Commit graph

90 commits

Author SHA1 Message Date
Andreas Hansson
36dc93a5fa mem: Move crossbar default latencies to subclasses
This patch introduces a few subclasses to the CoherentXBar and
NoncoherentXBar to distinguish the different uses in the system. We
use the crossbar in a wide range of places: interfacing cores to the
L2, as a system interconnect, connecting I/O and peripherals,
etc. Needless to say, these crossbars have very different performance,
and the clock frequency alone is not enough to distinguish these
scenarios.

Instead of trying to capture every possible case, this patch
introduces dedicated subclasses for the three primary use-cases:
L2XBar, SystemXBar and IOXbar. More can be added if needed, and the
defaults can be overridden.
2015-03-02 04:00:47 -05:00
Andreas Hansson
3cb9c361e2 scons: Do not build the InOrderCPU
One step closer to shifting focus to the MinorCPU.
2015-01-20 08:12:45 -05:00
Alexandru Dutu
a19cf6943b config, kvm: Enabling KvmCPU in SE mode
This patch modifies se.py such that it can now use kvm cpu model.
2014-11-23 18:01:08 -08:00
Nilay Vaish
708e80d9bb configs: small fix to ruby portion of fs.py and se.py
In fs.py the io port controller was being attached to the iobus multiple
times.  This should be done only once.  In se.py, the the option use_map
was being set which no longer exists.
2014-11-18 19:17:29 -06:00
Nilay Vaish
3022d463fb ruby: interface with classic memory controller
This patch is the final in the series.  The whole series and this patch in
particular were written with the aim of interfacing ruby's directory controller
with the memory controller in the classic memory system.  This is being done
since ruby's memory controller has not being kept up to date with the changes
going on in DRAMs.  Classic's memory controller is more up to date and
supports multiple different types of DRAM.  This also brings classic and
ruby ever more close.  The patch also changes ruby's memory controller to
expose the same interface.
2014-11-06 05:42:21 -06:00
Nilay Vaish
95a0b18431 ruby: single physical memory in fs mode
Both ruby and the system used to maintain memory copies.  With the changes
carried for programmed io accesses, only one single memory is required for
fs simulations.  This patch sets the copy of memory that used to reside
with the system to null, so that no space is allocated, but address checks
can still be carried out.  All the memory accesses now source and sink values
to the memory maintained by ruby.
2014-11-06 05:41:44 -06:00
Andreas Hansson
1f6d5f8f84 mem: Rename Bus to XBar to better reflect its behaviour
This patch changes the name of the Bus classes to XBar to better
reflect the actual timing behaviour. The actual instances in the
config scripts are not renamed, and remain as e.g. iobus or membus.

As part of this renaming, the code has also been clean up slightly,
making use of range-based for loops and tidying up some comments. The
only changes outside the bus/crossbar code is due to the delay
variables in the packet.

--HG--
rename : src/mem/Bus.py => src/mem/XBar.py
rename : src/mem/coherent_bus.cc => src/mem/coherent_xbar.cc
rename : src/mem/coherent_bus.hh => src/mem/coherent_xbar.hh
rename : src/mem/noncoherent_bus.cc => src/mem/noncoherent_xbar.cc
rename : src/mem/noncoherent_bus.hh => src/mem/noncoherent_xbar.hh
rename : src/mem/bus.cc => src/mem/xbar.cc
rename : src/mem/bus.hh => src/mem/xbar.hh
2014-09-20 17:18:32 -04:00
Dam Sunwoo
ca3513d630 cpu: use probes infrastructure to do simpoint profiling
Instead of having code embedded in cpu model to do simpoint profiling use
the probes infrastructure to do it.
2014-09-20 17:17:43 -04:00
Emilio Castillo ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E)
01f792a367 ruby: Fixes clock domains in configuration files
This patch fixes scripts related to ruby by adding the ruby clock domain.
Now the L1 controllers and  the Sequencer shares the cpu clock domain,
while the rest of the components use the ruby clock domain.

