Commit graph

162 commits

Author SHA1 Message Date
Andreas Sandberg 1eec115c31 cpu: Refactor memory system checks
CPUs need to test that the memory system is in the right mode in two
places, when the CPU is initialized (unless it's switched out) and on
a drainResume(). This led to some code duplication in the CPU
models. This changeset introduces the verifyMemoryMode() method which
is called by BaseCPU::init() if the CPU isn't switched out. The
individual CPU models are responsible for calling this method when
resuming from a drain as this code is CPU model specific.
2013-02-15 17:40:08 -05:00
Andreas Sandberg 009970f59b cpu: Unify the serialization code for all of the CPU models
Cleanup the serialization code for the simple CPUs and the O3 CPU. The
CPU-specific code has been replaced with a (un)serializeThread that
serializes the thread state / context of a specific thread. Assuming
that the thread state class uses the CPU-specific thread state uses
the base thread state serialization code, this allows us to restore a
checkpoint with any of the CPU models.
2013-01-07 13:05:52 -05:00
Andreas Sandberg f9bcf46371 cpu: Make sure that a drained timing CPU isn't executing ucode
Currently, the timing CPU can be in the middle of a microcode sequence
or multicycle (stayAtPC is true) instruction when it is drained. This
leads to two problems:

 * When switching to a hardware virtualized CPU, we obviously can't
   execute gem5 microcode.

 * If stayAtPC is true we might execute half of an instruction twice
   when restoring a checkpoint or switching CPUs, which leads to an
   incorrect execution.

After applying this patch, the CPU will be on a proper instruction
boundary, which means that it is safe to switch to any CPU model
(including hardware virtualized ones). This changeset also fixes a bug
where the timing CPU sometimes switches out with while stayAtPC is
true, which corrupts the target state after a CPU switch or
checkpoint.

Note: This changeset removes the so_state variable from checkpoints
since the drain state isn't used anymore.
2013-01-07 13:05:46 -05:00
Andreas Sandberg 2cfe62adc4 cpu: Rename defer_registration->switched_out
The defer_registration parameter is used to prevent a CPU from
initializing at startup, leaving it in the "switched out" mode. The
name of this parameter (and the help string) is confusing. This patch
renames it to switched_out, which should be more descriptive.
2013-01-07 13:05:45 -05:00
Andreas Sandberg 901258c22b cpu: Correctly call parent on switchOut() and takeOverFrom()
This patch cleans up the CPU switching functionality by making sure
that CPU models consistently call the parent on switchOut() and
takeOverFrom(). This has the following implications that might alter
current functionality:

 * The call to BaseCPU::switchout() in the O3 CPU is moved from
   signalDrained() (!) to switchOut().

 * A call to BaseSimpleCPU::switchOut() is introduced in the simple
   CPUs.
2013-01-07 13:05:44 -05:00
Andreas Sandberg 7eb0fb8b6e cpu: Check that the memory system is in the correct mode
This patch adds checks to all CPU models to make sure that the memory
system is in the correct mode at startup and when resuming after a
drain.  Previously, we only checked that the memory system was in the
right mode when resuming. This is inadequate since this is a
configuration error that should be detected at startup as well as when
resuming. Additionally, since the check was done using an assert, it
wasn't performed when NDEBUG was set (e.g., the fast target).
2013-01-07 13:05:41 -05:00
Andreas Sandberg b81a977e6a sim: Move the draining interface into a separate base class
This patch moves the draining interface from SimObject to a separate
class that can be used by any object needing draining. However,
objects not visible to the Python code (i.e., objects not deriving
from SimObject) still depend on their parents informing them when to
drain. This patch also gets rid of the CountedDrainEvent (which isn't
really an event) and replaces it with a DrainManager.
2012-11-02 11:32:01 -05:00
Andreas Hansson 0cacf7e817 Clock: Add a Cycles wrapper class and use where applicable
This patch addresses the comments and feedback on the preceding patch
that reworks the clocks and now more clearly shows where cycles
(relative cycle counts) are used to express time.

