Commit graph

450 commits

Author SHA1 Message Date
Ali Saidi
09a2be0c39 O3: Fix a small corner case with the lsq hazard detection logic. 2011-05-04 20:38:26 -05:00
Nathan Binkert
6e9143d36d stats: one more name violation 2011-04-20 19:07:45 -07:00
Nathan Binkert
63371c8664 stats: rename stats so they can be used as python expressions 2011-04-19 18:45:21 -07:00
Nathan Binkert
eddac53ff6 trace: reimplement the DTRACE function so it doesn't use a vector
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing.  This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
2011-04-15 10:44:32 -07:00
Nathan Binkert
bbb1392c08 includes: fix up code after sorting 2011-04-15 10:44:14 -07:00
Nathan Binkert
39a055645f includes: sort all includes 2011-04-15 10:44:06 -07:00
Ali Saidi
6b69890493 ARM: Fix checkpoint restoration into O3 CPU and the way O3 switchCpu works.
This change fixes a small bug in the arm copyRegs() code where some registers
wouldn't be copied if the processor was in a mode other than MODE_USER.
Additionally, this change simplifies the way the O3 switchCpu code works by
utilizing TheISA::copyRegs() to copy the required context information
rather than the adhoc copying that goes on in the CPU model. The current code
makes assumptions about the visibility of int and float registers that aren't
true for all architectures in FS mode.
2011-04-04 11:42:28 -05:00
Ali Saidi
a679cd917a ARM: Cleanup implementation of ITSTATE and put important code in PCState.
Consolidate all code to handle ITSTATE in the PCState object rather than
touching a variety of structures/objects.
2011-04-04 11:42:28 -05:00
Ali Saidi
5962fecc1d CPU: Remove references to memory copy operations 2011-04-04 11:42:26 -05:00
Ali Saidi
7dde557fdc O3: Tighten memory order violation checking to 16 bytes.
The comment in the code suggests that the checking granularity should be 16
bytes, however in reality the shift by 8 is 256 bytes which seems much
larger than required.
2011-04-04 11:42:23 -05:00
Ali Saidi
799c3da8d0 O3: Send instruction back to fetch on squash to seed predecoder correctly. 2011-03-17 19:20:19 -05:00
Ali Saidi
30143baf7e O3: Cleanup the commitInfo comm struct.
Get rid of unused members and use base types rather than derrived values
where possible to limit amount of state.
2011-03-17 19:20:19 -05:00
Ali Saidi
a432d8e085 Mem: Fix issue with dirty block being lost when entire block transferred to non-cache.
This change fixes the problem for all the cases we actively use. If you want to try
more creative I/O device attachments (E.g. sharing an L2), this won't work. You
would need another level of caching between the I/O device and the cache
(which you actually need anyway with our current code to make sure writes
propagate). This is required so that you can mark the cache in between as
top level and it won't try to send ownership of a block to the I/O device.
Asserts have been added that should catch any issues.
2011-03-17 19:20:19 -05:00
Ali Saidi
2f40b3b8ae O3: Fix unaligned stores when cache blocked
Without this change the a store can be issued to the cache multiple times.
If this case occurs when the l1 cache is out of mshrs (and thus blocked)
the processor will never make forward progress because each cycle it will
send a single request using the recently freed mshr and not completing the
multipart store. This will continue forever.
2011-03-17 19:20:19 -05:00
Timothy M. Jones
a10685ad1e O3CPU: Fix iqCount and lsqCount SMT fetch policies.
Fixes two of the SMT fetch policies in O3CPU that were returning the count
of instructions in the IQ or LSQ rather than the thread ID to fetch from.
2011-02-25 13:50:29 +00:00
Ali Saidi
f9d4d9df1b O3: When a prefetch causes a fault, don't record it in the inst 2011-02-23 15:10:50 -06:00
Ali Saidi
3de8e0a0d4 O3: If there is an outstanding table walk don't let the inst queue sleep.
If there is an outstanding table walk and no other activity in the CPU
it can go to sleep and never wake up. This change makes the instruction
queue always active if the CPU is waiting for a store to translate.