Before this patch, running simulations with the cpu clock set at 2GHz or
1GHz will output the same time results and could distort power measurements.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-09-01 16:55:30 -05:00
Nilay Vaish
d6542d7758 configs: use SimpleMemory when using ruby in se mode
A recent changeset altered the default memory class to DRAMCtrl.  In se mode,
ruby uses the physical memory to check if a given address is within the bounds
of the physical memory.  SimpleMemory is enough for this.  Moreover,
SimpleMemory does not check whether it is connected or not, something which
DRAMCtrl does.
2014-04-01 11:17:46 -05:00
Nilay Vaish
b5cc4c7604 config: ruby: rename _cpu_ruby_ports to _cpu_ports 2014-03-20 09:14:14 -05:00
Nilay Vaish
d5b5d89b34 config: remove ruby_fs.py
The patch removes the ruby_fs.py file.  The functionality is being moved to
fs.py.  This would being ruby fs simulations in line with how ruby se
simulations are started (using --ruby option).  The alpha fs config functions
are being combined for classing and ruby memory systems.  This required
renaming the piobus in ruby to iobus.  So, we will have stats being renamed
in the stats file for ruby fs regression.
2014-03-20 08:03:09 -05:00
Nilay Vaish
9b3418d163 ruby: no piobus in se mode
Piobus was recently added to se scripts for ruby so that the interrupt
controller can be connected to something (required since the interrupt
controller sends address range messages).  This patch removes the piobus
and instead, the pio port of ruby port will now ignore the range change
messages in se mode.
2014-03-20 08:03:09 -05:00
Nilay Vaish
8504b079b8 ruby: correct errors in changeset 4eec7bdde5b0
Couple of errors were discovered in 4eec7bdde5b0 which necessitated this patch.
Firstly, we create interrupt controllers in the se mode, but no piobus was
being created.  RubyPort, which earlier used to ignore range changes now
forwards those to the piobus.  The lack of piobus resulted in segmentation
fault.  This patch creates a piobus even in se mode.  It is not created only
when some tester is running.  Secondly,  I had missed out on modifying port
connections for other coherence protocols.
2014-02-24 20:50:05 -06:00
ARM gem5 Developers
612f8f074f arm: Add support for ARMv8 (AArch64 & AArch32)
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64
kernel you are restricted to AArch64 user-mode binaries. This will be addressed
in a later patch.

Note: Virtualization is only supported in AArch32 mode. This will also be fixed
in a later patch.

Contributors:
Giacomo Gabrielli    (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation)
Thomas Grocutt       (AArch32 Virtualization, AArch64 FP, validation)
Mbou Eyole           (AArch64 NEON, validation)
Ali Saidi            (AArch64 Linux support, code integration, validation)
Edmund Grimley-Evans (AArch64 FP)
William Wang         (AArch64 Linux support)
Rene De Jong         (AArch64 Linux support, performance opt.)
Matt Horsnell        (AArch64 MP, validation)
Matt Evans           (device models, code integration, validation)
Chris Adeniyi-Jones  (AArch64 syscall-emulation)
Prakash Ramrakhyani  (validation)
Dam Sunwoo           (validation)
Chander Sudanthi     (validation)
Stephan Diestelhorst (validation)
Andreas Hansson      (code integration, performance opt.)
Eric Van Hensbergen  (performance opt.)
Gabe Black
2014-01-24 15:29:34 -06:00
Nilay Vaish
2dec06a57b config: set cwd for processes in se.py 2013-10-07 18:05:50 -05:00
Andreas Hansson
c26911013c config: Command line support for multi-channel memory
This patch adds support for specifying multi-channel memory
configurations on the command line, e.g. 'se/fs.py
--mem-type=ddr3_1600_x64 --mem-channels=4'. To enable this, it
enhances the functionality of MemConfig and moves the existing
makeMultiChannel class method from SimpleDRAM to the support scripts.

The se/fs.py example scripts are updated to make use of the new
feature.
2013-08-19 03:52:34 -04:00
Akash Bagdia
e7e17f92db power: Add voltage domains to the clock domains
This patch adds the notion of voltage domains, and groups clock
domains that operate under the same voltage (i.e. power supply) into
domains. Each clock domain is required to be associated with a voltage
domain, and the latter requires the voltage to be explicitly set.

