Commit graph

93 commits

Author SHA1 Message Date
Rekai Gonzalez-Alberquilla ad296b068c cpu: Fix the O3 CPU Drain
The drain did not wait until stages were ready again. Therefore, as a
result of messages in the TimeBuffer being drain, the state after the
drain was not consistent and asserts fired in some places when the
draining happened after a stage got blocked, but before the notification
arrived to the previous stages.

Change-Id: Ib50b3b40b7f745b62c1eba2931dec76860824c71
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
2016-09-22 10:49:10 +01:00
Radhika Jagtap eb19fc2976 probe: Add probe in Fetch, IEW, Rename and Commit
This patch adds probe points in Fetch, IEW, Rename and Commit stages as follows.

A probe point is added in the Fetch stage for probing when a fetch request is
sent. Notify is fired on the probe point when a request is sent succesfully in
the first attempt as well as on a retry attempt.

Probe points are added in the IEW stage when an instruction begins to execute
and when execution is complete. This points can be used for monitoring the
execution time of an instruction.

Probe points are added in the Rename stage to probe renaming of source and
destination registers and when there is squashing. These probe points can be
used to track register dependencies and remove when there is squashing.

A probe point for squashing is added in Commit to probe squashed instructions.
2015-12-07 16:42:15 -06:00
Nilay Vaish 1d268a1f2d o3: drop unused statistic wbPenalized and wbPenalizedRate 2015-11-16 04:57:52 -06:00
Hongil Yoon fb0f9884e2 cpu, o3: consider split requests for LSQ checksnoop operations
This patch enables instructions in LSQ to track two physical addresses for
corresponding two split requests. Later, the information is used in
checksnoop() to search for/invalidate the corresponding LD instructions.

The current implementation has kept track of only the physical address that is
referenced by the first split request. Thus, for checksnoop(), the line
accessed by the second request has not been considered, causing potential
correctness issues.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2015-09-15 08:14:06 -05:00
Andreas Sandberg 48281375ee mem, cpu: Add a separate flag for strictly ordered memory
The Request::UNCACHEABLE flag currently has two different
functions. The first, and obvious, function is to prevent the memory
system from caching data in the request. The second function is to
prevent reordering and speculation in CPU models.

This changeset gives the order/speculation requirement a separate flag
(Request::STRICT_ORDER). This flag prevents CPU models from doing the
following optimizations:

    * Speculation: CPU models are not allowed to issue speculative
      loads.

    * Write combining: CPU models and caches are not allowed to merge
      writes to the same cache line.

Note: The memory system may still reorder accesses unless the
UNCACHEABLE flag is set. It is therefore expected that the
STRICT_ORDER flag is combined with the UNCACHEABLE flag to prevent
this behavior.
2015-05-05 03:22:33 -04:00
Nilay Vaish 5003ed5f7a cpu: o3: Remove unused code in iew, add assert instead. 2015-03-09 09:39:08 -05:00
Mitch Hayenga 6847bbf7ce cpu: Add drain check functionality to IEW
IEW did not check the instQueue and memDepUnit to ensure
they were drained.  This caused issues when drainSanityCheck()
did check those structures after asserting IEW was drained.
2014-10-29 23:18:26 -05:00
Mitch Hayenga 4f13f676aa cpu: Fix cache blocked load behavior in o3 cpu
This patch fixes the load blocked/replay mechanism in the o3 cpu.  Rather than
flushing the entire pipeline, this patch replays loads once the cache becomes
unblocked.

Additionally, deferred memory instructions (loads which had conflicting stores),
when replayed would not respect the number of functional units (only respected
issue width).  This patch also corrects that.