Instead of bumping the existing patch I chose to make this a separate
patch, merely to try and focus the discussion around a smaller set of
changes. The two patches will be pushed together though.

This changes done as part of this patch are mostly following directly
from the introduction of the wrapper class, and change enough code to
make things compile and run again. There are definitely more places
where int/uint/Tick is still used to represent cycles, and it will
take some time to chase them all down. Similarly, a lot of parameters
should be changed from Param.Tick and Param.Unsigned to
Param.Cycles.

In addition, the use of curTick is questionable as there should not be
an absolute cycle. Potential solutions can be built on top of this
patch. There is a similar situation in the o3 CPU where
lastRunningCycle is currently counting in Cycles, and is still an
absolute time. More discussion to be had in other words.

An additional change that would be appropriate in the future is to
perform a similar wrapping of Tick and probably also introduce a
Ticks class along with suitable operators for all these classes.
2012-08-28 14:30:33 -04:00
Andreas Hansson d53d04473e Clock: Rework clocks to avoid tick-to-cycle transformations
This patch introduces the notion of a clock update function that aims
to avoid costly divisions when turning the current tick into a
cycle. Each clocked object advances a private (hidden) cycle member
and a tick member and uses these to implement functions for getting
the tick of the next cycle, or the tick of a cycle some time in the
future.

In the different modules using the clocks, changes are made to avoid
counting in ticks only to later translate to cycles. There are a few
oddities in how the O3 and inorder CPU count idle cycles, as seen by a
few locations where a cycle is subtracted in the calculation. This is
done such that the regression does not change any stats, but should be
revisited in a future patch.

Another, much needed, change that is not done as part of this patch is
to introduce a new typedef uint64_t Cycle to be able to at least hint
at the unit of the variables counting Ticks vs Cycles. This will be
done as a follow-up patch.

As an additional follow up, the thread context still uses ticks for
the book keeping of last activate and last suspend and this should
probably also be changed into cycles as well.
2012-08-28 14:30:31 -04:00
Andreas Hansson c60db56741 Packet: Remove NACKs from packet and its use in endpoints
This patch removes the NACK frrom the packet as there is no longer any
module in the system that issues them (the bridge was the only one and
the previous patch removes that).

The handling of NACKs was mostly avoided throughout the code base, by
using e.g. panic or assert false, but in a few locations the NACKs
were actually dealt with (although NACKs never occured in any of the
regressions). Most notably, the DMA port will now never receive a NACK
and the backoff time is thus never changed. As a consequence, the
entire backoff mechanism (similar to a PCI bus) is now removed and the
DMA port entirely relies on the bus performing the arbitration and
issuing a retry when appropriate. This is more in line with e.g. PCIe.

Surprisingly, this patch has no impact on any of the regressions. As
mentioned in the patch that removes the NACK from the bridge, a
follow-up patch should change the request and response buffer size for
at least one regression to also verify that the system behaves as
expected when the bridge fills up.
2012-08-22 11:39:59 -04:00
Anthony Gutierrez 0b3897fc90 O3,ARM: fix some problems with drain/switchout functionality and add Drain DPRINTFs
This patch fixes some problems with the drain/switchout functionality
for the O3 cpu and for the ARM ISA and adds some useful debug print
statements.

This is an incremental fix as there are still a few bugs/mem leaks with the
switchout code. Particularly when switching from an O3CPU to a
TimingSimpleCPU. However, when switching from O3 to O3 cores with the ARM ISA
I haven't encountered any more assertion failures; now the kernel will
typically panic inside of simulation.
2012-08-15 10:38:08 -04:00
Anthony Gutierrez d6da3ff317 cpu: Don't init simple and inorder CPUs if they are defered.
initCPU() will be called to initialize switched out CPUs for the simple and
inorder CPU models. this patch prevents those CPUs from being initialized
because they should get their state from the active CPU when it is switched
out.
2012-06-05 14:20:13 -04:00
Andreas Hansson 3fea59e162 MEM: Separate requests and responses for timing accesses
This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.

