gem5/src/dev/i8254xGBe.cc

2558 lines
75 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
/* @file
* Device model for Intel's 8254x line of gigabit ethernet controllers.
* In particular an 82547 revision 2 (82547GI) MAC because it seems to have the
* fewest workarounds in the driver. It will probably work with most of the
* other MACs with slight modifications.
*/
/*
* @todo really there are multiple dma engines.. we should implement them.
*/
#include <algorithm>
#include "base/inet.hh"
#include "base/trace.hh"
#include "dev/i8254xGBe.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "params/IGbE.hh"
#include "sim/stats.hh"
#include "sim/system.hh"
using namespace iGbReg;
using namespace Net;
IGbE::IGbE(const Params *p)
: EtherDevice(p), etherInt(NULL), drainEvent(NULL),
useFlowControl(p->use_flow_control),
rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size), rxTick(false),
txTick(false), txFifoTick(false), rxDmaPacket(false), pktOffset(0),
fetchDelay(p->fetch_delay), wbDelay(p->wb_delay),
fetchCompDelay(p->fetch_comp_delay), wbCompDelay(p->wb_comp_delay),
rxWriteDelay(p->rx_write_delay), txReadDelay(p->tx_read_delay),
rdtrEvent(this), radvEvent(this),
tadvEvent(this), tidvEvent(this), tickEvent(this), interEvent(this),
rxDescCache(this, name()+".RxDesc", p->rx_desc_cache_size),
txDescCache(this, name()+".TxDesc", p->tx_desc_cache_size),
clock(p->clock), lastInterrupt(0)
{
etherInt = new IGbEInt(name() + ".int", this);
// Initialized internal registers per Intel documentation
// All registers intialized to 0 by per register constructor
regs.ctrl.fd(1);
regs.ctrl.lrst(1);
regs.ctrl.speed(2);
regs.ctrl.frcspd(1);
regs.sts.speed(3); // Say we're 1000Mbps
regs.sts.fd(1); // full duplex
regs.sts.lu(1); // link up
regs.eecd.fwe(1);
regs.eecd.ee_type(1);
regs.imr = 0;
regs.iam = 0;
regs.rxdctl.gran(1);
regs.rxdctl.wthresh(1);
regs.fcrth(1);
regs.tdwba = 0;
regs.rlpml = 0;
regs.sw_fw_sync = 0;
regs.pba.rxa(0x30);
regs.pba.txa(0x10);
eeOpBits = 0;
eeAddrBits = 0;
eeDataBits = 0;
eeOpcode = 0;
// clear all 64 16 bit words of the eeprom
memset(&flash, 0, EEPROM_SIZE*2);
// Set the MAC address
memcpy(flash, p->hardware_address.bytes(), ETH_ADDR_LEN);
for (int x = 0; x < ETH_ADDR_LEN/2; x++)
flash[x] = htobe(flash[x]);
uint16_t csum = 0;
for (int x = 0; x < EEPROM_SIZE; x++)
csum += htobe(flash[x]);
// Magic happy checksum value
flash[EEPROM_SIZE-1] = htobe((uint16_t)(EEPROM_CSUM - csum));
// Store the MAC address as queue ID
macAddr = p->hardware_address;
rxFifo.clear();
txFifo.clear();
}
void
IGbE::init()
{
cpa = CPA::cpa();
PciDev::init();
}
EtherInt*
IGbE::getEthPort(const std::string &if_name, int idx)
{
if (if_name == "interface") {
if (etherInt->getPeer())
panic("Port already connected to\n");
return etherInt;
}
return NULL;
}
Tick
IGbE::writeConfig(PacketPtr pkt)
{
int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
if (offset < PCI_DEVICE_SPECIFIC)
PciDev::writeConfig(pkt);
else
panic("Device specific PCI config space not implemented.\n");
//
// Some work may need to be done here based for the pci COMMAND bits.