If Gabe changes the way this code works then the below should be removed
as indicated by the todo.
2011-02-23 15:10:49 -06:00
Ali Saidi
7391ea6de6 ARM: Do something for ISB, DSB, DMB 2011-02-23 15:10:49 -06:00
Ali Saidi
ae3d456855 ARM: Fix bug that let two table walks occur in parallel. 2011-02-23 15:10:49 -06:00
Ali Saidi
68bd80794c O3: Fix bug when a squash occurs right before TLB miss returns.
In this case we need to throw away the TLB miss, not assume it was the
one we were waiting for.
2011-02-23 15:10:49 -06:00
Gabe Black
f036fd9748 O3: Fetch from the microcode ROM when needed. 2011-02-13 17:40:07 -08:00
Ali Saidi
7c763b34c9 O3: Fix GCC 4.2.4 complaint 2011-02-13 16:51:15 -05:00
Giacomo Gabrielli
a05032f4df O3: Fix pipeline restart when a table walk completes in the fetch stage.
When a table walk is initiated by the fetch stage, the CPU can
potentially move to the idle state and never wake up.

The fetch stage must call cpu->wakeCPU() when a translation completes
(in finishTranslation()).
2011-02-11 18:29:35 -06:00
Giacomo Gabrielli
e2507407b1 O3: Enhance data address translation by supporting hardware page table walkers.
Some ISAs (like ARM) relies on hardware page table walkers.  For those ISAs,
when a TLB miss occurs, initiateTranslation() can return with NoFault but with
the translation unfinished.

Instructions experiencing a delayed translation due to a hardware page table
walk are deferred until the translation completes and kept into the IQ.  In
order to keep track of them, the IQ has been augmented with a queue of the
outstanding delayed memory instructions.  When their translation completes,
instructions are re-executed (only their initiateAccess() was already
executed; their DTB translation is now skipped).  The IEW stage has been
modified to support such a 2-pass execution.
2011-02-11 18:29:35 -06:00
Joel Hestness
b4c10bd680 mcpat: Adds McPAT performance counters
Updated patches from Rick Strong's set that modify performance counters for
McPAT
2011-02-06 22:14:17 -08:00
Gabe Black
00f24ae92c Config: Keep track of uncached and cached ports separately.
This makes sure that the address ranges requested for caches and uncached ports
don't conflict with each other, and that accesses which are always uncached
(message signaled interrupts for instance) don't waste time passing through
caches.
2011-02-03 20:23:00 -08:00
Gabe Black
869a046e41 O3: Fix a style bug in O3. 2011-02-02 23:34:14 -08:00
Gabe Black
119f5f8e94 X86: Add L1 caches for the TLB walkers.
Small L1 caches are connected to the TLB walkers when caches are used. This
allows them to participate in the coherence protocol properly.
2011-02-01 18:28:41 -08:00
Matt Horsnell
b13a79ee71 O3: Fix some variable length instruction issues with the O3 CPU and ARM ISA. 2011-01-18 16:30:05 -06:00
Matt Horsnell
c98df6f8c2 O3: Don't test misprediction on load instructions until executed. 2011-01-18 16:30:05 -06:00
Ali Saidi
1167ef19cf O3: Keep around the last committed instruction and use for squashing.
Without this change 0 is always used for the youngest sequence number if
a squash occured and the ROB was empty (E.g. an instruction is marked
serializeAfter or a fetch stall prevents other instructions from issuing).
Using 0 there is a race to rename where an instruction that committed the
same cycle as the squashing instruction can have it's renamed state undone
by the squash using sequence number 0.
2011-01-18 16:30:05 -06:00
Ali Saidi
ea058b14da O3: Don't try to scoreboard misc registers.
I'm not positive this is the correct fix, but it's working right now.
Either we need to do something like this, prevent the misc reg from being renamed at all,
or there something else going on. We need to find the root cause as to why
this is only a problem sometimes.
2011-01-18 16:30:05 -06:00
Matt Horsnell
11bef2ab38 O3: Fix corner cases where multiple squashes/fetch redirects overwrite timebuf. 2011-01-18 16:30:05 -06:00
Matt Horsnell
62f2097917 O3: Fix mispredicts from non control instructions.
The squash inside the fetch unit should not attempt to remove them from the
branch predictor as non-control instructions are not pushed into the predictor.
2011-01-18 16:30:05 -06:00
Matt Horsnell
5ebf3b2808 O3: Fixes the way prefetches are handled inside the iew unit.
This patch prevents the prefetch being added to the instCommit queue twice.
2011-01-18 16:30:02 -06:00
Ali Saidi
ee9a331fe5 O3: Support timing translations for O3 CPU fetch. 2011-01-18 16:30:02 -06:00
Ali Saidi
0f9a3671b6 ARM: Add support for moving predicated false dest operands from sources. 2011-01-18 16:30:02 -06:00
Min Kyu Jeong
96375409ea O3: Fixes fetch deadlock when the interrupt clears before CPU handles it.
When this condition occurs the cpu should restart the fetch stage to fetch from
the original execution path. Fault handling in the commit stage is cleaned up a
little bit so the control flow is simplier. Finally, if an instruction is being
used to carry a fault it isn't executed, so the fault propagates appropriately.
2011-01-18 16:30:01 -06:00
Steve Reinhardt
6f1187943c Replace curTick global variable with accessor functions.
This step makes it easy to replace the accessor functions
(which still access a global variable) with ones that access
per-thread curTick values.
2011-01-07 21:50:29 -08:00
Steve Reinhardt
89cf3f6e85 Move sched_list.hh and timebuf.hh from src/base to src/cpu.
These files really aren't general enough to belong in src/base.
This patch doesn't reorder include lines, leaving them unsorted
in many cases, but Nate's magic script will fix that up shortly.

