ruby: more flexible ruby tester support
This patch allows the ruby random tester to use ruby ports that may only
support instr or data requests.  This patch is similar to a previous changeset
(8932:1b2c17565ac8) that was unfortunately broken by subsequent changesets.
This current patch implements the support in a more straight-forward way.
Since retries are now tested when running the ruby random tester, this patch
splits up the retry and drain check behavior so that RubyPort children, such
as the GPUCoalescer, can perform those operations correctly without having to
duplicate code.  Finally, the patch also includes better DPRINTFs for
debugging the tester.
2015-07-20 09:15:18 -05:00
Nilay Vaish
a60a93eb05 ruby: specify number of vnets for each protocol
The default value for number of virtual networks is being removed.  Each protocol
should now specify the value it needs.
2015-08-30 12:24:18 -05:00
Andreas Hansson
d71a0d790d ruby: Move Rubys cache class from Cache.py to RubyCache.py
This patch serves to avoid name clashes with the classic cache. For
some reason having two 'SimObject' files with the same name creates
problems.

--HG--
rename : src/mem/ruby/structures/Cache.py => src/mem/ruby/structures/RubyCache.py
2015-08-21 07:03:21 -04:00
Joel Hestness
905c0b347c ruby: Protocol changes for SimObject MessageBuffers 2015-08-14 00:19:45 -05:00
Joel Hestness
9567c839fe ruby: Remove the RubyCache/CacheMemory latency
The RubyCache (CacheMemory) latency parameter is only used for top-level caches
instantiated for Ruby coherence protocols. However, the top-level cache hit
latency is assessed by the Sequencer as accesses flow through to the cache
hierarchy. Further, protocol state machines should be enforcing these cache hit
latencies, but RubyCaches do not expose their latency to any existng state
machines through the SLICC/C++ interface. Thus, the RubyCache latency parameter
is superfluous for all caches. This is confusing for users.

As a step toward pushing L0/L1 cache hit latency into the top-level cache
controllers, move their latencies out of the RubyCache declarations and over to
their Sequencers. Eventually, these Sequencer parameters should be exposed as
parameters to the top-level cache controllers, which should assess the latency.
NOTE: Assessing these latencies in the cache controllers will require modifying
each to eliminate instantaneous Ruby hit callbacks in transitions that finish
accesses, which is likely a large undertaking.
2015-08-14 00:19:37 -05:00
Brandon Potter
9eda4bdc5a ruby: remove extra whitespace and correct misspelled words 2015-07-10 16:05:23 -05:00
Nilay Vaish
cca1608bd5 config: ruby: mi protocol: correct master slave setting for dma
In the MI protocol, the master slave connection between the dma controller
and network was being set incorrectly.  This patch corrects it.
2014-12-04 08:59:44 -06:00
Marc Orr
bf80734b2c x86 isa: This patch attempts an implementation at mwait.
Mwait works as follows:
1. A cpu monitors an address of interest (monitor instruction)
2. A cpu calls mwait - this loads the cache line into that cpu's cache.
3. The cpu goes to sleep.
4. When another processor requests write permission for the line, it is
   evicted from the sleeping cpu's cache. This eviction is forwarded to the
   sleeping cpu, which then wakes up.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-11-06 05:42:22 -06:00
Nilay Vaish
3022d463fb ruby: interface with classic memory controller
This patch is the final in the series.  The whole series and this patch in
particular were written with the aim of interfacing ruby's directory controller
with the memory controller in the classic memory system.  This is being done
since ruby's memory controller has not being kept up to date with the changes
going on in DRAMs.  Classic's memory controller is more up to date and
supports multiple different types of DRAM.  This also brings classic and
ruby ever more close.  The patch also changes ruby's memory controller to
expose the same interface.
2014-11-06 05:42:21 -06:00
Nilay Vaish
95a0b18431 ruby: single physical memory in fs mode
Both ruby and the system used to maintain memory copies.  With the changes
carried for programmed io accesses, only one single memory is required for
fs simulations.  This patch sets the copy of memory that used to reside
with the system to null, so that no space is allocated, but address checks
can still be carried out.  All the memory accesses now source and sink values
to the memory maintained by ruby.
2014-11-06 05:41:44 -06:00
Nilay Vaish
7a0d5aafe4 ruby: message buffers: significant changes
This patch is the final patch in a series of patches.  The aim of the series
is to make ruby more configurable than it was.  More specifically, the
connections between controllers are not at all possible (unless one is ready
to make significant changes to the coherence protocol).  Moreover the buffers
themselves are magically connected to the network inside the slicc code.
These connections are not part of the configuration file.