//
return pioDelay;
}
// Handy macro for range-testing register access addresses
#define IN_RANGE(val, base, len) (val >= base && val < (base + len))
Tick
IGbE::read(PacketPtr pkt)
{
int bar;
Addr daddr;
if (!getBAR(pkt->getAddr(), bar, daddr))
panic("Invalid PCI memory access to unmapped memory.\n");
// Only Memory register BAR is allowed
assert(bar == 0);
// Only 32bit accesses allowed
assert(pkt->getSize() == 4);
DPRINTF(Ethernet, "Read device register %#X\n", daddr);
pkt->allocate();
//
// Handle read of register here
//
switch (daddr) {
case REG_CTRL:
pkt->set<uint32_t>(regs.ctrl());
break;
case REG_STATUS:
pkt->set<uint32_t>(regs.sts());
break;
case REG_EECD:
pkt->set<uint32_t>(regs.eecd());
break;
case REG_EERD:
pkt->set<uint32_t>(regs.eerd());
break;
case REG_CTRL_EXT:
pkt->set<uint32_t>(regs.ctrl_ext());
break;
case REG_MDIC:
pkt->set<uint32_t>(regs.mdic());
break;
case REG_ICR:
DPRINTF(Ethernet, "Reading ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n",
regs.icr(), regs.imr, regs.iam, regs.ctrl_ext.iame());
pkt->set<uint32_t>(regs.icr());
if (regs.icr.int_assert() || regs.imr == 0) {
regs.icr = regs.icr() & ~mask(30);
DPRINTF(Ethernet, "Cleared ICR. ICR=%#x\n", regs.icr());
}
if (regs.ctrl_ext.iame() && regs.icr.int_assert())
regs.imr &= ~regs.iam;
chkInterrupt();
break;
case REG_EICR:
// This is only useful for MSI, but the driver reads it every time
// Just don't do anything
pkt->set<uint32_t>(0);
break;
case REG_ITR:
pkt->set<uint32_t>(regs.itr());
break;
case REG_RCTL:
pkt->set<uint32_t>(regs.rctl());
break;
case REG_FCTTV:
pkt->set<uint32_t>(regs.fcttv());
break;
case REG_TCTL:
pkt->set<uint32_t>(regs.tctl());
break;
case REG_PBA:
pkt->set<uint32_t>(regs.pba());
break;
case REG_WUC:
case REG_LEDCTL:
pkt->set<uint32_t>(0); // We don't care, so just return 0
break;
case REG_FCRTL:
pkt->set<uint32_t>(regs.fcrtl());
break;
case REG_FCRTH:
pkt->set<uint32_t>(regs.fcrth());
break;
case REG_RDBAL:
pkt->set<uint32_t>(regs.rdba.rdbal());
break;
case REG_RDBAH:
pkt->set<uint32_t>(regs.rdba.rdbah());
break;
case REG_RDLEN:
pkt->set<uint32_t>(regs.rdlen());
break;
case REG_SRRCTL:
pkt->set<uint32_t>(regs.srrctl());
break;
case REG_RDH:
pkt->set<uint32_t>(regs.rdh());
break;
case REG_RDT:
pkt->set<uint32_t>(regs.rdt());
break;
case REG_RDTR:
pkt->set<uint32_t>(regs.rdtr());
if (regs.rdtr.fpd()) {
rxDescCache.writeback(0);
DPRINTF(EthernetIntr,
"Posting interrupt because of RDTR.FPD write\n");
postInterrupt(IT_RXT);
regs.rdtr.fpd(0);
}
break;
case REG_RXDCTL:
pkt->set<uint32_t>(regs.rxdctl());
break;
case REG_RADV:
pkt->set<uint32_t>(regs.radv());
break;
case REG_TDBAL:
pkt->set<uint32_t>(regs.tdba.tdbal());
break;
case REG_TDBAH:
pkt->set<uint32_t>(regs.tdba.tdbah());
break;
case REG_TDLEN:
pkt->set<uint32_t>(regs.tdlen());
break;
case REG_TDH:
pkt->set<uint32_t>(regs.tdh());
break;
case REG_TXDCA_CTL:
pkt->set<uint32_t>(regs.txdca_ctl());
break;
case REG_TDT:
pkt->set<uint32_t>(regs.tdt());
break;
case REG_TIDV:
pkt->set<uint32_t>(regs.tidv());
break;
case REG_TXDCTL:
pkt->set<uint32_t>(regs.txdctl());
break;
