MEM: Simplify cache ports preparing for master/slave split

This patch splits the two cache ports into a master (memory-side) and
slave (cpu-side) subclass of port with slightly different
functionality. For example, it is only the CPU-side port that blocks
incoming requests, and only the memory-side port that schedules send
events outside of what the transmit list dictates.

This patch simplifies the two classes by relying further on
SimpleTimingPort and also generalises the latter to better accommodate
the changes (introducing trySendTiming and scheduleSend). The
memory-side cache port overrides sendDeferredPacket to be able to not
only send responses from the transmit list, but also send requests
based on the MSHRs.

A follow on patch further simplifies the SimpleTimingPort and the
cache ports.
This commit is contained in:
Andreas Hansson 2012-02-24 11:52:49 -05:00
parent 77878d0a87
commit 0cd0a8fdd3
6 changed files with 323 additions and 261 deletions

76
src/mem/cache/base.cc vendored
View file

@ -1,4 +1,16 @@
/*
* Copyright (c) 2012 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
@ -42,13 +54,20 @@
using namespace std;
BaseCache::CachePort::CachePort(const std::string &_name, BaseCache *_cache,
const std::string &_label)
: SimpleTimingPort(_name, _cache), cache(_cache),
label(_label), blocked(false), mustSendRetry(false)
BaseCache::CacheMasterPort::CacheMasterPort(const std::string &_name,
BaseCache *_cache,
const std::string &_label)
: SimpleTimingPort(_name, _cache, _label)
{
}
BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
BaseCache *_cache,
const std::string &_label)
: SimpleTimingPort(_name, _cache, _label), blocked(false),
mustSendRetry(false), sendRetryEvent(this)
{
}
BaseCache::BaseCache(const Params *p)
: MemObject(p),
@ -69,56 +88,25 @@ BaseCache::BaseCache(const Params *p)
{
}
bool
BaseCache::CachePort::checkFunctional(PacketPtr pkt)
{
pkt->pushLabel(label);
bool done = SimpleTimingPort::checkFunctional(pkt);
pkt->popLabel();
return done;
}
unsigned
BaseCache::CachePort::deviceBlockSize() const
{
return cache->getBlockSize();
}
bool
BaseCache::CachePort::recvRetryCommon()
{
assert(waitingOnRetry);
waitingOnRetry = false;
return false;
}
void
BaseCache::CachePort::setBlocked()
BaseCache::CacheSlavePort::setBlocked()
{
assert(!blocked);
DPRINTF(Cache, "Cache Blocking\n");
DPRINTF(CachePort, "Cache port %s blocking new requests\n", name());
blocked = true;
//Clear the retry flag
mustSendRetry = false;
}
void
BaseCache::CachePort::clearBlocked()
BaseCache::CacheSlavePort::clearBlocked()
{
assert(blocked);
DPRINTF(Cache, "Cache Unblocking\n");
DPRINTF(CachePort, "Cache port %s accepting new requests\n", name());
blocked = false;
if (mustSendRetry)
{
DPRINTF(Cache, "Cache Sending Retry\n");
if (mustSendRetry) {
DPRINTF(CachePort, "Cache port %s sending retry\n", name());
mustSendRetry = false;
SendRetryEvent *ev = new SendRetryEvent(this, true);
// @TODO: need to find a better time (next bus cycle?)
cache->schedule(ev, curTick() + 1);
owner->schedule(sendRetryEvent, curTick() + 1);
}
}
@ -126,8 +114,8 @@ BaseCache::CachePort::clearBlocked()
void
BaseCache::init()
{
if (!cpuSidePort || !memSidePort)
panic("Cache not hooked up on both sides\n");
if (!cpuSidePort->isConnected() || !memSidePort->isConnected())
panic("Cache %s not hooked up on both sides\n", name());
cpuSidePort->sendRangeChange();
}