This patch makes changes so that these connections will now be made in the
python configuration files associated with the protocols.  This requires
each state machine to expose the message buffers it uses for input and output.
So, the patch makes these buffers configurable members of the machines.

The patch drops the slicc code that usd to connect these buffers to the
network.  Now these buffers are exposed to the python configuration system
as Master and Slave ports.  In the configuration files, any master port
can be connected any slave port.  The file pyobject.cc has been modified to
take care of allocating the actual message buffer.  This is inline with how
other port connections work.
2014-09-01 16:55:47 -05:00
Emilio Castillo ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E)
01f792a367 ruby: Fixes clock domains in configuration files
This patch fixes scripts related to ruby by adding the ruby clock domain.
Now the L1 controllers and  the Sequencer shares the cpu clock domain,
while the rest of the components use the ruby clock domain.

Before this patch, running simulations with the cpu clock set at 2GHz or
1GHz will output the same time results and could distort power measurements.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-09-01 16:55:30 -05:00
Nilay Vaish
a20fbdfc23 config: ruby: remove piobus from protocols
This patch removes the piobus from the protocol config files.  The ports
are now connected to the piobus in the Ruby.py file.
2014-03-17 17:40:15 -05:00
Nilay Vaish
8504b079b8 ruby: correct errors in changeset 4eec7bdde5b0
Couple of errors were discovered in 4eec7bdde5b0 which necessitated this patch.
Firstly, we create interrupt controllers in the se mode, but no piobus was
being created.  RubyPort, which earlier used to ignore range changes now
forwards those to the piobus.  The lack of piobus resulted in segmentation
fault.  This patch creates a piobus even in se mode.  It is not created only
when some tester is running.  Secondly,  I had missed out on modifying port
connections for other coherence protocols.
2014-02-24 20:50:05 -06:00
Nilay Vaish
9ec59e8b69 ruby: remove cntrl_id from python config scripts. 2014-01-04 00:03:32 -06:00
Nilay Vaish
c4e7e18eeb ruby: add option for number of transitions per cycle
The number of transitions per cycle that a controller can carry out is
a proxy for the number of ports that a controller has. This value is
currently 32 which is way too high. The patch introduces an option
for the number of ports and uses this option in the protocol files
to set the number of transitions. The default value is being set to
4. None of the se regressions change. Ruby stats for the fs regression
change and are being updated.
2013-08-20 11:32:31 -05:00
Andreas Hansson
a8480fe1c3 config: Move the memory instantiation outside FSConfig
This patch moves the instantiation of the memory controller outside
FSConfig and instead relies on the mem_ranges to pass the information
to the caller (e.g. fs.py or one of the regression scripts). The main
motivation for this change is to expose the structural composition of
the memory system and allow more tuning and configuration without
adding a large number of options to the makeSystem functions.

The patch updates the relevant example scripts to maintain the current
functionality. As the order that ports are connected to the memory bus
changes (in certain regresisons), some bus stats are shuffled
around. For example, what used to be layer 0 is now layer 1.