A voltage domain is an independently controllable voltage supply being
provided to section of the design. Thus, if you wish to perform
dynamic voltage scaling on a CPU, its clock domain should be
associated with a separate voltage domain.

The current implementation of the voltage domain does not take into
consideration cases where there are derived voltage domains running at
ratio of native voltage domains, as with the case where there can be
on-chip buck/boost (charge pumps) voltage regulation logic.

The regression and configuration scripts are updated with a generic
voltage domain for the system, and one for the CPUs.
2013-08-19 03:52:28 -04:00
Andreas Hansson
c20105c2ff config: Update script to set cache line size on system
This patch changes the config scripts such that they do not set the
cache line size per cache instance, but rather for the system as a
whole.
2013-07-18 08:31:19 -04:00
Nilay Vaish
516b7849e8 configs: rearrange the available options in Options.py
It also changes the instantiation of physmem in se.py so as to make
use of the memory size supplied by the mem_size option.
2013-06-28 21:42:26 -05:00
Akash Bagdia
7d7ab73862 sim: Add the notion of clock domains to all ClockedObjects
This patch adds the notion of source- and derived-clock domains to the
ClockedObjects. As such, all clock information is moved to the clock
domain, and the ClockedObjects are grouped into domains.

The clock domains are either source domains, with a specific clock
period, or derived domains that have a parent domain and a divider
(potentially chained). For piece of logic that runs at a derived clock
(a ratio of the clock its parent is running at) the necessary derived
clock domain is created from its corresponding parent clock
domain. For now, the derived clock domain only supports a divider,
thus ensuring a lower speed compared to its parent. Multiplier
functionality implies a PLL logic that has not been modelled yet
(create a separate clock instead).

The clock domains should be used as a mechanism to provide a
controllable clock source that affects clock for every clocked object
lying beneath it. The clock of the domain can (in a future patch) be
controlled by a handler responsible for dynamic frequency scaling of
the respective clock domains.

All the config scripts have been retro-fitted with clock domains. For
the System a default SrcClockDomain is created. For CPUs that run at a
different speed than the system, there is a seperate clock domain
created. This domain incorporates the CPU and the associated
caches. As before, Ruby runs under its own clock domain.

The clock period of all domains are pre-computed, such that no virtual
functions or multiplications are needed when calling
clockPeriod. Instead, the clock period is pre-computed when any
changes occur. For this to be possible, each clock domain tracks its
children.
2013-06-27 05:49:49 -04:00
Akash Bagdia
076d04a653 config: Add a system clock command-line option
This patch adds a 'sys_clock' command-line option and use it to assign
clocks to the system during instantiation.

As part of this change, the default clock in the System class is
removed and whenever a system is instantiated a system clock value
must be set. A default value is provided for the command-line option.

The configs and tests are updated accordingly.
2013-06-27 05:49:49 -04:00
Akash Bagdia
4459b30525 config: Add a CPU clock command-line option
This patch adds a 'cpu_clock' command-line option and uses the value
to assign clocks to components running at the CPU speed (L1 and L2
including the L2-bus). The configuration scripts are updated
accordingly.

The 'clock' option is left unchanged in this patch as it is still used
by a number of components. In follow-on patches the latter will be
disambiguated further.
2013-06-27 05:49:49 -04:00
Nilay Vaish
be981772b9 config: Do not instantiate membus when using ruby
This patch moves the instantiation of system.membus in se.py to the area of
code where classic memory system has been dealt with. Ruby does not require
this bus and hence it should not be instantiated.
2013-06-13 07:24:25 -05:00
Andreas Hansson
3477d60d5c config: Add a mem-type config option to se/fs scripts
This patch enables selection of the memory controller class through a
mem-type command-line option. Behind the scenes, this option is
treated much like the cpu-type, and a similar framework is used to
resolve the valid options, and translate the short-hand description to
a valid class.

The regression scripts are updated with a hardcoded memory class for
the moment. The best solution going forward is probably to get the
memory out of the makeSystem functions, but Ruby complicates things as
it does not connect the memory controller to the membus.

