Cleaned up the ruby profilers by moving the memory controller profiling code
out of the main profiler object and into a separate object similar to the
current CacheProfiler. Both the CacheProfiler and MemCntrlProfiler are
specific to a particular Ruby object, CacheMemory and MemoryControl
respectively. Therefore, these profilers should not be SimObjects and
created by the python configuration system, but instead private objects. This
simplifies the creation of these profilers.
Reorganized ruby python configuration so that protocol and ruby memory system
configuration code can be shared by multiple front-end configuration files
(i.e. memory tester, full system, and hopefully the regression tester). This
code works for memory tester, but have not tested fs mode.
Modified ruby's tracing support to no longer rely on the RubySystem map
to convert a sequencer string name to a sequencer pointer. As a
temporary solution, the code uses the sim_object find function.
Eventually, we should develop a better fix.
This patch includes a rather substantial change to the memory controller
profiler in order to work with the new configuration system. Most
noteably, the mem_cntrl_profiler no longer uses a string map, but instead
a vector. Eventually this support should be removed from the main
profiler and go into a separate object. Each memory controller should have
a pointer to that new mem_cntrl profile object.
This patch includes the necessary changes to connect ruby objects using
the python configuration system. Mainly it consists of removing
unnecessary ruby object pointers and connecting the necessary object
pointers using the generated param objects. This patch includes the
slicc changes necessary to connect generated ruby objects together using
the python configuraiton system.
The necessary companion conversion of Ruby objects generated by SLICC
are converted to M5 SimObjects in the following patch, so this patch
alone does not compile.
Conversion of Garnet network models is also handled in a separate
patch; that code is temporarily disabled from compiling to allow
testing of interim code.
Though OutPort's message type is not used to generate code, this fix checks
that the programmer's intent is correct. Eventually, we may want to
remove the message type from the OutPort declaration statement.
1) Move alpha-specific code out of page_table.cc:serialize().
2) Begin serializing M5_pid and unserializing it, but adding an function to do optional paramIn so that old checkpoints don't need to be fixed up.
3) Fix up alpha startup code so that the unserialized M5_pid value is properly written to DTB_IPR_ASN.
4) Fix the memory unserialize that I forgot somehow in the last changeset.
5) Add in an agg_se.py to handle aggregated checkpoints. --bench foo-bar plus positional arguments foo bar are the only changes in usage from se.py.
Note this aggregation stuff has only been tested for Alpha and nothing else, though it should take a very minimal amount of work to get it to work with another ISA.
This patch changes the way that Ruby handles atomic RMW instructions. This implementation, unlike the prior one, is protocol independent. It works by locking an address from the sequencer immediately after the read portion of an RMW completes. When that address is locked, the coherence controller will only satisfy requests coming from one port (e.g., the mandatory queue) and will ignore all others. After the write portion completed, the line is unlocked. This should also work with multi-line atomics, as long as the blocks are always acquired in the same order.
In Linux, the set_thread_area system call stores the address of the thread
local storage area into a field of the current thread_info structure. Later,
to access that value, the program uses the rdhwr instruction to read a
"hardware register" with index 29. The 64 bit MIPS manual, volume II, says
that index 29 is reserved for a future ABI extension and should cause a
"Reserved Instruction Exception". In Linux (and potentially other ISAs) that
exception is trapped and emulated to return the value stored by
set_thread_area as if that were actually stored by a physical register.
The tp_value address (as named in the Linux kernel) is ironically stored as a
control register so that it goes with a particular ThreadContext. Syscall
emulation will use that to emulate storing to the OS's thread info structure,
and rdhwr will emulate faulting and returning that value from software by
returning the value itself, as if it was in hardware. In other words, we fake
faking the register in SE mode. In an FS mode implementation it should
work as specified in the manual.
The MIPS ISA object expects to be constructed with a CPU pointer it uses to
look at other thread contexts and allow them to be manipulated with control
registers. Unfortunately, that differs from all the other ISA classes and
would complicate their implementation.
This change makes the event constructor use a CPU pointer pulled out of the
thread context passed to setMiscReg instead.
Added error messages when:
- a state does not exist in a machine's list of known states.
- an event does not exist in a machine
- the actions of a certain machine have not been declared
Connects M5 cpu and dma ports directly to ruby sequencers and dma
sequencers. Rubymem also includes a pio port so that pio requests
and be forwarded to a special pio bus connecting to device pio
ports.
Some of the micro-ops weren't casting 1 to ULL before shifting,
which can cause problems. On the perl makerand input this
caused some values to be negative that shouldn't have been.
The casts are done as ULL(1) instead of 1ULL to match others
in the m5 code base.
The PC indexes in the various register sets was defined in the section for
unaliased registers which was throwing off the indexing. This moves those
where they belong. Also, to make detecting accesses to the PC easier and
because it's in the same place in all modes, the intRegForceUser function
now passes it through as index 15.
Unfortunately my implementation of the movd instruction had two bugs.
In one case, when moving a 32-bit value into an xmm register, the
lower half of the xmm register was not zero extended.