case REG_TADV:
pkt->set<uint32_t>(regs.tadv());
break;
case REG_TDWBAL:
pkt->set<uint32_t>(regs.tdwba & mask(32));
break;
case REG_TDWBAH:
pkt->set<uint32_t>(regs.tdwba >> 32);
break;
case REG_RXCSUM:
pkt->set<uint32_t>(regs.rxcsum());
break;
case REG_RLPML:
pkt->set<uint32_t>(regs.rlpml);
break;
case REG_RFCTL:
pkt->set<uint32_t>(regs.rfctl());
break;
case REG_MANC:
pkt->set<uint32_t>(regs.manc());
break;
case REG_SWSM:
pkt->set<uint32_t>(regs.swsm());
regs.swsm.smbi(1);
break;
case REG_FWSM:
pkt->set<uint32_t>(regs.fwsm());
break;
case REG_SWFWSYNC:
pkt->set<uint32_t>(regs.sw_fw_sync);
break;
default:
if (!IN_RANGE(daddr, REG_VFTA, VLAN_FILTER_TABLE_SIZE*4) &&
!IN_RANGE(daddr, REG_RAL, RCV_ADDRESS_TABLE_SIZE*8) &&
!IN_RANGE(daddr, REG_MTA, MULTICAST_TABLE_SIZE*4) &&
!IN_RANGE(daddr, REG_CRCERRS, STATS_REGS_SIZE))
panic("Read request to unknown register number: %#x\n", daddr);
else
pkt->set<uint32_t>(0);
};
pkt->makeAtomicResponse();
return pioDelay;
}
Tick
IGbE::write(PacketPtr pkt)
{
int bar;
Addr daddr;
if (!getBAR(pkt->getAddr(), bar, daddr))
panic("Invalid PCI memory access to unmapped memory.\n");
// Only Memory register BAR is allowed
assert(bar == 0);
// Only 32bit accesses allowed
assert(pkt->getSize() == sizeof(uint32_t));
DPRINTF(Ethernet, "Wrote device register %#X value %#X\n",
daddr, pkt->get<uint32_t>());
//
// Handle write of register here
//
uint32_t val = pkt->get<uint32_t>();
Regs::RCTL oldrctl;
Regs::TCTL oldtctl;
switch (daddr) {
case REG_CTRL:
regs.ctrl = val;
if (regs.ctrl.tfce())
warn("TX Flow control enabled, should implement\n");
if (regs.ctrl.rfce())
warn("RX Flow control enabled, should implement\n");
break;
case REG_CTRL_EXT:
regs.ctrl_ext = val;
break;
case REG_STATUS:
regs.sts = val;
break;
case REG_EECD:
int oldClk;
oldClk = regs.eecd.sk();
regs.eecd = val;
// See if this is a eeprom access and emulate accordingly
if (!oldClk && regs.eecd.sk()) {
if (eeOpBits < 8) {
eeOpcode = eeOpcode << 1 | regs.eecd.din();
eeOpBits++;
} else if (eeAddrBits < 8 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
eeAddr = eeAddr << 1 | regs.eecd.din();
eeAddrBits++;
} else if (eeDataBits < 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
assert(eeAddr>>1 < EEPROM_SIZE);
DPRINTF(EthernetEEPROM, "EEPROM bit read: %d word: %#X\n",
flash[eeAddr>>1] >> eeDataBits & 0x1,
flash[eeAddr>>1]);
regs.eecd.dout((flash[eeAddr>>1] >> (15-eeDataBits)) & 0x1);
eeDataBits++;
} else if (eeDataBits < 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI) {
regs.eecd.dout(0);
eeDataBits++;
} else
panic("What's going on with eeprom interface? opcode:"
" %#x:%d addr: %#x:%d, data: %d\n", (uint32_t)eeOpcode,
(uint32_t)eeOpBits, (uint32_t)eeAddr,
(uint32_t)eeAddrBits, (uint32_t)eeDataBits);
// Reset everything for the next command
if ((eeDataBits == 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) ||
(eeDataBits == 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI)) {
eeOpBits = 0;
eeAddrBits = 0;
eeDataBits = 0;
eeOpcode = 0;
eeAddr = 0;
}
DPRINTF(EthernetEEPROM, "EEPROM: opcode: %#X:%d addr: %#X:%d\n",