For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).

The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.

With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
2012-05-01 13:40:42 -04:00
Andreas Hansson 750f33a901 MEM: Remove the Broadcast destination from the packet
This patch simplifies the packet by removing the broadcast flag and
instead more firmly relying on (and enforcing) the semantics of
transactions in the classic memory system, i.e. request packets are
routed from a master to a slave based on the address, and when they
are created they have neither a valid source, nor destination. On
their way to the slave, the request packet is updated with a source
field for all modules that multiplex packets from multiple master
(e.g. a bus). When a request packet is turned into a response packet
(at the final slave), it moves the potentially populated source field
to the destination field, and the response packet is routed through
any multiplexing components back to the master based on the
destination field.

Modules that connect multiplexing components, such as caches and
bridges store any existing source and destination field in the sender
state as a stack (just as before).

The packet constructor is simplified in that there is no longer a need
to pass the Packet::Broadcast as the destination (this was always the
case for the classic memory system). In the case of Ruby, rather than
using the parameter to the constructor we now rely on setDest, as
there is already another three-argument constructor in the packet
class.

In many places where the packet information was printed as part of
DPRINTFs, request packets would be printed with a numeric "dest" that
would always be -1 (Broadcast) and that field is now removed from the
printing.
2012-04-14 05:45:55 -04:00
Andreas Hansson dccca0d3a9 MEM: Separate snoops and normal memory requests/responses
This patch introduces port access methods that separates snoop
request/responses from normal memory request/responses. The
differentiation is made for functional, atomic and timing accesses and
builds on the introduction of master and slave ports.

Before the introduction of this patch, the packets belonging to the
different phases of the protocol (request -> [forwarded snoop request
-> snoop response]* -> response) all use the same port access
functions, even though the snoop packets flow in the opposite
direction to the normal packet. That is, a coherent master sends
normal request and receives responses, but receives snoop requests and
sends snoop responses (vice versa for the slave). These two distinct
phases now use different access functions, as described below.

Starting with the functional access, a master sends a request to a
slave through sendFunctional, and the request packet is turned into a
response before the call returns. In a system without cache coherence,
this is all that is needed from the functional interface. For the
cache-coherent scenario, a slave also sends snoop requests to coherent
masters through sendFunctionalSnoop, with responses returned within
the same packet pointer. This is currently used by the bus and caches,
and the LSQ of the O3 CPU. The send/recvFunctional and
send/recvFunctionalSnoop are moved from the Port super class to the
appropriate subclass.

Atomic accesses follow the same flow as functional accesses, with
request being sent from master to slave through sendAtomic. In the
case of cache-coherent ports, a slave can send snoop requests to a
master through sendAtomicSnoop. Just as for the functional access
methods, the atomic send and receive member functions are moved to the
appropriate subclasses.

The timing access methods are different from the functional and atomic
in that requests and responses are separated in time and
send/recvTiming are used for both directions. Hence, a master uses
sendTiming to send a request to a slave, and a slave uses sendTiming
to send a response back to a master, at a later point in time. Snoop
requests and responses travel in the opposite direction, similar to
what happens in functional and atomic accesses. With the introduction
of this patch, it is possible to determine the direction of packets in
the bus, and no longer necessary to look for both a master and a slave
port with the requested port id.