Improvements over 20% have been observed on a microbenchmark designed to
exercise this behavior.
2014-09-03 07:42:39 -04:00
Mitch Hayenga 1716749c8c cpu: Fix o3 front-end pipeline interlock behavior
The o3 pipeline interlock/stall logic is incorrect.  o3 unnecessicarily stalled
fetch and decode due to later stages in the pipeline.  In general, a stage
should usually only consider if it is stalled by the adjacent, downstream stage.
Forcing stalls due to later stages creates and results in bubbles in the
pipeline.  Additionally, o3 stalled the entire frontend (fetch, decode, rename)
on a branch mispredict while the ROB is being serially walked to update the
RAT (robSquashing). Only should have stalled at rename.
2014-09-03 07:42:34 -04:00
Mitch Hayenga 976f27487b cpu: Change writeback modeling for outstanding instructions
As highlighed on the mailing list gem5's writeback modeling can impact
performance.  This patch removes the limitation on maximum outstanding issued
instructions, however the number that can writeback in a single cycle is still
respected in instToCommit().
2014-09-03 07:42:33 -04:00
Binh Pham b72c879868 o3: make dispatch LSQ full check more selective
Dispatch should not check LSQ size/LSQ stall for non load/store
instructions.

This work was done while Binh was an intern at AMD Research.
2014-06-21 10:26:55 -07:00
Binh Pham 0782d92286 o3: split load & store queue full cases in rename
Check for free entries in Load Queue and Store Queue separately to
avoid cases when load cannot be renamed due to full Store Queue and
vice versa.

This work was done while Binh was an intern at AMD Research.
2014-06-21 10:26:43 -07:00
Steve Reinhardt 0be64ffe2f style: eliminate equality tests with true and false
Using '== true' in a boolean expression is totally redundant,
and using '== false' is pretty verbose (and arguably less
readable in most cases) compared to '!'.

It's somewhat of a pet peeve, perhaps, but I had some time
waiting for some tests to run and decided to clean these up.

Unfortunately, SLICC appears not to have the '!' operator,
so I had to leave the '== false' tests in the SLICC code.
2014-05-31 18:00:23 -07:00
Dam Sunwoo 84f8fe637c cpu: Add O3 CPU width checks
O3CPU has a compile-time maximum width set in o3/impl.hh, but checking
the configuration against this limit was not implemented anywhere
except for fetch. Configuring a wider pipe than the limit can silently
cause various issues during the simulation. This patch adds the proper
checking in the constructor of the various pipeline stages.
2014-04-23 05:18:18 -04:00
Faissal Sleiman a1570f544f o3: Fix occupancy checks for SMT
A number of calls to isEmpty() and numFreeEntries()
should be thread-specific.

In cpu.cc, the fact that tid is /*commented*/ out is a bug. Say the rob
has instructions from thread 0 (isEmpty() returns false), and none from
thread 1. If we are trying to squash all of thread 1, then
readTailInst(thread 1) will be called because rob->isEmpty() returns
false. The result is end_it is not in the list and the while
statement loops indefinitely back over the cpu's instList.

In iew_impl.hh, all threads are told they have the entire remaining IQ, when
each thread actually has a certain allocation. The result is extra stalls at
the iew dispatch stage which the rename stage usually takes care of.

In commit_impl.hh, rob->readHeadInst(thread 1) can be called if the rob only
contains instructions from thread 0. This returns a dummyInst (which may work
since we are trying to squash all instructions, but hardly seems like the right
way to do it).

In rob_impl.hh this fix skips the rest of the function more frequently and is
more efficient.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-04-19 09:00:30 -05:00
Matt Horsnell 739c6df94e base: add support for probe points and common probes
The probe patch is motivated by the desire to move analytical and trace code
away from functional code. This is achieved by the probe interface which is
essentially a glorified observer model.

What this means to users:
* add a probe point and a "notify" call at the source of an "event"
* add an isolated module, that is being used to carry out *your* analysis (e.g. generate a trace)
* register that module as a probe listener
Note: an example is given for reference in src/cpu/o3/simple_trace.[hh|cc] and src/cpu/SimpleTrace.py

What is happening under the hood:
* every SimObject maintains has a ProbeManager.
* during initialization (src/python/m5/simulate.py) first regProbePoints and
  the regProbeListeners is called on each SimObject.  this hooks up the probe
  point notify calls with the listeners.

