when threads are switching in/out the CPU, we need to keep
track of special cases like branches. Add appropriate
variables in ThreadState t track this and then use
these variables when updating pc after context switch
this will be used for when a thread comes back from a cache miss, it needs to update the PCs
because the inst might of been a branch or delayslot in which the next PC isnt always
a straight addition
allow a thread to wakeup and be activated after
it has been in suspended state and another
thread is switched out. Need to give
pipeline stages a "activateThread" function
so that can get to their suspended instruction
when the time is right.
give resources their own specific
activity to do for a "suspend" event
instead of defaulting to deactivating the thread for a
suspend thread event. This really matters
for the fetch sequence unit which wants to remove the
thread from fetching while other units want to
ignore a thread suspension. If you deactivate a thread
in a resource then you may lose some of the allotted
bandwidth that the thread is taking up...
update/add in the use of isThreadReady & isThreadSuspended
functions.Check in activateThread what list a thread is
on so it can be managed accordingly.
-Support ability to activate next ready thread after a cache miss
through the activateNextReadyContext/Thread() functions
-To support this a "readyList" of thread ids is added
-After a cache miss, thread will suspend and then call
activitynextreadythread
allow for events to schedule themselves later if desired. this is important
because of cases like where you need to activate a thread only after the previous
thread has been deactivated. The ordering there has to be enforced
add code to recognize memory stalls in resources and the pipeline as well
as squash a thread if there is a stall and we are in the switch on cache miss
model
add buffer for instructions to switch out to in a pipeline stage
can't squash the instruction and remove the pipeline so we kind of need
to 'suspend' an instruction at the stage while the memory stall resolves
for the switch on cache miss model
- loads were happening on same cycle as the address was generated which is slightly
unrealistic. Instead, force address generation to be on separate cycle from load
initiation
- also, mark the stages in a more traditional way (F-D-X-M-W)
Get rid of misc.py and just stick misc things in __init__.py
Move utility functions out of SCons files and into m5.util
Move utility type stuff from m5/__init__.py to m5/util/__init__.py
Remove buildEnv from m5 and allow access only from m5.defines
Rename AddToPath to addToPath while we're moving it to m5.util
Rename read_command to readCommand while we're moving it
Rename compare_versions to compareVersions while we're moving it.
--HG--
rename : src/python/m5/convert.py => src/python/m5/util/convert.py
rename : src/python/m5/smartdict.py => src/python/m5/util/smartdict.py
TLBUnit no longer used and we also get rid of memAccSize and memAccFlags functions added to ISA and StaticInst
since TLB is not a separate resource to acquire. Instead, TLB access is done before any read/write to memory
and the result is checked before it's sent out to memory.
* * *
inorder was incorrectly storing FP values and confusing the integer/fp storage view of floating point operations. A big issue was knowing trying to infer when were doing single or double precision access
because this lets you know the size of value to store (32-64 bits). This isnt exactly straightforward since alpha uses all 64-bit regs while mips/sparc uses a dual-reg view. by getting this value from
the actual floating point register file, the model can figure out what it needs to store