--HG--
rename : configs/common/CpuConfig.py => configs/common/MemConfig.py
2013-04-22 13:20:33 -04:00
Dam Sunwoo
2c1e344313 cpu: generate SimPoint basic block vector profiles
This patch is based on http://reviews.m5sim.org/r/1474/ originally written by
Mitch Hayenga. Basic block vectors are generated (simpoint.bb.gz in simout
folder) based on start and end addresses of basic blocks.

Some comments to the original patch are addressed and hooks are added to create
and resume from checkpoints based on instruction counts dictated by external
SimPoint analysis tools.

SimPoint creation/resuming options will be implemented as a separate patch.
2013-04-22 13:20:31 -04:00
Nilay Vaish
c061819890 ruby: remove the functional copy of memory in se mode
This patch removes the functional copy of the memory that was maintained in
the se mode. Now ruby itself will provide the data.
2013-03-06 21:53:57 -06:00
Andreas Sandberg
3db3f83a5e arch: Make the ISA class inherit from SimObject
The ISA class on stores the contents of ID registers on many
architectures. In order to make reset values of such registers
configurable, we make the class inherit from SimObject, which allows
us to use the normal generated parameter headers.

This patch introduces a Python helper method, BaseCPU.createThreads(),
which creates a set of ISAs for each of the threads in an SMT
system. Although it is currently only needed when creating
multi-threaded CPUs, it should always be called before instantiating
the system as this is an obvious place to configure ID registers
identifying a thread/CPU.
2013-01-07 13:05:35 -05:00
Andreas Hansson
a4d8996fd9 config: Add a check for fastmem only used with Atomic CPU
This patch adds an additional check to ensure that the fastmem option
is only used if the system is using the Atomic CPU.
2012-10-26 06:42:45 -04:00
Malek Musleh
3fc23b9b96 Configs: SE script fix for Alpha and Ruby simulations
PIO interrupt port is only present for x86. Do not attempt to connect
for other ISAs.
2012-09-28 09:35:25 -04:00
Joel Hestness
90dd745ff6 se.py Ruby: Connect TLB walker ports
In order to ensure correct functionality of switch CPUs, the TLB walker ports
must be connected to the Ruby system in x86 simulation.

This fixes x86 assertion failures that the TLB walker ports are not connected
during the CPU switch process.
2012-09-12 21:42:57 -05:00
Nilay Vaish
89a5ba1ef8 se.py: removes error in passing options to a binary 2012-09-11 17:47:21 -05:00
Nilay Vaish
0b45ae5df3 se.py: support specifying multiple programs via command line
This patch allows for specifying multiple programs via command line. It also
adds an option for specifying whether to use of SMT. But SMT does not work for
the o3 cpu as of now.
2012-09-09 09:33:45 -05:00
Andreas Hansson
ae6ab7c03c Config: Use clock option in se/fs script and pass to switch_cpus
This patch changes the se and fs script to use the clock option and
not simply set the CPUs clock to 2 GHz. It also makes a minor change
to the assignment of the switch_cpus clock to allow different clocks.
2012-07-23 09:32:22 -04:00
Brad Beckmann
11b725c19d ruby: changes how Topologies are created
Instead of just passing a list of controllers to the makeTopology function
in src/mem/ruby/network/topologies/<Topo>.py we pass in a function pointer
which knows how to make the topology, possibly with some extra state set
in the configs/ruby/<protocol>.py file. Thus, we can move all of the files
from network/topologies to configs/topologies. A new class BaseTopology
is added which all topologies in configs/topologies must inheirit from and
follow its API.

--HG--
rename : src/mem/ruby/network/topologies/Crossbar.py => configs/topologies/Crossbar.py
rename : src/mem/ruby/network/topologies/Mesh.py => configs/topologies/Mesh.py
rename : src/mem/ruby/network/topologies/MeshDirCorners.py => configs/topologies/MeshDirCorners.py
rename : src/mem/ruby/network/topologies/Pt2Pt.py => configs/topologies/Pt2Pt.py
rename : src/mem/ruby/network/topologies/Torus.py => configs/topologies/Torus.py
2012-07-10 22:51:53 -07:00
Andreas Hansson
0d32940711 Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.