110
src/mem/cache/base.hh vendored
View file

@ -1,4 +1,16 @@
/*
* Copyright (c) 2012 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
@ -97,50 +109,88 @@ class BaseCache : public MemObject
protected:
class CachePort : public SimpleTimingPort
/**
* A cache master port is used for the memory-side port of the
* cache, and in addition to the basic timing port that only sends
* response packets through a transmit list, it also offers the
* ability to schedule and send request packets (requests &
* writebacks). The send event is scheduled through requestBus,
* and the sendDeferredPacket of the timing port is modified to
* consider both the transmit list and the requests from the MSHR.
*/
class CacheMasterPort : public SimpleTimingPort
{
public:
BaseCache *cache;
protected:
CachePort(const std::string &_name, BaseCache *_cache,
const std::string &_label);
virtual unsigned deviceBlockSize() const;
bool recvRetryCommon();
typedef EventWrapper<Port, &Port::sendRetry>
SendRetryEvent;
const std::string label;
public:
void setBlocked();
void clearBlocked();
bool checkFunctional(PacketPtr pkt);
bool blocked;
bool mustSendRetry;
/**
* Schedule a send of a request packet (from the MSHR). Note
* that we could already have a retry or a transmit list of
* responses outstanding.
*/
void requestBus(RequestCause cause, Tick time)
{
DPRINTF(CachePort, "Asserting bus request for cause %d\n", cause);
if (!waitingOnRetry) {
schedSendEvent(time);
}
schedSendEvent(time);
}
void respond(PacketPtr pkt, Tick time) {
schedSendTiming(pkt, time);
}
protected:
CacheMasterPort(const std::string &_name, BaseCache *_cache,
const std::string &_label);
/**
* Memory-side port always snoops.
*
* return always true
*/
virtual bool isSnooping() { return true; }
};
CachePort *cpuSidePort;
CachePort *memSidePort;
/**
* A cache slave port is used for the CPU-side port of the cache,
* and it is basically a simple timing port that uses a transmit
* list for responses to the CPU (or connected master). In
* addition, it has the functionality to block the port for
* incoming requests. If blocked, the port will issue a retry once
* unblocked.
*/
class CacheSlavePort : public SimpleTimingPort
{
public:
/** Do not accept any new requests. */
void setBlocked();
/** Return to normal operation and accept new requests. */
void clearBlocked();
void respond(PacketPtr pkt, Tick time) {
schedSendTiming(pkt, time);
}
protected:
CacheSlavePort(const std::string &_name, BaseCache *_cache,
const std::string &_label);
bool blocked;
bool mustSendRetry;
private:
EventWrapper<Port, &Port::sendRetry> sendRetryEvent;
};
CacheSlavePort *cpuSidePort;
CacheMasterPort *memSidePort;
protected:

View file

@ -41,6 +41,7 @@
* Dave Greene
* Steve Reinhardt
* Ron Dreslinski
* Andreas Hansson
*/
/**
@ -76,59 +77,68 @@ class Cache : public BaseCache
protected:
class CpuSidePort : public CachePort
/**
* The CPU-side port extends the base cache slave port with access
* functions for functional, atomic and timing requests.
*/
class CpuSidePort : public CacheSlavePort
{
public:
CpuSidePort(const std::string &_name,
Cache<TagStore> *_cache,
const std::string &_label);
private:
// BaseCache::CachePort just has a BaseCache *; this function
// lets us get back the type info we lost when we stored the
// cache pointer there.
Cache<TagStore> *myCache() {
return static_cast<Cache<TagStore> *>(cache);
}
// a pointer to our specific cache implementation
Cache<TagStore> *cache;
protected:
virtual bool recvTiming(PacketPtr pkt);
virtual Tick recvAtomic(PacketPtr pkt);
virtual void recvFunctional(PacketPtr pkt);
virtual unsigned deviceBlockSize() const
{ return cache->getBlockSize(); }
virtual AddrRangeList getAddrRanges();
virtual bool recvTiming(PacketPtr pkt);
virtual Tick recvAtomic(PacketPtr pkt);
virtual void recvFunctional(PacketPtr pkt);
};
class MemSidePort : public CachePort
{
public:
MemSidePort(const std::string &_name,
Cache<TagStore> *_cache,
CpuSidePort(const std::string &_name, Cache<TagStore> *_cache,
const std::string &_label);
// BaseCache::CachePort just has a BaseCache *; this function
// lets us get back the type info we lost when we stored the
// cache pointer there.
Cache<TagStore> *myCache() {
return static_cast<Cache<TagStore> *>(cache);
}
};
void sendPacket();
/**
* The memory-side port extends the base cache master port with
* access functions for functional, atomic and timing snoops.
*/
class MemSidePort : public CacheMasterPort
{
private:
void processSendEvent();
// a pointer to our specific cache implementation
Cache<TagStore> *cache;
virtual bool isSnooping();
protected:
virtual bool recvTiming(PacketPtr pkt);
virtual void recvRetry();
virtual Tick recvAtomic(PacketPtr pkt);
virtual void recvFunctional(PacketPtr pkt);
typedef EventWrapper<MemSidePort, &MemSidePort::processSendEvent>
SendEvent;
virtual unsigned deviceBlockSize() const
{ return cache->getBlockSize(); }
public:
MemSidePort(const std::string &_name, Cache<TagStore> *_cache,
const std::string &_label);
/**
* Overload sendDeferredPacket of SimpleTimingPort.
*/
virtual void sendDeferredPacket();
};
/** Tag and data Storage */

