Recent changes to functionalRead() in the memory system was not correct.
The change allowed for returning data from the first message found in
the buffers of the memory system. This is not correct since it is possible
that a timing message has data from an older state of the block.
The changes are being reverted.
This patch fixes the draining of the SimpleDRAM controller model. The
controller performs buffering of writes and normally there is no need
to ever empty the write buffer (if you have a fast on-chip memory,
then use it). The patch adds checks to ensure the write buffer is
drained when the controller is asked to do so.
This patch adds support to ruby so that the statistics maintained by ruby
are reset/dumped when the statistics for the rest of the system are
reset/dumped. For resetting the statistics, ruby now provides the
resetStats() function that a sim object can provide. As a consequence, the
clearStats() function has been removed from RubySystem. For dumping stats,
Ruby now adds a callback event to the dumpStatsQueue. The exit callback that
ruby used to add earlier is being removed.
Created by: Hamid Reza Khaleghzadeh.
Improved by: Lluc Alvarez, Nilay Vaish
Committed by: Nilay Vaish
This patch adds support for the following optional drain methods in
the classical memory system's cache model:
memWriteback() - Write back all dirty cache lines to memory using
functional accesses.
memInvalidate() - Invalidate all cache lines. Dirty cache lines
are lost unless a writeback is requested.
Since memWriteback() is called when checkpointing systems, this patch
adds support for checkpointing systems with caches. The serialization
code now checks whether there are any dirty lines in the cache. If
there are dirty lines in the cache, the checkpoint is flagged as bad
and a warning is printed.
This patch adds the following two methods to the Drainable base class:
memWriteback() - Write back all dirty cache lines to memory using
functional accesses.
memInvalidate() - Invalidate memory system buffers. Dirty data
won't be written back.
Specifying calling memWriteback() after draining will allow us to
checkpoint systems with caches. memInvalidate() can be used to drop
memory system buffers in preparation for switching to an accelerated
CPU model that bypasses the gem5 memory system (e.g., hardware
virtualized CPUs).
Note: This patch only adds the methods to Drainable, the code for
flushing the TLB and the cache is committed separately.
This changeset adds a SWIG interface for the Serializable class, which
fixes a warning when compiling the SWIG interface for the event
queue. Currently, the only method exported is the name() method.
There is no point in exporting the old drain() method in
Simulate.py. It should only be used internally by doDrain(). This
patch moves the old drain() method into doDrain() and renames
doDrain() to drain().
changeToAtomic and changeToTiming both do essentially the same thing,
they check the type of their input argument, drain the system, and
switch to the desired memory mode. This patch moves all of that code
to a separate method (changeMemoryMode) and calls that from both
changeToAtomic and changeToTiming.
This patch moves the draining interface from SimObject to a separate
class that can be used by any object needing draining. However,
objects not visible to the Python code (i.e., objects not deriving
from SimObject) still depend on their parents informing them when to
drain. This patch also gets rid of the CountedDrainEvent (which isn't
really an event) and replaces it with a DrainManager.
SWIG needs a complete declaration of all wrapped objects. This patch
adds a header file with the DerivO3CPU class and includes it in the
SWIG interface.
--HG--
rename : src/cpu/o3/cpu_builder.cc => src/cpu/o3/deriv.cc
In order to create reliable SWIG wrappers, we need to include the
declaration of the wrapped class in the SWIG file. Previously, we
didn't expose the declaration of checker CPUs. This patch adds header
files for such CPUs and include them in the SWIG wrapper.
--HG--
rename : src/cpu/dummy_checker_builder.cc => src/cpu/dummy_checker.cc
rename : src/cpu/o3/checker_builder.cc => src/cpu/o3/checker.cc
The Python wrappers and the C++ should have the same object
structure. If this is not the case, bad things will happen when the
SWIG wrappers cast between an object and any of its base classes. This
was not the case for NSGigE and Sinic devices. This patch makes NSGigE
and Sinic inherit from the new EtherDevBase class, which in turn
inherits from EtherDevice. As a bonus, this removes some duplicated
statistics from the Sinic device.
When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.
This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
Updated the util/m5/Makefile.arm so that m5op_arm.S is used to create
a static library - libm5.a. Allowing users to insert m5
psuedo-instructions into their applications for fine-grained
checkpointing, switching cpus or dumping statistics. e.g.
#include <m5op.h>
void foo(){
...
m5_reset_stats(<delay>,<period>)
m5_work_begin(<workid>,<threadid>);
...
m5_work_end(<workid>,<threadid>);
m5_dump_stats(<delay>,<period>);
}
This patch enables dumping statistics and Linux process information on
context switch boundaries (__switch_to() calls) that are used for
Streamline integration (a graphical statistics viewer from ARM).