The other case is that xmm was used instead of xmmlm as the source
for a register move. My test case didn't notice this at first
as it moved xmm0 to eax, which both have the same register
number.
This double cast led to rounding errors which caused
some benchmarks to get the wrong values, most notably lucas
which failed spectacularly due to CVTTSD2SI returning an
off-by-one value. equake was also broken.
Specifically, get rid of the big switch statement so more cases can be
handled. Enumerating all the possible settings doesn't scale well. Also do
some minor style clean up.
Add constants for all the modes and registers, maps for aliasing, functions
that use the maps and range check, and use a named constant instead of a magic
number for the microcode register.
This problem is like the one fixed with movhpd a few weeks ago.
A +8 displacement is used to access memory when there should
be none.
This fix is needed for the perlbmk spec2k benchmark to run.
Right now .cc and .hh files are handled separately, but then
they're just munged together at the end by scons, so it
doesn't buy us anything. Might as well munge from the start
since we'll eventually be adding generated Python files
to the list too.
64-bit vsyscall is different than 32-bit.
There are only two syscalls, time and gettimeofday.
On a real system, there is complicated code that implements these
without entering the kernel. That would be complicated to implement in m5.
Instead we just place code that calls the regular syscalls (this is how
tools such as valgrind handle this case).
This is needed for the perlbmk spec2k benchmark.
These are complicated instructions and the micro-code might be suboptimal.
This has been tested with some small sample programs (attached)
The psrldq instruction is needed by various spec2k programs.
This patch implements the movd_Vo_Edp series of instructions.
It addresses various concerns by Gabe Black about which file the
instruction belonged in, as well as supporting REX prefixed
instructions properly.
This instruction is needed for some of the spec2k benchmarks, most
notably bzip2.
This patch implements the haddpd instruction.
It fixes the problem in the previous version (pointed out by Gabe Black)
where an incorrect result would happen if you issue the instruction
with the same argument twice, i.e. "haddpd %xmm0,%xmm0"
This instruction is used by many spec2k benchmarks.
This patch hooks up the truncate, ftruncate, truncate64 and ftruncate64
system calls on 32-bit and 64-bit X86.
These have been tested on both architectures.
ftruncate/ftruncate64 is needed for the f90 spec2k benchmarks.
When accessing arguments for a syscall, the position of an argument depends on
the policies of the ISA, how much space preceding arguments took up, and the
"alignment" of the index for this particular argument into the number of
possible storate locations. This change adjusts getSyscallArg to take its
index parameter by reference instead of value and to adjust it to point to the
possible location of the next argument on the stack, basically just after the
current one. This way, the rules for the new argument can be applied locally
without knowing about other arguments since those have already been taken into
account implicitly.
All system calls have also been changed to reflect the new interface. In a
number of cases this made the implementation clearer since it encourages
arguments to be collected in one place in order and then used as necessary
later, as opposed to scattering them throughout the function or using them in
place in long expressions. It also discourages using getSyscallArg over and
over to retrieve the same value when a temporary would do the job.
This mostly was a matter of changing the license owner to Princeton
which is as it should have been. The code was originally licensed
under the GPL but was relicensed as BSD by Li-Shiuan Peh on July 27,
2009. This relicensing was in an explicit e-mail to Nathan Binkert,
Brad Beckmann, Mark Hill, David Wood, and Steve Reinhardt.
The movdqa instruction should enforce 16-byte alignment.
This implementation does not do that.
These instructions are needed for most of x86_64 spec2k to run.
The st_size entry was in the wrong place
(see linux-2.6.29/arch/x86/include/asm/stat.h )
Also, the packed attribute is needed when compiling on a
64-bit machine, otherwise gcc adds extra padding that
break the layout of the structure.
This adds support for the 32-bit, big endian Power ISA. This supports both
integer and floating point instructions based on the Power ISA Book I v2.06.
Glibc often assumes that memory it receives from the kernel after a brk
system call will contain only zeros. This is important during a calloc,
because it won't clear the new memory itself. In the simulator, if the
new page exists, it will be cleared using this patch, to mimic the kernel's
functionality.
I've tested these on x86 and they work as expected.
In theory for 32-bit x86 we should have some sort of special
handling for the legacy 16-bit uid/gid syscalls, but in practice
modern toolchains don't use the 16-bit versions, and m5 sets the uid
and gid values to be less than 16-bits anyway.
This fix is needed for the perl spec2k benchmarks to run.
When enabled, faulting instructions appear in the trace twice
(once when they fault and again when they're re-executed).
This flag is set by the Exec compound flag for backwards compatibility.
This prevents redundant prefetches from being issued, solving the
occasional 'needsExclusive && !blk->isWritable()' assertion failure
in cache_impl.hh that several people have run into.
Eliminates "prefetch_cache_check_push" flag, neither setting of
which really solved the problem.
This is simply a translation of the C++ slicc into python with very minimal
reorganization of the code. The output can be verified as nearly identical
by doing a "diff -wBur".
Slicc can easily be run manually by using util/slicc