FAQs:
Why did you develop probe points:
* to remove trace, stats gathering, analytical code out of the functional code.
* the belief that probes could be generically useful.

What is a probe point:
* a probe point is used to notify upon a given event (e.g. cpu commits an instruction)

What is a probe listener:
* a class that handles whatever the user wishes to do when they are notified
  about an event.

What can be passed on notify:
* probe points are templates, and so the user can generate probes that pass any
  type of argument (by const reference) to a listener.

What relationships can be generated (1:1, 1:N, N:M etc):
* there isn't a restriction. You can hook probe points and listeners up in a
  1:1, 1:N, N:M relationship. They become useful when a number of modules
  listen to the same probe points. The idea being that you can add a small
  number of probes into the source code and develop a larger number of useful
  analysis modules that use information passed by the probes.

Can you give examples:
* adding a probe point to the cpu's commit method allows you to build a trace
  module (outputting assembler), you could re-use this to gather instruction
  distribution (arithmetic, load/store, conditional, control flow) stats.

Why is the probe interface currently restricted to passing a const reference:
* the desire, initially at least, is to allow an interface to observe
  functionality, but not to change functionality.
* of course this can be subverted by const-casting.

What is the performance impact of adding probes:
* when nothing is actively listening to the probes they should have a
  relatively minor impact. Profiling has suggested even with a large number of
  probes (60) the impact of them (when not active) is very minimal (<1%).
2014-01-24 15:29:30 -06:00
Matt Horsnell 6decd70bfb cpu: add consistent guarding to *_impl.hh files. 2013-10-17 10:20:45 -05:00
Faissal Sleiman 9195f1fbfd cpu: Change IEW DPRINTF to use IEW debug flag
IEW DPRINTF uses Decode debug flag, which appears to be a copying error. This
patch changes this to the IEW Debug flag.
2013-10-17 10:20:45 -05:00
Andreas Hansson 10650fc525 cpu: Consider instructions waiting for FU completion in draining
This patch changes the IEW drain check to include the FU pool as there
can be instructions that are "stored" in FU completion events and thus
not covered by the existing checks. With this patch, we simply include
a check to see if all the FUs are considered non-busy in the next
tick.

Without this patch, the pc-switcheroo-full regression fails after
minor changes to the cache timing (aligning to clock edge).
2013-06-27 05:49:49 -04:00
Matt Horsnell e88e7d88b9 o3: fix tick used for renaming and issue with range selection
Fixes the tick used from rename:
- previously this gathered the tick on leaving rename which was always 1 less
  than the dispatch. This conflated the decode ticks when back pressure built
  in the pipeline.
- now picks up tick on entry.

Added --store_completions flag:
- will additionally display the store completion tail in the viewer.
- this highlights periods when large numbers of stores are outstanding (>16 LSQ
  blocking)

Allows selection by tick range (previously this caused an infinite loop)
2013-02-15 17:40:09 -05:00
Andreas Sandberg 1814a85a05 cpu: Rewrite O3 draining to avoid stopping in microcode
Previously, the O3 CPU could stop in the middle of a microcode
sequence. This patch makes sure that the pipeline stops when it has
committed a normal instruction or exited from a microcode
sequence. Additionally, it makes sure that the pipeline has no
instructions in flight when it is drained, which should make draining
more robust.

Draining is controlled in the commit stage, which checks if the next
PC after a committed instruction is in microcode. If this isn't the
case, it requests a squash of all instructions after that the
instruction that just committed and immediately signals a drain stall
to the fetch stage. The CPU then continues to execute until the
pipeline and all associated buffers are empty.
2013-01-07 13:05:46 -05:00
Andreas Sandberg 6daada2701 cpu: Initialize the O3 pipeline from startup()
The entire O3 pipeline used to be initialized from init(), which is
called before initState() or unserialize(). This causes the pipeline
to be initialized from an incorrect thread context. This doesn't
currently lead to correctness problems as instructions fetched from
the incorrect start PC will be squashed a few cycles after
initialization.