View file

@ -95,7 +95,7 @@ template<class TagStore>
Port *
Cache<TagStore>::getPort(const std::string &if_name, int idx)
{
if (if_name == "" || if_name == "cpu_side") {
if (if_name == "cpu_side") {
return cpuSidePort;
} else if (if_name == "mem_side") {
return memSidePort;
@ -1553,17 +1553,13 @@ Cache<TagStore>::nextMSHRReadyTime()
template<class TagStore>
AddrRangeList
Cache<TagStore>::CpuSidePort::
getAddrRanges()
Cache<TagStore>::CpuSidePort::getAddrRanges()
{
// CPU side port doesn't snoop; it's a target only. It can
// potentially respond to any address.
AddrRangeList ranges;
ranges.push_back(myCache()->getAddrRange());
ranges.push_back(cache->getAddrRange());
return ranges;
}
template<class TagStore>
bool
Cache<TagStore>::CpuSidePort::recvTiming(PacketPtr pkt)
@ -1575,32 +1571,33 @@ Cache<TagStore>::CpuSidePort::recvTiming(PacketPtr pkt)
return false;
}
myCache()->timingAccess(pkt);
cache->timingAccess(pkt);
return true;
}
template<class TagStore>
Tick
Cache<TagStore>::CpuSidePort::recvAtomic(PacketPtr pkt)
{
return myCache()->atomicAccess(pkt);
assert(pkt->isRequest());
// atomic request
return cache->atomicAccess(pkt);
}
template<class TagStore>
void
Cache<TagStore>::CpuSidePort::recvFunctional(PacketPtr pkt)
{
myCache()->functionalAccess(pkt, true);
assert(pkt->isRequest());
// functional request
cache->functionalAccess(pkt, true);
}
template<class TagStore>
Cache<TagStore>::
CpuSidePort::CpuSidePort(const std::string &_name, Cache<TagStore> *_cache,
const std::string &_label)
: BaseCache::CachePort(_name, _cache, _label)
: BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
{
}
@ -1610,17 +1607,6 @@ CpuSidePort::CpuSidePort(const std::string &_name, Cache<TagStore> *_cache,
//
///////////////
template<class TagStore>
bool
Cache<TagStore>::MemSidePort::isSnooping()
{
// Memory-side port always snoops, but never passes requests
// through to targets on the cpu side (so we don't add anything to
// the address range list).
return true;
}
template<class TagStore>
bool
Cache<TagStore>::MemSidePort::recvTiming(PacketPtr pkt)
@ -1631,60 +1617,45 @@ Cache<TagStore>::MemSidePort::recvTiming(PacketPtr pkt)
if (pkt->wasNacked())
panic("Need to implement cache resending nacked packets!\n");
if (pkt->isRequest() && blocked) {
DPRINTF(Cache,"Scheduling a retry while blocked\n");
mustSendRetry = true;
return false;
}
if (pkt->isResponse()) {
myCache()->handleResponse(pkt);
cache->handleResponse(pkt);
} else {
myCache()->snoopTiming(pkt);
cache->snoopTiming(pkt);
}
return true;
}
template<class TagStore>
Tick
Cache<TagStore>::MemSidePort::recvAtomic(PacketPtr pkt)
{
// in atomic mode, responses go back to the sender via the
// function return from sendAtomic(), not via a separate
// sendAtomic() from the responder. Thus we should never see a
// response packet in recvAtomic() (anywhere, not just here).
assert(!pkt->isResponse());
return myCache()->snoopAtomic(pkt);
assert(pkt->isRequest());
// atomic snoop
return cache->snoopAtomic(pkt);
}
template<class TagStore>
void
Cache<TagStore>::MemSidePort::recvFunctional(PacketPtr pkt)
{
myCache()->functionalAccess(pkt, false);
assert(pkt->isRequest());
// functional snoop (note that in contrast to atomic we don't have