A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.

A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.

The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.

A bit of minor tidying up has also been done.

--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 13:30:04 -04:00
Andreas Hansson
7f14ea0c00 Config: Fix a typo in the se.py script for setting fastmem
This patch changes a hardcoded index 0 to the appropriate CPU index so
that fastmem is set correctly for all the CPUs in the system.
2012-05-16 12:37:08 -04:00
Jayneel Gandhi
7aa57ac882 SE Config: Changed se.py to support multithreaded mode
Multithreaded programs did not run by just specifying the binary once on the
command line of SE mode.The default mode is multi-programmed mode. Added
check in SE mode to run multi-threaded programs in case only one program is
specified with multiple CPUS. Default mode is still multi-programmed mode.
2012-04-17 16:12:41 -05:00
Andreas Hansson
b00949d88b MEM: Enable multiple distributed generalized memories
This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.

All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.

To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.

Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.

--HG--
rename : src/mem/PhysicalMemory.py => src/mem/AbstractMemory.py
rename : src/mem/PhysicalMemory.py => src/mem/SimpleMemory.py
rename : src/mem/physical.cc => src/mem/abstract_mem.cc
rename : src/mem/physical.hh => src/mem/abstract_mem.hh
rename : src/mem/physical.cc => src/mem/simple_mem.cc
rename : src/mem/physical.hh => src/mem/simple_mem.hh
2012-04-06 13:46:31 -04:00
Andreas Hansson
a8e6adb0b1 Atomic: Remove the physmem_port and access memory directly
This patch removes the physmem_port from the Atomic CPU and instead
uses the system pointer to access the physmem when using the fastmem
option. The system already keeps track of the physmem and the valid
memory address ranges, and with this patch we merely make use of that
existing functionality. As a result of this change, the overloaded
getMasterPort in the Atomic CPU can be removed, thus unifying the CPUs.
2012-04-03 03:50:14 -04:00
Nilay Vaish
390cfc7be9 Config: Change the way options are added
I am not too happy with the way options are added in files se.py and fs.py
currently. This patch moves all the options to the file Options.py, functions
from which are called when required.
2012-03-28 11:01:53 -05:00
Nilay Vaish
bb7be54d73 se.py: Changes to ruby portion due to SE/FS merge
With the SE/FS merge, interrupt controller is created irrespective of the
mode. This patch creates the interrupt controller when Ruby is used and
connects its ports.
2012-03-11 16:51:38 -05:00
Geoffrey Blake
043709fdfa CheckerCPU: Make CheckerCPU runtime selectable instead of compile selectable
Enables the CheckerCPU to be selected at runtime with the --checker option
from the configs/example/fs.py and configs/example/se.py configuration
files.  Also merges with the SE/FS changes.
2012-03-09 09:59:27 -05:00
Nilay Vaish
e11847bfa9 Config: make option ruby available always 2012-03-01 11:36:59 -06:00
Andreas Hansson
00978170f3 MEM: Fix master/slave ports in Ruby and non-regression scripts
This patch brings the Ruby and other scripts up to date with the
introduction of the master/slave ports.
2012-02-14 03:41:53 -05:00
Andreas Hansson
5a9a743cfc MEM: Introduce the master/slave port roles in the Python classes
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.

The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.

Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
2012-02-13 06:43:09 -05:00
Gabe Black
e88165a431 Merge with main repository. 2012-01-30 21:07:57 -08:00
Andreas Hansson
ade53def92 Ruby: Connect system port in Ruby network test
This patch moves the connection of the system port to create_system in
Ruby.py. Thereby it allows the failing Ruby test (and other Ruby
systems) to run again.
2012-01-30 09:37:06 -05:00
Gabe Black
d7f71bf424 SE/FS: Get rid of FULL_SYSTEM in the configs directory 2012-01-28 07:24:50 -08:00
Gabe Black
ec20ee2f7c SE/FS: Make SE vs. FS mode a runtime parameter. 2012-01-28 07:24:34 -08:00