(uint32_t)eeOpcode, (uint32_t) eeOpBits,
(uint32_t)eeAddr>>1, (uint32_t)eeAddrBits);
if (eeOpBits == 8 && !(eeOpcode == EEPROM_READ_OPCODE_SPI ||
eeOpcode == EEPROM_RDSR_OPCODE_SPI ))
panic("Unknown eeprom opcode: %#X:%d\n", (uint32_t)eeOpcode,
(uint32_t)eeOpBits);
}
// If driver requests eeprom access, immediately give it to it
regs.eecd.ee_gnt(regs.eecd.ee_req());
break;
case REG_EERD:
regs.eerd = val;
if (regs.eerd.start()) {
regs.eerd.done(1);
assert(regs.eerd.addr() < EEPROM_SIZE);
regs.eerd.data(flash[regs.eerd.addr()]);
regs.eerd.start(0);
DPRINTF(EthernetEEPROM, "EEPROM: read addr: %#X data %#x\n",
regs.eerd.addr(), regs.eerd.data());
}
break;
case REG_MDIC:
regs.mdic = val;
if (regs.mdic.i())
panic("No support for interrupt on mdic complete\n");
if (regs.mdic.phyadd() != 1)
panic("No support for reading anything but phy\n");
DPRINTF(Ethernet, "%s phy address %x\n",
regs.mdic.op() == 1 ? "Writing" : "Reading",
regs.mdic.regadd());
switch (regs.mdic.regadd()) {
case PHY_PSTATUS:
regs.mdic.data(0x796D); // link up
break;
case PHY_PID:
regs.mdic.data(params()->phy_pid);
break;
case PHY_EPID:
regs.mdic.data(params()->phy_epid);
break;
case PHY_GSTATUS:
regs.mdic.data(0x7C00);
break;
case PHY_EPSTATUS:
regs.mdic.data(0x3000);
break;
case PHY_AGC:
regs.mdic.data(0x180); // some random length
break;
default:
regs.mdic.data(0);
}
regs.mdic.r(1);
break;
case REG_ICR:
DPRINTF(Ethernet, "Writing ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n",
regs.icr(), regs.imr, regs.iam, regs.ctrl_ext.iame());
if (regs.ctrl_ext.iame())
regs.imr &= ~regs.iam;
regs.icr = ~bits(val,30,0) & regs.icr();
chkInterrupt();
break;
case REG_ITR:
regs.itr = val;
break;
case REG_ICS:
DPRINTF(EthernetIntr, "Posting interrupt because of ICS write\n");
postInterrupt((IntTypes)val);
break;
case REG_IMS:
regs.imr |= val;
chkInterrupt();
break;
case REG_IMC:
regs.imr &= ~val;
chkInterrupt();
break;
case REG_IAM:
regs.iam = val;
break;
case REG_RCTL:
oldrctl = regs.rctl;
regs.rctl = val;
if (regs.rctl.rst()) {
rxDescCache.reset();
DPRINTF(EthernetSM, "RXS: Got RESET!\n");
rxFifo.clear();
regs.rctl.rst(0);
}
if (regs.rctl.en())
rxTick = true;
restartClock();
break;
case REG_FCTTV:
regs.fcttv = val;
break;
case REG_TCTL:
regs.tctl = val;
oldtctl = regs.tctl;
regs.tctl = val;
if (regs.tctl.en())
txTick = true;
restartClock();
if (regs.tctl.en() && !oldtctl.en()) {
txDescCache.reset();
}
break;
case REG_PBA:
regs.pba.rxa(val);
regs.pba.txa(64 - regs.pba.rxa());
break;
case REG_WUC:
case REG_LEDCTL:
case REG_FCAL:
case REG_FCAH:
case REG_FCT:
case REG_VET:
case REG_AIFS:
case REG_TIPG:
; // We don't care, so don't store anything
break;
case REG_IVAR0:
warn("Writing to IVAR0, ignoring...\n");
break;
case REG_FCRTL:
regs.fcrtl = val;
break;
case REG_FCRTH:
regs.fcrth = val;
break;
case REG_RDBAL:
regs.rdba.rdbal( val & ~mask(4));
rxDescCache.areaChanged();
break;
case REG_RDBAH:
regs.rdba.rdbah(val);
rxDescCache.areaChanged();
break;
case REG_RDLEN:
regs.rdlen = val & ~mask(7);
rxDescCache.areaChanged();
break;
case REG_SRRCTL:
regs.srrctl = val;
break;