In contrast to the normal recvFunctional, recvAtomic and recvTiming
that are pure virtual functions, the recvFunctionalSnoop,
recvAtomicSnoop and recvTimingSnoop have a default implementation that
calls panic. This is to allow non-coherent master and slave ports to
not implement these functions.
2012-04-14 05:45:07 -04:00
Andreas Hansson a14013af3a CPU: Unify initMemProxies across CPUs and simulation modes
This patch unifies where initMemProxies is called, in the init()
method of each BaseCPU subclass, before TheISA::initCPU is
called. Moreover, it also ensures that initMemProxies is called in
both full-system and syscall-emulation mode, thus unifying also across
the modes. An additional check is added in the ThreadState to ensure
that initMemProxies is only called once.
2012-03-30 09:38:35 -04:00
Andreas Hansson 9f07d2ce7e CPU: Round-two unifying instr/data CPU ports across models
This patch continues the unification of how the different CPU models
create and share their instruction and data ports. Most importantly,
it forces every CPU to have an instruction and a data port, and gives
these ports explicit getters in the BaseCPU (getDataPort and
getInstPort). The patch helps in simplifying the code, make
assumptions more explicit, andfurther ease future patches related to
the CPU ports.

The biggest changes are in the in-order model (that was not modified
in the previous unification patch), which now moves the ports from the
CacheUnit to the CPU. It also distinguishes the instruction fetch and
load-store unit from the rest of the resources, and avoids the use of
indices and casting in favour of keeping track of these two units
explicitly (since they are always there anyways). The atomic, timing
and O3 model simply return references to their already existing ports.
2012-02-24 11:42:00 -05:00
Ali Saidi 8aaa39e93d mem: Add a master ID to each request object.
This change adds a master id to each request object which can be
used identify every device in the system that is capable of issuing a request.
This is part of the way to removing the numCpus+1 stats in the cache and
replacing them with the master ids. This is one of a series of changes
that make way for the stats output to be changed to python.
2012-02-12 16:07:38 -06:00
Gabe Black ea8b347dc5 Merge with head, hopefully the last time for this batch. 2012-01-31 22:40:08 -08:00
Koan-Sin Tan 7d4f187700 clang: Enable compiling gem5 using clang 2.9 and 3.0
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).

clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
2012-01-31 12:05:52 -05:00
Gabe Black c3d41a2def Merge with the main repo.
--HG--
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
2012-01-28 07:24:01 -08:00
Andreas Hansson de34e49d15 MEM: Simplify ports by removing EventManager
This patch removes the inheritance of EventManager from the ports and
moves all responsibility for event queues to the owner. Eventually the
event manager should be the interface block, which could either be the
structural owner or a subblock like a LSQ in the O3 CPU for example.
2012-01-17 12:55:09 -06:00
Andreas Hansson b3f930c884 CPU: Moving towards a more general port across CPU models
This patch performs minimal changes to move the instruction and data
ports from specialised subclasses to the base CPU (to the largest
degree possible). Ultimately it servers to make the CPU(s) have a
well-defined interface to the memory sub-system.
2012-01-17 12:55:08 -06:00
Andreas Hansson f85286b3de MEM: Add port proxies instead of non-structural ports
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.

The following replacements are made:
FunctionalPort      > PortProxy
TranslatingPort     > SETranslatingPortProxy
VirtualPort         > FSTranslatingPortProxy