--HG--
rename : src/base/sched_list.hh => src/cpu/sched_list.hh
rename : src/base/timebuf.hh => src/cpu/timebuf.hh
2011-01-03 14:35:47 -08:00
Ali Saidi
42ba158479 O3: Allow a store entry to store up to 16 bytes (instead of TheISA::IntReg).
The store queue doesn't need to be ISA specific and architectures can
frequently store more than an int registers worth of data. A 128 bits seems
more common, but even 256 bits may be appropriate. Pretty much anything less
than a cache line size is buildable.
2010-12-07 16:19:57 -08:00
Ali Saidi
e681c0f7b3 O3: Support squashing all state after special instruction
For SPARC ASIs are added to the ExtMachInst. If the ASI is changed simply
marking the instruction as Serializing isn't enough beacuse that only
stops rename. This provides a mechanism to squash all the instructions
and refetch them
2010-12-07 16:19:57 -08:00
Giacomo Gabrielli
719f9a6d4f O3: Make all instructions that write a misc. register not perform the write until commit.
ARM instructions updating cumulative flags (ARM FP exceptions and saturation
flags) are not serialized.

Added aliases for ARM FP exceptions and saturation flags in FPSCR.  Removed
write accesses to the FP condition codes for most ARM VFP instructions: only
VCMP and VCMPE instructions update the FP condition codes.  Removed a potential
cause of seg. faults in the O3 model for NEON memory macro-ops (ARM).
2010-12-07 16:19:57 -08:00
Min Kyu Jeong
4bbdd6ceb2 O3: Support SWAP and predicated loads/store in ARM. 2010-12-07 16:19:57 -08:00
Gabe Black
92655b6399 O3: Fix fp destination register flattening, and index offset adjusting.
This change makes O3 flatten floating point destination registers, and also
fixes misc register flattening so that it's correctly repositioned relative to
the resized regions for integer and floating point indices.

It also fixes some overly long lines.
2010-11-18 13:11:36 -05:00
Gabe Black
8b9b85e92c O3: Make O3 support variably lengthed instructions. 2010-11-15 19:37:03 -08:00
Ali Saidi
776c075917 O3: reset architetural state by calling clear() 2010-11-15 14:04:05 -06:00
Giacomo Gabrielli
0058927190 CPU/ARM: Add SIMD op classes to CPU models and ARM ISA. 2010-11-15 14:04:04 -06:00
Min Kyu Jeong
745df74fe0 O3: prevent a squash when completeAcc() modifies misc reg through TC.
This happens on ARM instructions when they update the IT state bits.
Code and associated comment was copied from execute() and initiateAcc() methods
2010-11-15 14:04:04 -06:00
Gabe Black
6f4bd2c1da ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
2010-10-31 00:07:20 -07:00