case REG_RDH:
regs.rdh = val;
rxDescCache.areaChanged();
break;
case REG_RDT:
regs.rdt = val;
DPRINTF(EthernetSM, "RXS: RDT Updated.\n");
if (getState() == SimObject::Running) {
DPRINTF(EthernetSM, "RXS: RDT Fetching Descriptors!\n");
rxDescCache.fetchDescriptors();
} else {
DPRINTF(EthernetSM, "RXS: RDT NOT Fetching Desc b/c draining!\n");
}
break;
case REG_RDTR:
regs.rdtr = val;
break;
case REG_RADV:
regs.radv = val;
break;
case REG_RXDCTL:
regs.rxdctl = val;
break;
case REG_TDBAL:
regs.tdba.tdbal( val & ~mask(4));
txDescCache.areaChanged();
break;
case REG_TDBAH:
regs.tdba.tdbah(val);
txDescCache.areaChanged();
break;
case REG_TDLEN:
regs.tdlen = val & ~mask(7);
txDescCache.areaChanged();
break;
case REG_TDH:
regs.tdh = val;
txDescCache.areaChanged();
break;
case REG_TXDCA_CTL:
regs.txdca_ctl = val;
if (regs.txdca_ctl.enabled())
panic("No support for DCA\n");
break;
case REG_TDT:
regs.tdt = val;
DPRINTF(EthernetSM, "TXS: TX Tail pointer updated\n");
if (getState() == SimObject::Running) {
DPRINTF(EthernetSM, "TXS: TDT Fetching Descriptors!\n");
txDescCache.fetchDescriptors();
} else {
DPRINTF(EthernetSM, "TXS: TDT NOT Fetching Desc b/c draining!\n");
}
break;
case REG_TIDV:
regs.tidv = val;
break;
case REG_TXDCTL:
regs.txdctl = val;
break;
case REG_TADV:
regs.tadv = val;
break;
case REG_TDWBAL:
regs.tdwba &= ~mask(32);
regs.tdwba |= val;
txDescCache.completionWriteback(regs.tdwba & ~mask(1),
regs.tdwba & mask(1));
break;
case REG_TDWBAH:
regs.tdwba &= mask(32);
regs.tdwba |= (uint64_t)val << 32;
txDescCache.completionWriteback(regs.tdwba & ~mask(1),
regs.tdwba & mask(1));
break;
case REG_RXCSUM:
regs.rxcsum = val;
break;
case REG_RLPML:
regs.rlpml = val;
break;
case REG_RFCTL:
regs.rfctl = val;
if (regs.rfctl.exsten())
panic("Extended RX descriptors not implemented\n");
break;
case REG_MANC:
regs.manc = val;
break;
case REG_SWSM:
regs.swsm = val;
if (regs.fwsm.eep_fw_semaphore())
regs.swsm.swesmbi(0);
break;
case REG_SWFWSYNC:
regs.sw_fw_sync = val;
break;
default:
if (!IN_RANGE(daddr, REG_VFTA, VLAN_FILTER_TABLE_SIZE*4) &&
!IN_RANGE(daddr, REG_RAL, RCV_ADDRESS_TABLE_SIZE*8) &&
!IN_RANGE(daddr, REG_MTA, MULTICAST_TABLE_SIZE*4))
panic("Write request to unknown register number: %#x\n", daddr);
};
pkt->makeAtomicResponse();
return pioDelay;
}
void
IGbE::postInterrupt(IntTypes t, bool now)
{
assert(t);
// Interrupt is already pending
if (t & regs.icr() && !now)
return;
regs.icr = regs.icr() | t;
Tick itr_interval = SimClock::Int::ns * 256 * regs.itr.interval();
DPRINTF(EthernetIntr,
"EINT: postInterrupt() curTick(): %d itr: %d interval: %d\n",
curTick(), regs.itr.interval(), itr_interval);
if (regs.itr.interval() == 0 || now ||
lastInterrupt + itr_interval <= curTick()) {
if (interEvent.scheduled()) {
deschedule(interEvent);
}
cpuPostInt();
} else {
Tick int_time = lastInterrupt + itr_interval;
assert(int_time > 0);
DPRINTF(EthernetIntr, "EINT: Scheduling timer interrupt for tick %d\n",
int_time);
if (!interEvent.scheduled()) {
schedule(interEvent, int_time);
}
}
}
void
IGbE::delayIntEvent()
{
cpuPostInt();
}
void