This patch will affect the regressions since the O3 CPU now issues its
first instruction fetch to the correct PC instead of 0x0.
2013-01-07 13:05:44 -05:00
Ali Saidi 6df196b71e O3: Clean up the O3 structures and try to pack them a bit better.
DynInst is extremely large the hope is that this re-organization will put the
most used members close to each other.
2012-06-05 01:23:09 -04:00
Geoffrey Blake 69d229ce28 O3/Ozone: Eliminate dead code counting software prefetch insts
Eliminates dead code in the O3 and Ozone CPU models that counted
software prefetch instructions separately for the ALPHA ISA only.
2012-03-09 09:59:28 -05:00
Geoffrey Blake 043709fdfa CheckerCPU: Make CheckerCPU runtime selectable instead of compile selectable
Enables the CheckerCPU to be selected at runtime with the --checker option
from the configs/example/fs.py and configs/example/se.py configuration
files.  Also merges with the SE/FS changes.
2012-03-09 09:59:27 -05:00
Andreas Hansson 9f07d2ce7e CPU: Round-two unifying instr/data CPU ports across models
This patch continues the unification of how the different CPU models
create and share their instruction and data ports. Most importantly,
it forces every CPU to have an instruction and a data port, and gives
these ports explicit getters in the BaseCPU (getDataPort and
getInstPort). The patch helps in simplifying the code, make
assumptions more explicit, andfurther ease future patches related to
the CPU ports.

The biggest changes are in the in-order model (that was not modified
in the previous unification patch), which now moves the ports from the
CacheUnit to the CPU. It also distinguishes the instruction fetch and
load-store unit from the rest of the resources, and avoids the use of
indices and casting in favour of keeping track of these two units
explicitly (since they are always there anyways). The atomic, timing
and O3 model simply return references to their already existing ports.
2012-02-24 11:42:00 -05:00
Koan-Sin Tan 7d4f187700 clang: Enable compiling gem5 using clang 2.9 and 3.0
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).

clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
2012-01-31 12:05:52 -05:00
Geoffrey Blake af6aaf2581 CheckerCPU: Re-factor CheckerCPU to be compatible with current gem5
Brings the CheckerCPU back to life to allow FS and SE checking of the
O3CPU.  These changes have only been tested with the ARM ISA.  Other
ISAs potentially require modification.
2012-01-31 07:46:03 -08:00
Nilay Vaish 9957035a42 DPRINTF: Improve some dprintf messages. 2012-01-10 10:15:02 -06:00
Giacomo Gabrielli 676a530b77 O3: Squash the violator and younger instructions instead not all insts.
Change the way instructions are squashed on memory ordering violations
to squash the violator and younger instructions, not all instructions
that are younger than the instruction they violated (no reason to throw
away valid work).
2011-08-19 15:08:05 -05:00
Giacomo Gabrielli 69ef57fd0f O3: Create a pipeline activity viewer for the O3 CPU model.
Implemented a pipeline activity viewer as a python script (util/o3-pipeview.py)
and modified O3 code base to support an extra trace flag (O3PipeView) for
generating traces to be used as inputs by the tool.
2011-07-15 11:53:35 -05:00
Geoffrey Blake c223b887fe O3: Fix issue w/wbOutstading being decremented multiple times on blocked cache.
If a split load fails on a blocked cache wbOutstanding can be decremented
twice if the first part of the split load succeeds and the second part fails.
Condition the decrementing on not having completed the first part of the load.
2011-05-23 10:40:19 -05:00
Geoffrey Blake b79650ceaa O3: Fix an issue with a load & branch instruction and mem dep squashing
Instructions that load an address and are control instructions can
execute down the wrong path if they were predicted correctly and then
instructions following them are squashed. If an instruction is a
memory and control op use the predicted address for the next PC instead
of just advancing the PC. Without this change NPC is used for the next
instruction, but predPC is used to verify that the branch was successful
so the wrong path is silently executed.
2011-05-13 17:27:00 -05:00
Nathan Binkert 63371c8664 stats: rename stats so they can be used as python expressions 2011-04-19 18:45:21 -07:00
Nathan Binkert eddac53ff6 trace: reimplement the DTRACE function so it doesn't use a vector
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing.  This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
2011-04-15 10:44:32 -07:00
Nathan Binkert bbb1392c08 includes: fix up code after sorting 2011-04-15 10:44:14 -07:00
Nathan Binkert 39a055645f includes: sort all includes 2011-04-15 10:44:06 -07:00
Ali Saidi 30143baf7e O3: Cleanup the commitInfo comm struct.
Get rid of unused members and use base types rather than derrived values
where possible to limit amount of state.
2011-03-17 19:20:19 -05:00
Ali Saidi f9d4d9df1b O3: When a prefetch causes a fault, don't record it in the inst 2011-02-23 15:10:50 -06:00
Giacomo Gabrielli e2507407b1 O3: Enhance data address translation by supporting hardware page table walkers.
Some ISAs (like ARM) relies on hardware page table walkers.  For those ISAs,
when a TLB miss occurs, initiateTranslation() can return with NoFault but with
the translation unfinished.