--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
2012-01-17 12:55:08 -06:00
Gabe Black de21bb93ea SE/FS: Get rid of FULL_SYSTEM in the CPU directory. 2011-11-18 01:33:28 -08:00
Gabe Black 1268e0df1f SE/FS: Expose the same methods on the CPUs in SE and FS modes. 2011-11-01 04:01:13 -07:00
Gabe Black 16882b0483 Translation: Use a pointer type as the template argument.
This allows regular pointers and reference counted pointers without having to
use any shim structures or other tricks.
2011-08-07 09:21:48 -07:00
Gabe Black 3a1428365a ExecContext: Rename the readBytes/writeBytes functions to readMem and writeMem.
readBytes and writeBytes had the word "bytes" in their names because they
accessed blobs of bytes. This distinguished them from the read and write
functions which handled higher level data types. Because those functions don't
exist any more, this change renames readBytes and writeBytes to more general
names, readMem and writeMem, which reflect the fact that they are how you read
and write memory. This also makes their names more consistent with the
register reading/writing functions, although those are still read and set for
some reason.
2011-07-02 22:35:04 -07:00
Gabe Black 2e7426664a ExecContext: Get rid of the now unused read/write templated functions. 2011-07-02 22:34:58 -07:00
Ali Saidi 77bea2fb42 CPU: Add some useful debug message to the timing simple cpu. 2011-05-04 20:38:27 -05:00
Ali Saidi 6e634beb8a CPU: Fix a case where timing simple cpu faults can nest.
If we fault, change the state to faulting so that we don't fault again in the same cycle.
2011-05-04 20:38:27 -05:00
Nathan Binkert eddac53ff6 trace: reimplement the DTRACE function so it doesn't use a vector
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing.  This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
2011-04-15 10:44:32 -07:00
Nathan Binkert 39a055645f includes: sort all includes 2011-04-15 10:44:06 -07:00
Ali Saidi b78be240cf ARM: Detect and skip udelay() functions in linux kernel.
This change speeds up booting, especially in MP cases, by not executing
udelay() on the core but instead skipping ahead tha amount of time that is being
delayed.
2011-03-17 19:20:20 -05:00
Gabe Black 579c5f0b65 Spelling: Fix the a spelling error by changing mmaped to mmapped.
There may not be a formally correct spelling for the past tense of mmap, but
mmapped is the spelling Google doesn't try to autocorrect. This makes sense
because it mirrors the past tense of map->mapped and not the past tense of
cape->caped.

--HG--
rename : src/arch/alpha/mmaped_ipr.hh => src/arch/alpha/mmapped_ipr.hh
rename : src/arch/arm/mmaped_ipr.hh => src/arch/arm/mmapped_ipr.hh
rename : src/arch/mips/mmaped_ipr.hh => src/arch/mips/mmapped_ipr.hh
rename : src/arch/power/mmaped_ipr.hh => src/arch/power/mmapped_ipr.hh
rename : src/arch/sparc/mmaped_ipr.hh => src/arch/sparc/mmapped_ipr.hh
rename : src/arch/x86/mmaped_ipr.hh => src/arch/x86/mmapped_ipr.hh
2011-03-01 23:18:47 -08:00
Ali Saidi 1411cb0b0f SimpleCPU: Fix a case where a DTLB fault redirects fetch and an I-side walk occurs.
This change fixes an issue where a DTLB fault occurs and redirects fetch to
handle the fault and the ITLB requires a walk which delays translation. In this
case the status of the cpu isn't updated appropriately, and an additional
instruction fetch occurs. Eventually this hits an assert as multiple instruction
fetches are occuring in the system and when the second one returns the
processor is in the wrong state.

Some asserts below are removed because it was always true (typo) and the state
after the initiateAcc() the processor could be in any valid state when a
d-side fault occurs.
2011-02-11 18:29:35 -06:00
Joel Hestness 52b6119228 TimingSimpleCPU: split data sender state fix
In sendSplitData, keep a pointer to the senderState that may be updated after
the call to handle*Packet. This way, if the receiver updates the packet
senderState, it can still be accessed in sendSplitData.
2011-02-06 22:14:18 -08:00
Joel Hestness b4c10bd680 mcpat: Adds McPAT performance counters
Updated patches from Rick Strong's set that modify performance counters for
McPAT
2011-02-06 22:14:17 -08:00
Steve Reinhardt 6f1187943c Replace curTick global variable with accessor functions.
This step makes it easy to replace the accessor functions
(which still access a global variable) with ones that access
per-thread curTick values.
2011-01-07 21:50:29 -08:00
Ali Saidi 16f210da37 CPU: Fix bug when a split transaction is issued to a faster cache
In the case of a split transaction and a cache that is faster than a CPU we
could get two responses before next_tick expires. Add an event that is
scheduled in this case and return false rather than asserting.
2010-11-15 14:04:03 -06:00
Ali Saidi cdacbe734a ARM/Alpha/Cpu: Change prefetchs to be more like normal loads.
This change modifies the way prefetches work. They are now like normal loads
that don't writeback a register. Previously prefetches were supposed to call
prefetch() on the exection context, so they executed with execute() methods
instead of initiateAcc() completeAcc(). The prefetch() methods for all the CPUs
are blank, meaning that they get executed, but don't actually do anything.