Going forward, options will be added to support the addition of
multi-channel memory controllers.
2013-08-19 03:52:27 -04:00
Nilay Vaish
62a93f0bf0 ruby: check for compatibility between mem size and num dirs
The configuration scripts provided for ruby assume that the available
physical memory is equally distributed amongst the directory controllers.
But there is no check to ensure this assumption has been adhered to. This
patch adds the required check.
2013-06-28 21:36:11 -05:00
Akash Bagdia
7d7ab73862 sim: Add the notion of clock domains to all ClockedObjects
This patch adds the notion of source- and derived-clock domains to the
ClockedObjects. As such, all clock information is moved to the clock
domain, and the ClockedObjects are grouped into domains.

The clock domains are either source domains, with a specific clock
period, or derived domains that have a parent domain and a divider
(potentially chained). For piece of logic that runs at a derived clock
(a ratio of the clock its parent is running at) the necessary derived
clock domain is created from its corresponding parent clock
domain. For now, the derived clock domain only supports a divider,
thus ensuring a lower speed compared to its parent. Multiplier
functionality implies a PLL logic that has not been modelled yet
(create a separate clock instead).

The clock domains should be used as a mechanism to provide a
controllable clock source that affects clock for every clocked object
lying beneath it. The clock of the domain can (in a future patch) be
controlled by a handler responsible for dynamic frequency scaling of
the respective clock domains.

All the config scripts have been retro-fitted with clock domains. For
the System a default SrcClockDomain is created. For CPUs that run at a
different speed than the system, there is a seperate clock domain
created. This domain incorporates the CPU and the associated
caches. As before, Ruby runs under its own clock domain.

The clock period of all domains are pre-computed, such that no virtual
functions or multiplications are needed when calling
clockPeriod. Instead, the clock period is pre-computed when any
changes occur. For this to be possible, each clock domain tracks its
children.
2013-06-27 05:49:49 -04:00
Malek Musleh
3137557cad config: move ruby objects under ruby_system in obj hierarchy
This patch moves the contollers to be children of the ruby_system instead of
'system' under the python object hierarchy. This is so that these objects
can inherit some of the ruby_system's parameter values without resorting to
calling a global system pointer during run-time.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2013-01-14 10:05:14 -06:00
Andreas Hansson
fccbf8bb45 AddrRange: Simplify AddrRange params Python hierarchy
This patch simplifies the Range object hierarchy in preparation for an
address range class that also allows striping (e.g. selecting a few
bits as matching in addition to the range).

To extend the AddrRange class to an AddrRegion, the first step is to
simplify the hierarchy such that we can make it as lean as possible
before adding the new functionality. The only class using Range and
MetaRange is AddrRange, and the three classes are now collapsed into
one.
2012-09-19 06:15:41 -04:00
Jason Power
44b4c96253 Ruby: Add RubySystem parameter to MemoryControl
This guarantees that RubySystem object is created before the MemoryController
object is created.
2012-08-16 23:39:36 -05:00
Brad Beckmann
11b725c19d ruby: changes how Topologies are created
Instead of just passing a list of controllers to the makeTopology function
in src/mem/ruby/network/topologies/<Topo>.py we pass in a function pointer
which knows how to make the topology, possibly with some extra state set
in the configs/ruby/<protocol>.py file. Thus, we can move all of the files
from network/topologies to configs/topologies. A new class BaseTopology
is added which all topologies in configs/topologies must inheirit from and
follow its API.

--HG--
rename : src/mem/ruby/network/topologies/Crossbar.py => configs/topologies/Crossbar.py
rename : src/mem/ruby/network/topologies/Mesh.py => configs/topologies/Mesh.py
rename : src/mem/ruby/network/topologies/MeshDirCorners.py => configs/topologies/MeshDirCorners.py
rename : src/mem/ruby/network/topologies/Pt2Pt.py => configs/topologies/Pt2Pt.py
rename : src/mem/ruby/network/topologies/Torus.py => configs/topologies/Torus.py
2012-07-10 22:51:53 -07:00
Andreas Hansson
b00949d88b MEM: Enable multiple distributed generalized memories
This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.