// a specific functionalSnoop method, as they have the same
// behaviour regardless)
cache->functionalAccess(pkt, false);
}
template<class TagStore>
void
Cache<TagStore>::MemSidePort::sendPacket()
Cache<TagStore>::MemSidePort::sendDeferredPacket()
{
// if we have responses that are ready, they take precedence
// if we have a response packet waiting we have to start with that
if (deferredPacketReady()) {
bool success = sendTiming(transmitList.front().pkt);
if (success) {
//send successful, remove packet
transmitList.pop_front();
}
waitingOnRetry = !success;
// use the normal approach from the timing port
trySendTiming();
} else {
// check for non-response packets (requests & writebacks)
PacketPtr pkt = myCache()->getTimingPacket();
// check for request packets (requests & writebacks)
PacketPtr pkt = cache->getTimingPacket();
if (pkt == NULL) {
// can happen if e.g. we attempt a writeback and fail, but
// before the retry, the writeback is eliminated because
@ -1693,65 +1664,39 @@ Cache<TagStore>::MemSidePort::sendPacket()
} else {
MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
bool success = sendTiming(pkt);
waitingOnRetry = !sendTiming(pkt);
waitingOnRetry = !success;
if (waitingOnRetry) {
DPRINTF(CachePort, "now waiting on a retry\n");
if (!mshr->isForwardNoResponse()) {
// we are awaiting a retry, but we
// delete the packet and will be creating a new packet
// when we get the opportunity
delete pkt;
}
// note that we have now masked any requestBus and
// schedSendEvent (we will wait for a retry before
// doing anything), and this is so even if we do not
// care about this packet and might override it before
// it gets retried
} else {
myCache()->markInService(mshr, pkt);
cache->markInService(mshr, pkt);
}
}
}
// tried to send packet... if it was successful (no retry), see if
// we need to rerequest bus or not
// if we succeeded and are not waiting for a retry, schedule the
// next send, not only looking at the response transmit list, but
// also considering when the next MSHR is ready
if (!waitingOnRetry) {
Tick nextReady = std::min(deferredPacketReadyTime(),
myCache()->nextMSHRReadyTime());
// @TODO: need to facotr in prefetch requests here somehow
if (nextReady != MaxTick) {
DPRINTF(CachePort, "more packets to send @ %d\n", nextReady);
cache->schedule(sendEvent, std::max(nextReady, curTick() + 1));
} else {
// no more to send right now: if we're draining, we may be done
if (drainEvent && !sendEvent->scheduled()) {
drainEvent->process();
drainEvent = NULL;
}
}
scheduleSend(cache->nextMSHRReadyTime());
}
}
template<class TagStore>
void
Cache<TagStore>::MemSidePort::recvRetry()
{
assert(waitingOnRetry);
sendPacket();
}
template<class TagStore>
void
Cache<TagStore>::MemSidePort::processSendEvent()
{
assert(!waitingOnRetry);
sendPacket();
}
template<class TagStore>
Cache<TagStore>::
MemSidePort::MemSidePort(const std::string &_name, Cache<TagStore> *_cache,
const std::string &_label)
: BaseCache::CachePort(_name, _cache, _label)
: BaseCache::CacheMasterPort(_name, _cache, _label), cache(_cache)
{
// override default send event from SimpleTimingPort
delete sendEvent;
sendEvent = new SendEvent(this);
}