This patch ensures cases like %0.6u, %06f, and %.6u are processed correctly.
The case like %06f is ambiguous and was made to match printf. Also, this patch
removes the goto statement in cprintf.cc in favor of a function call.
This patch adds a VncInput base class which VncServer inherits from.
Another class can implement the same interface and be used instead
of the VncServer, for example a class that replays Vnc traffic.
--HG--
rename : src/base/vnc/VncServer.py => src/base/vnc/Vnc.py
rename : src/base/vnc/vncserver.cc => src/base/vnc/vncinput.cc
rename : src/base/vnc/vncserver.hh => src/base/vnc/vncinput.hh
This patch takes the Linux thread info support scattered across
different ISA implementations (currently in ARM, ALPHA, and MIPS), and
unifies them into a single file.
Adds a few more helper functions to read out TGID, mm, etc.
ISA-specific information (e.g., ALPHA PCBB register) is now moved to
the corresponding isa_traits.hh files.
Changeset 4f54b0f229b5 removed the call to doDrain in changeToTiming
based on the assumption that the system does not need draining when
running in atomic mode. This is a false assumption since at least the
System class requires the system to be drained before it allows
switching of memory modes. This patch reverts that part of the
changeset.
This patch unified the L1 and L2 caches used throughout the
regressions instead of declaring different, but very similar,
configurations in the different scripts.
The patch also changes the default L2 configuration to match what it
used to be for the fs and se scripts (until the last patch that
updated the regressions to also make use of the cache config). The
MSHRs and targets per MSHR are now set to a more realistic default of
20 and 12, respectively.
As a result of both the aforementioned changes, many of the regression
stats are changed. A follow-on patch will bump the stats.
This patch updates the stats to reflect the change in the default
system clock from 1 THz to 1GHz. The changes are due to the DMA
devices now injecting requests at a lower pace.
This patch changes the default system clock from 1THz to 1GHz. This
clock is used by all modules that do not override the default (parent
clock), and primarily affects the IO subsystem. Every DMA device uses
its clock to schedule the next transfer, and the change will thus
cause this inter-transfer delay to be longer.
The default clock of the bus is removed, as the clock inherited from
the system provides exactly the same value.
A follow-on patch will bump the stats.
This patch bumps the stats to match the use of SimpleDRAM instead of
SimpleMemory in all inorder and O3 regressions, and also all
full-system regressions. A number of performance-related stats change,
and a whole bunch of stats are added for the memory controller.
This patch favours using SimpleDRAM with the default timing instead of
SimpleMemory for all regressions that involve the o3 or inorder CPU,
or are full system (in other words, where the actual performance of
the memory is important for the overall performance).
Moving forward, the solution for FSConfig and the users of fs.py and
se.py is probably something similar to what we use to choose the CPU
type. I envision a few pre-set configurations SimpleLPDDR2,
SimpleDDR3, etc that can be choosen by a dram_type option. Feedback on
this part is welcome.
This patch changes plenty stats and adds all the DRAM controller
related stats. A follow-on patch updates the relevant statistics. The
total run-time for the entire regression goes up with ~5% with this
patch due to the added complexity of the SimpleDRAM model. This is a
concious trade-off to ensure that the model is properly tested.
This patch uses the common L1, L2 and IOCache configuration for the
regressions that all share the same cache parameters. There are a few
regressions that use a slightly different configuration (memtest,
o3-timing=mp, simple-atomic-mp and simple-timing-mp), and the latter
are not changed in this patch. They will be updated in a future patch.
The common cache configurations are changed to match the ones used in
the regressions, and are slightly changed with respect to what they
were. Hopefully this means we can converge on a common base
configuration, used both in the normal user configurations and
regressions.
As only regressions that shared the same cache configuration are
updated, no regressions are affected.
This patch simplifies the scheduling of the next walk for the ARM
table walker. Previously it used the CPU clock, but as the table
walker inherits the clock from the CPU, it is cleaner to simply use
its own clock (which is the same).
This patch removes the zero-time loop used to send items from the DMA
port transmit list. Instead of having a loop, the DMA port now uses an
event to schedule sending of a single packet.
Ultimately this patch serves to ease the transition to a blocking
4-phase handshake.
A follow-on patch will update the regression statistics.
I had forgotten to change the network test protocol while making changes to
ruby for supporting functional accesses. This patch updates the protocol so
that it can compile correctly.