All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.

To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.

Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.

--HG--
rename : src/mem/PhysicalMemory.py => src/mem/AbstractMemory.py
rename : src/mem/PhysicalMemory.py => src/mem/SimpleMemory.py
rename : src/mem/physical.cc => src/mem/abstract_mem.cc
rename : src/mem/physical.hh => src/mem/abstract_mem.hh
rename : src/mem/physical.cc => src/mem/simple_mem.cc
rename : src/mem/physical.hh => src/mem/simple_mem.hh
2012-04-06 13:46:31 -04:00
Nilay Vaish
4f4a710457 Config: corrects the way Ruby attaches to the DMA ports
With recent changes to the memory system, a port cannot be assigned a peer
port twice. While making use of the Ruby memory system in FS mode, DMA
ports were assigned peer twice, once for the classic memory system
and once for the Ruby memory system. This patch removes this double
assignment of peer ports.
2012-04-05 11:09:19 -05:00
Andreas Hansson
a128ba7cd1 Ruby: Remove the physMemPort and instead access memory directly
This patch removes the physMemPort from the RubySequencer and instead
uses the system pointer to access the physmem. The system already
keeps track of the physmem and the valid memory address ranges, and
with this patch we merely make use of that existing functionality. The
memory is modified so that it is possible to call the access functions
(atomic and functional) without going through the port, and the memory
is allowed to be unconnected, i.e. have no ports (since Ruby does not
attach it like the conventional memory system).
2012-03-30 09:42:36 -04:00
Andreas Hansson
00978170f3 MEM: Fix master/slave ports in Ruby and non-regression scripts
This patch brings the Ruby and other scripts up to date with the
introduction of the master/slave ports.
2012-02-14 03:41:53 -05:00
Nilay Vaish
63563c9df2 O3, Ruby: Forward invalidations from Ruby to O3 CPU
This patch implements the functionality for forwarding invalidations and
replacements from the L1 cache of the Ruby memory system to the O3 CPU. The
implementation adds a list of ports to RubyPort. Whenever a replacement or an
invalidation is performed, the L1 cache forwards this to all the ports, which
is the LSQ in case of the O3 CPU.
2012-01-23 11:07:14 -06:00
Nilay Vaish
00ad4eb8ce Ruby: Fix instantiations of DMA controller and sequencer
The patch on Ruby functional accesses made changes to the process of
instantiating controllers and sequencers. The DMA controller and
sequencer was not updated, hence this patch.
2011-07-26 12:20:22 -05:00
Nilay Vaish
ca247a81f0 Ruby: Fix dma controller configs/ruby/MI_example.py
The dma controller in configs/ruby/MI_example.py was not being set correctly.
This patch fixes it.
2011-07-25 18:18:31 -05:00
Brad Beckmann ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E)
c86f849d5a Ruby: Add support for functional accesses
This patch rpovides functional access support in Ruby. Currently only
the M5Port of RubyPort supports functional accesses. The support for
functional through the PioPort will be added as a separate patch.
2011-06-30 19:49:26 -05:00
Steve Reinhardt
8a652f9871 config: tweak ruby configs to clean up hierarchy
Re-enabling implicit parenting (see previous patch) causes current
Ruby config scripts to create some strange hierarchies and generate
several warnings.  This patch makes three general changes to address
these issues.

1. The order of object creation in the ruby config files makes the L1
   caches children of the sequencer rather than the controller; these
   config ciles are rewritten to assign the L1 caches to the
   controller first.

2. The assignment of the sequencer list to system.ruby.cpu_ruby_ports
   causes the sequencers to be children of system.ruby, generating
   warnings because they are already parented to their respective
   controllers.  Changing this attribute to _cpu_ruby_ports fixes this
   because the leading underscore means this is now treated as a plain
   Python attribute rather than a child assignment. As a result, the
   configuration hierarchy changes such that, e.g.,
   system.ruby.cpu_ruby_ports0 becomes system.l1_cntrl0.sequencer.