View file

@ -1,4 +1,16 @@
/*
* Copyright (c) 2012 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
@ -26,6 +38,7 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Andreas Hansson
*/
#include "debug/Bus.hh"
@ -34,35 +47,36 @@
using namespace std;
SimpleTimingPort::SimpleTimingPort(string pname, MemObject *_owner)
: Port(pname, _owner), sendEvent(NULL), drainEvent(NULL),
SimpleTimingPort::SimpleTimingPort(const string &_name, MemObject *_owner,
const string _label)
: Port(_name, _owner), label(_label), sendEvent(this), drainEvent(NULL),
waitingOnRetry(false)
{
sendEvent = new EventWrapper<SimpleTimingPort,
&SimpleTimingPort::processSendEvent>(this);
}
SimpleTimingPort::~SimpleTimingPort()
{
delete sendEvent;
}
bool
SimpleTimingPort::checkFunctional(PacketPtr pkt)
{
pkt->pushLabel(label);
DeferredPacketIterator i = transmitList.begin();
DeferredPacketIterator end = transmitList.end();
bool found = false;
for (; i != end; ++i) {
PacketPtr target = i->pkt;
// If the target contains data, and it overlaps the
// probed request, need to update data
if (pkt->checkFunctional(target)) {
return true;
}
while (!found && i != end) {
// If the buffered packet contains data, and it overlaps the
// current packet, then update data
found = pkt->checkFunctional(i->pkt);
++i;
}
return false;
pkt->popLabel();
return found;
}
void
@ -108,15 +122,17 @@ SimpleTimingPort::recvTiming(PacketPtr pkt)
void
SimpleTimingPort::schedSendEvent(Tick when)
{
// if we are waiting on a retry, do not schedule a send event, and
// instead rely on retry being called
if (waitingOnRetry) {
assert(!sendEvent->scheduled());
assert(!sendEvent.scheduled());
return;
}
if (!sendEvent->scheduled()) {
owner->schedule(sendEvent, when);
} else if (sendEvent->when() > when) {
owner->reschedule(sendEvent, when);
if (!sendEvent.scheduled()) {
owner->schedule(&sendEvent, when);
} else if (sendEvent.when() > when) {
owner->reschedule(&sendEvent, when);
}
}
@ -153,40 +169,55 @@ SimpleTimingPort::schedSendTiming(PacketPtr pkt, Tick when)
assert(false); // should never get here
}
void SimpleTimingPort::trySendTiming()
{
assert(deferredPacketReady());
// take the next packet off the list here, as we might return to
// ourselves through the sendTiming call below
DeferredPacket dp = transmitList.front();
transmitList.pop_front();
// attempt to send the packet and remember the outcome
waitingOnRetry = !sendTiming(dp.pkt);
if (waitingOnRetry) {
// put the packet back at the front of the list (packet should
// not have changed since it wasn't accepted)
assert(!sendEvent.scheduled());
transmitList.push_front(dp);
}
}
void
SimpleTimingPort::scheduleSend(Tick time)
{
// the next ready time is either determined by the next deferred packet,
// or in the cache through the MSHR ready time
Tick nextReady = std::min(deferredPacketReadyTime(), time);
if (nextReady != MaxTick) {
// if the sendTiming caused someone else to call our
// recvTiming we could already have an event scheduled, check
if (!sendEvent.scheduled())
owner->schedule(&sendEvent, std::max(nextReady, curTick() + 1));
} else {
// no more to send, so if we're draining, we may be done
if (drainEvent && !sendEvent.scheduled()) {
drainEvent->process();
drainEvent = NULL;
}
}
}
void
SimpleTimingPort::sendDeferredPacket()
{
assert(deferredPacketReady());
// take packet off list here; if recvTiming() on the other side
// calls sendTiming() back on us (like SimpleTimingCpu does), then
// we get confused by having a non-active packet on transmitList
DeferredPacket dp = transmitList.front();
transmitList.pop_front();
bool success = sendTiming(dp.pkt);
// try to send what is on the list
trySendTiming();
if (success) {
if (!transmitList.empty() && !sendEvent->scheduled()) {
Tick time = transmitList.front().tick;
owner->schedule(sendEvent, time <= curTick() ? curTick()+1 : time);
}
if (transmitList.empty() && drainEvent && !sendEvent->scheduled()) {
drainEvent->process();
drainEvent = NULL;
}
} else {
// Unsuccessful, need to put back on transmitList. Callee
// should not have messed with it (since it didn't accept that
// packet), so we can just push it back on the front.
assert(!sendEvent->scheduled());
transmitList.push_front(dp);
}
waitingOnRetry = !success;
if (waitingOnRetry) {
DPRINTF(Bus, "Send failed, waiting on retry\n");
// if we succeeded and are not waiting for a retry, schedule the
// next send
if (!waitingOnRetry) {
scheduleSend();
}
}
@ -195,6 +226,9 @@ void
SimpleTimingPort::recvRetry()
{
DPRINTF(Bus, "Received retry\n");
// note that in the cache we get a retry even though we may not
// have a packet to retry (we could potentially decide on a new
// packet every time we retry)
assert(waitingOnRetry);
sendDeferredPacket();
}
@ -211,7 +245,7 @@ SimpleTimingPort::processSendEvent()
unsigned int
SimpleTimingPort::drain(Event *de)
{
if (transmitList.size() == 0 && !sendEvent->scheduled())
if (transmitList.empty() && !sendEvent.scheduled())
return 0;
drainEvent = de;
return 1;