IGbE::cpuPostInt()
{
postedInterrupts++;
if (!(regs.icr() & regs.imr)) {
DPRINTF(Ethernet, "Interrupt Masked. Not Posting\n");
return;
}
DPRINTF(Ethernet, "Posting Interrupt\n");
if (interEvent.scheduled()) {
deschedule(interEvent);
}
if (rdtrEvent.scheduled()) {
regs.icr.rxt0(1);
deschedule(rdtrEvent);
}
if (radvEvent.scheduled()) {
regs.icr.rxt0(1);
deschedule(radvEvent);
}
if (tadvEvent.scheduled()) {
regs.icr.txdw(1);
deschedule(tadvEvent);
}
if (tidvEvent.scheduled()) {
regs.icr.txdw(1);
deschedule(tidvEvent);
}
regs.icr.int_assert(1);
DPRINTF(EthernetIntr, "EINT: Posting interrupt to CPU now. Vector %#x\n",
regs.icr());
intrPost();
lastInterrupt = curTick();
}
void
IGbE::cpuClearInt()
{
if (regs.icr.int_assert()) {
regs.icr.int_assert(0);
DPRINTF(EthernetIntr,
"EINT: Clearing interrupt to CPU now. Vector %#x\n",
regs.icr());
intrClear();
}
}
void
IGbE::chkInterrupt()
{
DPRINTF(Ethernet, "Checking interrupts icr: %#x imr: %#x\n", regs.icr(),
regs.imr);
// Check if we need to clear the cpu interrupt
if (!(regs.icr() & regs.imr)) {
DPRINTF(Ethernet, "Mask cleaned all interrupts\n");
if (interEvent.scheduled())
deschedule(interEvent);
if (regs.icr.int_assert())
cpuClearInt();
}
DPRINTF(Ethernet, "ITR = %#X itr.interval = %#X\n",
regs.itr(), regs.itr.interval());
if (regs.icr() & regs.imr) {
if (regs.itr.interval() == 0) {
cpuPostInt();
} else {
DPRINTF(Ethernet,
"Possibly scheduling interrupt because of imr write\n");
if (!interEvent.scheduled()) {
Tick t = curTick() + SimClock::Int::ns * 256 * regs.itr.interval();
DPRINTF(Ethernet, "Scheduling for %d\n", t);
schedule(interEvent, t);
}
}
}
}
///////////////////////////// IGbE::DescCache //////////////////////////////
template<class T>
IGbE::DescCache<T>::DescCache(IGbE *i, const std::string n, int s)
: igbe(i), _name(n), cachePnt(0), size(s), curFetching(0),
wbOut(0), pktPtr(NULL), wbDelayEvent(this),
fetchDelayEvent(this), fetchEvent(this), wbEvent(this)
{
fetchBuf = new T[size];
wbBuf = new T[size];
}
template<class T>
IGbE::DescCache<T>::~DescCache()
{
reset();
}
template<class T>
void
IGbE::DescCache<T>::areaChanged()
{
if (usedCache.size() > 0 || curFetching || wbOut)
panic("Descriptor Address, Length or Head changed. Bad\n");
reset();
}
template<class T>
void
IGbE::DescCache<T>::writeback(Addr aMask)
{
int curHead = descHead();
int max_to_wb = usedCache.size();
// Check if this writeback is less restrictive that the previous
// and if so setup another one immediately following it
if (wbOut) {
if (aMask < wbAlignment) {
moreToWb = true;
wbAlignment = aMask;
}
DPRINTF(EthernetDesc,
"Writing back already in process, returning\n");
return;
}
moreToWb = false;
wbAlignment = aMask;
DPRINTF(EthernetDesc, "Writing back descriptors head: %d tail: "
"%d len: %d cachePnt: %d max_to_wb: %d descleft: %d\n",
curHead, descTail(), descLen(), cachePnt, max_to_wb,
descLeft());
if (max_to_wb + curHead >= descLen()) {
max_to_wb = descLen() - curHead;
moreToWb = true;
// this is by definition aligned correctly
} else if (wbAlignment != 0) {
// align the wb point to the mask
