With the SE/FS merge, interrupt controller is created irrespective of the
mode. This patch creates the interrupt controller when Ruby is used and
connects its ports.
Making the CheckerCPU a runtime time option requires the code to be compatible
with ISAs other than ARM. This patch adds the appropriate function
stubs to allow compilation.
Enables the CheckerCPU to be selected at runtime with the --checker option
from the configs/example/fs.py and configs/example/se.py configuration
files. Also merges with the SE/FS changes.
The change to port proxies recently moved code out of the constructor into
initState(). This is needed for code that loads data into memory, however
for code that setups symbol tables, kernel based events, etc this is the wrong
thing to do as that code is only called when a checkpoint isn't being restored
from.
1. --implicit-cache behavior is default.
2. makeEnv in src/SConscript is conditionally called.
3. decider set to MD5-timestamp
4. NO_HTML build option changed to SLICC_HTML (defaults to False)
Changeset 8868 slightly changes the statistics for the parser and
bzip2 regressions for ARM o3-timing. This patch merely updates the
statistics to reflect these changes.
Got rid of gratuitous M5 reference in the function name.
In the process, wondered why we have this function at all and
spent time trying to get rid of it and eventually firgured out
why it's needed. Put the answer in a comment so we don't have
to wonder again.
This patch adds a creation-time check to the CPU to ensure that the
interrupt controller is created for the cases where it is needed,
i.e. if the CPU is not being switched in later and not a checker CPU.
The patch also adds the "createInterruptController" call to a number
of the regression scripts.
This patch renames the sendTiming member function in the RubyPort to
avoid inadvertently hiding Port::sendTiming (discovered through some
rather painful debugging). The RubyPort does, in fact, rely on the
functionality of the queued port and the implementation merely
schedules a send the next cycle. The new name for the member function
is sendNextCycle to better reflect this behaviour.
In the unlikely event that we ever shift to using C++11 the member
functions in Port should have a "final" identifier to prevent any
overriding in derived classes.
This change implements a PL031 real time clock.
--HG--
rename : src/dev/arm/timer_sp804.cc => src/dev/arm/rtc_pl031.cc
rename : src/dev/arm/timer_sp804.hh => src/dev/arm/rtc_pl031.hh
New kernels attempt to read CP14 what debug architecture is available.
These changes add the debug registers and return that none is currently
available.
The block is never inserted because it's the one extra block in the cache, but
it can be invalidated twice in a row. In that case the block doesn't have a
new master id (beacuse it was never inserted), however it is valid and
the accounting goes wrong at that point.
With the recent series of patches, the symbol table loading moved from
"construct" time to "init" time, but the kernel function event
callback registration was left behind. This patch moves it to the
proper location.
Add extra declarations to allow the compiler to pick up the right function.
Please note that these declarations have been added as part of the
clang-related changes.
This patch adds a function to X86 tlb that returns the
walker port. This port is required for correctly connecting
the walker ports for the cpu just switched in
This is a trivial patch that merely makes all the member functions of
the port proxies const. There is no good reason why they should not
be, and this change only serves to make it explicit that they are not
modified through their use.
This patch fixes a compilation error that occurs with gcc >= 4.6.1,
caused by swig not including cstddef and not using the std:: namespace
prefix for ptrdiff_t. There is an old patch,
http://reviews.m5sim.org/r/913/ that no longer applies cleanly and
this might be re-iterating the same issue.
We work around the problem by always enforcing the inclusion of
cstddef in all swig interface declarations, and also by explicitly
using std::ptrdiff_t.
If an instruction is executed speculatively and hits a situation where it
wants to panic, it should return a fault instead. If the instruction was
misspeculated, the fault can be thrown away. If the instruction wasn't
misspeculated, the fault will be invoked and the panic will still happen.
This patch splits the two cache ports into a master (memory-side) and
slave (cpu-side) subclass of port with slightly different
functionality. For example, it is only the CPU-side port that blocks
incoming requests, and only the memory-side port that schedules send
events outside of what the transmit list dictates.
This patch simplifies the two classes by relying further on
SimpleTimingPort and also generalises the latter to better accommodate
the changes (introducing trySendTiming and scheduleSend). The
memory-side cache port overrides sendDeferredPacket to be able to not
only send responses from the transmit list, but also send requests
based on the MSHRs.
A follow on patch further simplifies the SimpleTimingPort and the
cache ports.
This patch simplifies the mport in preparation for a split into a
master and slave role for the message ports. In particular,
sendMessageAtomic was only used in a single location and similarly so
sendMessageTiming. The affected interrupt device is updated
accordingly.
This patch simplfies the master ports used by RubyDirectedTester and
RubyTester by avoiding the use of SimpleTimingPort. Neither tester
made any use of the functionality offered by SimpleTimingPort besides
a trivial implementation of recvFunctional (only snoops) and
recvRangeChange (not relevant since there is only one master).
The patch does not change or add any functionality, it merely makes
the introduction of a master/slave port easier (in a future patch).
This patch moves the readBlob/writeBlob/memsetBlob from the Port class
to the PortProxy class, thus making a clear separation of the basic
port functionality (recv/send functional/atomic/timing), and the
higher-level functional accessors available on the port proxies.
There are only a few places in the code base where the blob functions
were used on ports, and they are all for peeking into the memory
system without making a normal memory access (in the memtest, and the
malta and tsunami pchip). The memtest also exemplifies how easy it is
to create a non-translating proxy if desired. The malta and tsunami
pchip used a slave port to perform a functional read, and this is now
changed to rely on the physProxy of the system (to which they already
have a pointer).
This patch is adding a clearer design intent to all objects that would
not be complete without a port proxy by making the proxies members
rathen than dynamically allocated. In essence, if NULL would not be a
valid value for the proxy, then we avoid using a pointer to make this
clear.
The same approach is used for the methods using these proxies, such as
loadSections, that now use references rather than pointers to better
reflect the fact that NULL would not be an acceptable value (in fact
the code would break and that is how this patch started out).
Overall the concept of "using a reference to express unconditional
composition where a NULL pointer is never valid" could be done on a
much broader scale throughout the code base, but for now it is only
done in the locations affected by the proxies.
This patch moves all port creation from the getPort method to be
consistently done in the MemObject's constructor. This is possible
thanks to the Swig interface passing the length of the vector ports.
Previously there was a mix of: 1) creating the ports as members (at
object construction time) and using getPort for the name resolution,
or 2) dynamically creating the ports in the getPort call. This is now
uniform. Furthermore, objects that would not be complete without a
port have these ports as members rather than having pointers to
dynamically allocated ports.
This patch also enables an elaboration-time enumeration of all the
ports in the system which can be used to determine the masterId.
This patch continues the unification of how the different CPU models
create and share their instruction and data ports. Most importantly,
it forces every CPU to have an instruction and a data port, and gives
these ports explicit getters in the BaseCPU (getDataPort and
getInstPort). The patch helps in simplifying the code, make
assumptions more explicit, andfurther ease future patches related to
the CPU ports.
The biggest changes are in the in-order model (that was not modified
in the previous unification patch), which now moves the ports from the
CacheUnit to the CPU. It also distinguishes the instruction fetch and
load-store unit from the rest of the resources, and avoids the use of
indices and casting in favour of keeping track of these two units
explicitly (since they are always there anyways). The atomic, timing
and O3 model simply return references to their already existing ports.