View file

@ -1,4 +1,16 @@
/*
* Copyright (c) 2012 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
@ -26,6 +38,7 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Andreas Hansson
*/
#ifndef __MEM_TPORT_HH__
@ -76,6 +89,9 @@ class SimpleTimingPort : public Port
* serviced yet. */
DeferredPacketList transmitList;
/** Label to use for print request packets label stack. */
const std::string label;
/** This function attempts to send deferred packets. Scheduled to
* be called in the future via SendEvent. */
void processSendEvent();
@ -86,7 +102,8 @@ class SimpleTimingPort : public Port
* When the event time expires it attempts to send the packet.
* If it cannot, the packet sent when recvRetry() is called.
**/
Event *sendEvent;
EventWrapper<SimpleTimingPort,
&SimpleTimingPort::processSendEvent> sendEvent;
/** If we need to drain, keep the drain event around until we're done
* here.*/
@ -95,10 +112,6 @@ class SimpleTimingPort : public Port
/** Remember whether we're awaiting a retry from the bus. */
bool waitingOnRetry;
/** Check the list of buffered packets against the supplied
* functional request. */
bool checkFunctional(PacketPtr funcPkt);
/** Check whether we have a packet ready to go on the transmit list. */
bool deferredPacketReady()
{ return !transmitList.empty() && transmitList.front().tick <= curTick(); }
@ -126,7 +139,24 @@ class SimpleTimingPort : public Port
* non-empty and that the head packet is scheduled for curTick() (or
* earlier).
*/
void sendDeferredPacket();
virtual void sendDeferredPacket();
/**
* Attempt to send the packet at the front of the transmit list,
* and set waitingOnRetry accordingly. The packet is temporarily
* taken off the list, but put back at the front if not
* successfully sent.
*/
void trySendTiming();
/**
* Based on the transmit list, or the provided time, schedule a
* send event if there are packets to send. If we are idle and
* asked to drain then do so.
*
* @param time an alternative time for the next send event
*/
void scheduleSend(Tick time = MaxTick);
/** This function is notification that the device should attempt to send a
* packet again. */
@ -149,9 +179,14 @@ class SimpleTimingPort : public Port
public:
SimpleTimingPort(std::string pname, MemObject *_owner);
SimpleTimingPort(const std::string &_name, MemObject *_owner,
const std::string _label = "SimpleTimingPort");
~SimpleTimingPort();
/** Check the list of buffered packets against the supplied
* functional request. */
bool checkFunctional(PacketPtr pkt);
/** Hook for draining timing accesses from the system. The
* associated SimObject's drain() functions should be implemented
* something like this when this class is used: