This also includes a change to the default Ruby random seed, which was
previously set using the wall clock. It is now set to 1234 so that
the stat files don't change for the regression tester.
This was done with an automated process, so there could be things that were
done in this tree in the past that didn't make it. One known regression
is that atomic memory operations do not seem to work properly anymore.
This changeset also includes a lot of work from Derek Hower <drh5@cs.wisc.edu>
RubyMemory is now both a driver for Ruby and a port for M5. Changed
makeRequest/hitCallback interface. Brought packets (superficially)
into the sequencer. Modified tester infrastructure to be packet based.
and Ruby can be used together through the example ruby_se.py
script. SPARC parallel applications work, and the timing *seems* right
from combined M5/Ruby debug traces. To run,
% build/ALPHA_SE/m5.debug configs/example/ruby_se.py -c
tests/test-progs/hello/bin/alpha/linux/hello -n 4 -t
1. removed checks from tester files
2. removed else clause in Sequencer and DirectoryMemory else clause is
needed by the tester, it is up to Derek to revive it elsewhere when he
gets to it
Also:
1. Changed m_entries in DirectoryMemory to a map
2. And replaced SIMICS_read_physical_memory with a call to now-dummy
Derek's-to-be readPhysMem function
Add the PROTOCOL sticky option sets the coherence protocol that slicc
will parse and therefore ruby will use. This whole process was made
difficult by the fact that the set of files that are output by slicc
are not easily known ahead of time. The easiest thing wound up being
to write a parser for slicc that would tell me. Incidentally this
means we now have a slicc grammar written in python.
This basically means changing all #include statements and changing
autogenerated code so that it generates the correct paths. Because
slicc generates #includes, I had to hard code the include paths to
mem/protocol.
1) Removing files from the ruby build left some unresovled
symbols. Those have been fixed.
2) Most of the dependencies on Simics data types and the simics
interface files have been removed.
3) Almost all mention of opal is gone.
4) Huge chunks of LogTM are now gone.
5) Handling 1-4 left ~hundreds of unresolved references, which were
fixed, yielding a snowball effect (and the massive size of this
delta).
I did the macro cleanup because I was worried that the SCons scanner
would get confused. This code will hopefully go away soon anyway.
--HG--
rename : src/mem/ruby/config/config.include => src/mem/ruby/config/config.hh
Previously there was one per bus, which caused some coherence problems
when more than one decided to respond. Now there is just one on
the main memory bus. The default bus responder on all other buses
is now the downstream cache's cpu_side port. Caches no longer need
to do address range filtering; instead, we just have a simple flag
to prevent snoops from propagating to the I/O bus.
This frees up needed space for more public flags. Also:
- remove unused Request accessor methods
- make Packet use public Request accessors, so it need not be a friend
Apparently we broke it with the cache rewrite and never noticed.
Thanks to Bao Yungang <baoyungang@gmail.com> for a significant part
of these changes (and for inspiring me to work on the rest).
Some other overdue cleanup on the prefetch code too.
Bogus calls to ChunkGenerator with negative size were triggering
a new assertion that was added there.
Also did a little renaming and cleanup in the process.
I think readData() and writeData() were used for Erik's compression
work, but that code is gone, these aren't called anymore, and they
don't even really do what their names imply.
I did some of the flags and assertions wrong. Thanks to Brad Beckmann
for pointing this out. I should have run the opt regressions instead
of the fast. I also screwed up some of the logical functions in the Flags
class.
the primary identifier for a hardware context should be contextId(). The
concept of threads within a CPU remains, in the form of threadId() because
sometimes you need to know which context within a cpu to manipulate.
Since the early days of M5, an event needed to know which event queue
it was on, and that data was required at the time of construction of
the event object. In the future parallelized M5, this sort of
requirement does not work well since the proper event queue will not
always be known at the time of construction of an event. Now, events
are created, and the EventQueue itself has the schedule function,
e.g. eventq->schedule(event, when). To simplify the syntax, I created
a class called EventManager which holds a pointer to an EventQueue and
provides the schedule interface that is a proxy for the EventQueue.
The intent is that objects that frequently schedule events can be
derived from EventManager and then they have the schedule interface.
SimObject and Port are examples of objects that will become
EventManagers. The end result is that any SimObject can just call
schedule(event, when) and it will just call that SimObject's
eventq->schedule function. Of course, some objects may have more than
one EventQueue, so this interface might not be perfect for those, but
they should be relatively few.