3. In the topology classes, the routers become children of some random
   internal link node rather than direct children of the topology.
   The topology classes are rewritten to assign the routers to the
   topology object first.
2011-05-23 14:29:23 -07:00
Brad Beckmann
40bcbf4253 network: convert links & switches to first class C++ SimObjects
This patch converts links and switches from second class simobjects that were
virtually ignored by the networks (both simple and Garnet) to first class
simobjects that directly correspond to c++ ojbects manipulated by the
topology and network classes.  This is especially true for Garnet, where the
links and switches directly correspond to specific C++ objects.

By making this change, many aspects of the Topology class were simplified.

--HG--
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/BasicLink.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/BasicLink.hh
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.hh
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.py
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/fixed-pipeline/GarnetRouter_d.py
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.hh
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.py
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/flexible-pipeline/GarnetRouter.py
2011-04-28 17:18:14 -07:00
Nilay Vaish
ef987a4064 Config: Import math in MI_example.py 2011-03-28 10:49:36 -05:00
Brad Beckmann
48b58b3332 ruby: fixed cache index setting 2011-03-25 10:13:50 -07:00
Brad Beckmann
808701a10c memtest: Memtester support for DMA
This patch adds DMA testing to the Memtester and is inherits many changes from
Polina's old tester_dma_extension patch.  Since Ruby does not work in atomic
mode, the atomic mode options are removed.
2010-08-20 11:46:12 -07:00
Brad Beckmann
10e25cb1d0 config: Improve ruby simobject names
This patch attaches ruby objects to the system before the topology is
created so that their simobject names read their meaningful variable
names instead of their topology name.
2010-08-20 11:46:11 -07:00
Brad Beckmann
5c801090a3 config: reorganized how ruby specifies command-line options 2010-08-20 11:44:09 -07:00
Brad Beckmann
7816d0d12b config: moved python protocol config files
Moved the python protocol config files back to their original location to avoid
addToPath calls.

--HG--
rename : configs/ruby/protocols/MESI_CMP_directory.py => configs/ruby/MESI_CMP_directory.py
rename : configs/ruby/protocols/MI_example.py => configs/ruby/MI_example.py
rename : configs/ruby/protocols/MOESI_CMP_directory.py => configs/ruby/MOESI_CMP_directory.py
rename : configs/ruby/protocols/MOESI_CMP_token.py => configs/ruby/MOESI_CMP_token.py
rename : configs/ruby/protocols/MOESI_hammer.py => configs/ruby/MOESI_hammer.py
2010-08-20 11:41:35 -07:00
Brad Beckmann
898f1fc4a4 ruby: Reorganized Ruby topology and protocol files
--HG--
rename : configs/ruby/MESI_CMP_directory.py => configs/ruby/protocols/MESI_CMP_directory.py
rename : configs/ruby/MI_example.py => configs/ruby/protocols/MI_example.py
rename : configs/ruby/MOESI_CMP_directory.py => configs/ruby/protocols/MOESI_CMP_directory.py
rename : configs/ruby/MOESI_CMP_token.py => configs/ruby/protocols/MOESI_CMP_token.py
rename : configs/ruby/MOESI_hammer.py => configs/ruby/protocols/MOESI_hammer.py
rename : configs/ruby/networks/MeshDirCorners.py => src/mem/ruby/network/topologies/MeshDirCorners.py
2010-03-21 21:22:22 -07:00
Brad Beckmann
92cfd1cac7 ruby: Ruby support for sparse memory
The patch includes direct support for the MI example protocol.
2010-03-21 21:22:21 -07:00
Brad Beckmann
91b0c5487b ruby: Python config files now sets a unique id for each sequencer 2010-03-21 21:22:20 -07:00
Brad Beckmann
b3d195153e ruby: MI_example updates to use the new config system 2010-01-29 20:29:24 -08:00