On Alpha dead cache copy code was removed and prefetches are now normal ops.
They count as executed operations, but still don't do anything and IsMemRef is
not longer set on them.

On ARM IsDataPrefetch or IsInstructionPreftech is now set on all prefetch
instructions. The timing simple CPU doesn't try to do anything special for
prefetches now and they execute with the normal memory code path.
2010-11-08 13:58:22 -06:00
Gabe Black 6f4bd2c1da ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
2010-10-31 00:07:20 -07:00
Ali Saidi aef4a9904e CPU/Cache: Fix some errors exposed by valgrind 2010-09-30 09:35:19 -05:00
Gabe Black 6833ca7eed Faults: Pass the StaticInst involved, if any, to a Fault's invoke method.
Also move the "Fault" reference counted pointer type into a separate file,
sim/fault.hh. It would be better to name this less similarly to sim/faults.hh
to reduce confusion, but fault.hh matches the name of the type. We could change
Fault to FaultPtr to match other pointer types, and then changing the name of
the file would make more sense.
2010-09-13 19:26:03 -07:00
Ali Saidi 546eaa6109 CPU: Print out traces for faluting inst when the flag ExecFaulting is set 2010-08-25 19:10:43 -05:00
Gabe Black 961aafc044 Merge with head. 2010-08-13 06:16:30 -07:00
Gabe Black aa8c6e9c95 CPU: Add readBytes and writeBytes functions to the exec contexts. 2010-08-13 06:16:02 -07:00
Joel Hestness 53c241fc16 TimingSimpleCPU: fix NO_ACCESS memory op handling
When a request is NO_ACCESS (x86 CDA microinstruction), the memory op
doesn't go to the cache, so TimingSimpleCPU::completeDataAccess needs
to handle the case where the current status of the CPU is Running
and not DcacheWaitResponse or DTBWaitResponse
2010-08-12 17:16:02 -07:00
Steve Reinhardt f066bfc2f5 cpu: get rid of uncached access "events"
These recordEvent() calls could cause crashes since they
access the req pointer after it's potentially been
deleted during a failed translation call.  (Similar
problem to the traceData bug fixed in the previous cset.)

Moving them above the translation call (as was done
recentlyi in cset 8b2b8e5e7d35) avoids the crash
but doesn't work, since at that point we don't know if
the access is uncached or not.

It's not clear why these calls are there, and no one
seems to use them, so we'll just delete them.  If they
are needed, they should be moved to somewhere that's
guaranteed to be after the translation completes but
before the request is possibly deleted, e.g., in
finishTranslation().
2010-03-23 08:50:59 -07:00
Steve Reinhardt 4d77ea7a57 cpu: fix exec tracing memory corruption bug
Accessing traceData (to call setAddress() and/or setData())
after initiating a timing translation was causing crashes,
since a failed translation could delete the traceData
object before returning.

It turns out that there was never a need to access traceData
after initiating the translation, as the traced data was
always available earlier; this ordering was merely
historical.  Furthermore, traceData->setAddress() and
traceData->setData() were being called both from the CPU
model and the ISA definition, often redundantly.

This patch standardizes all setAddress and setData calls
for memory instructions to be in the CPU models and not
in the ISA definition.  It also moves those calls above
the translation calls to eliminate the crashes.
2010-03-23 08:50:57 -07:00