Instructions experiencing a delayed translation due to a hardware page table
walk are deferred until the translation completes and kept into the IQ.  In
order to keep track of them, the IQ has been augmented with a queue of the
outstanding delayed memory instructions.  When their translation completes,
instructions are re-executed (only their initiateAccess() was already
executed; their DTB translation is now skipped).  The IEW stage has been
modified to support such a 2-pass execution.
2011-02-11 18:29:35 -06:00
Joel Hestness b4c10bd680 mcpat: Adds McPAT performance counters
Updated patches from Rick Strong's set that modify performance counters for
McPAT
2011-02-06 22:14:17 -08:00
Matt Horsnell c98df6f8c2 O3: Don't test misprediction on load instructions until executed. 2011-01-18 16:30:05 -06:00
Matt Horsnell 11bef2ab38 O3: Fix corner cases where multiple squashes/fetch redirects overwrite timebuf. 2011-01-18 16:30:05 -06:00
Matt Horsnell 62f2097917 O3: Fix mispredicts from non control instructions.
The squash inside the fetch unit should not attempt to remove them from the
branch predictor as non-control instructions are not pushed into the predictor.
2011-01-18 16:30:05 -06:00
Matt Horsnell 5ebf3b2808 O3: Fixes the way prefetches are handled inside the iew unit.
This patch prevents the prefetch being added to the instCommit queue twice.
2011-01-18 16:30:02 -06:00
Ali Saidi 0f9a3671b6 ARM: Add support for moving predicated false dest operands from sources. 2011-01-18 16:30:02 -06:00
Min Kyu Jeong 96375409ea O3: Fixes fetch deadlock when the interrupt clears before CPU handles it.
When this condition occurs the cpu should restart the fetch stage to fetch from
the original execution path. Fault handling in the commit stage is cleaned up a
little bit so the control flow is simplier. Finally, if an instruction is being
used to carry a fault it isn't executed, so the fault propagates appropriately.
2011-01-18 16:30:01 -06:00
Steve Reinhardt 89cf3f6e85 Move sched_list.hh and timebuf.hh from src/base to src/cpu.
These files really aren't general enough to belong in src/base.
This patch doesn't reorder include lines, leaving them unsorted
in many cases, but Nate's magic script will fix that up shortly.

--HG--
rename : src/base/sched_list.hh => src/cpu/sched_list.hh
rename : src/base/timebuf.hh => src/cpu/timebuf.hh
2011-01-03 14:35:47 -08:00
Min Kyu Jeong 4bbdd6ceb2 O3: Support SWAP and predicated loads/store in ARM. 2010-12-07 16:19:57 -08:00
Gabe Black 6f4bd2c1da ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
2010-10-31 00:07:20 -07:00