max_to_wb = max_to_wb & ~wbAlignment;
}
DPRINTF(EthernetDesc, "Writing back %d descriptors\n", max_to_wb);
if (max_to_wb <= 0) {
if (usedCache.size())
igbe->anBegin(annSmWb, "Wait Alignment", CPA::FL_WAIT);
else
igbe->anWe(annSmWb, annUsedCacheQ);
return;
}
wbOut = max_to_wb;
assert(!wbDelayEvent.scheduled());
igbe->schedule(wbDelayEvent, curTick() + igbe->wbDelay);
igbe->anBegin(annSmWb, "Prepare Writeback Desc");
}
template<class T>
void
IGbE::DescCache<T>::writeback1()
{
// If we're draining delay issuing this DMA
if (igbe->getState() != SimObject::Running) {
igbe->schedule(wbDelayEvent, curTick() + igbe->wbDelay);
return;
}
DPRINTF(EthernetDesc, "Begining DMA of %d descriptors\n", wbOut);
for (int x = 0; x < wbOut; x++) {
assert(usedCache.size());
memcpy(&wbBuf[x], usedCache[x], sizeof(T));
igbe->anPq(annSmWb, annUsedCacheQ);
igbe->anPq(annSmWb, annDescQ);
igbe->anQ(annSmWb, annUsedDescQ);
}
igbe->anBegin(annSmWb, "Writeback Desc DMA");
assert(wbOut);
igbe->dmaWrite(pciToDma(descBase() + descHead() * sizeof(T)),
wbOut * sizeof(T), &wbEvent, (uint8_t*)wbBuf,
igbe->wbCompDelay);
}
template<class T>
void
IGbE::DescCache<T>::fetchDescriptors()
{
size_t max_to_fetch;
if (curFetching) {
DPRINTF(EthernetDesc,
"Currently fetching %d descriptors, returning\n",
curFetching);
return;
}
if (descTail() >= cachePnt)
max_to_fetch = descTail() - cachePnt;
else
max_to_fetch = descLen() - cachePnt;
size_t free_cache = size - usedCache.size() - unusedCache.size();
if (!max_to_fetch)
igbe->anWe(annSmFetch, annUnusedDescQ);
else
igbe->anPq(annSmFetch, annUnusedDescQ, max_to_fetch);
if (max_to_fetch) {
if (!free_cache)
igbe->anWf(annSmFetch, annDescQ);
else
igbe->anRq(annSmFetch, annDescQ, free_cache);
}
max_to_fetch = std::min(max_to_fetch, free_cache);
DPRINTF(EthernetDesc, "Fetching descriptors head: %d tail: "
"%d len: %d cachePnt: %d max_to_fetch: %d descleft: %d\n",
descHead(), descTail(), descLen(), cachePnt,
max_to_fetch, descLeft());
// Nothing to do
if (max_to_fetch == 0)
return;
// So we don't have two descriptor fetches going on at once
curFetching = max_to_fetch;
assert(!fetchDelayEvent.scheduled());
igbe->schedule(fetchDelayEvent, curTick() + igbe->fetchDelay);
igbe->anBegin(annSmFetch, "Prepare Fetch Desc");
}
template<class T>
void
IGbE::DescCache<T>::fetchDescriptors1()
{
// If we're draining delay issuing this DMA
if (igbe->getState() != SimObject::Running) {
igbe->schedule(fetchDelayEvent, curTick() + igbe->fetchDelay);
return;
}
igbe->anBegin(annSmFetch, "Fetch Desc");
DPRINTF(EthernetDesc, "Fetching descriptors at %#x (%#x), size: %#x\n",
descBase() + cachePnt * sizeof(T),
pciToDma(descBase() + cachePnt * sizeof(T)),
curFetching * sizeof(T));
assert(curFetching);
igbe->dmaRead(pciToDma(descBase() + cachePnt * sizeof(T)),
curFetching * sizeof(T), &fetchEvent, (uint8_t*)fetchBuf,
igbe->fetchCompDelay);
}
template<class T>
void
IGbE::DescCache<T>::fetchComplete()
{
T *newDesc;
igbe->anBegin(annSmFetch, "Fetch Complete");
for (int x = 0; x < curFetching; x++) {
newDesc = new T;
memcpy(newDesc, &fetchBuf[x], sizeof(T));
unusedCache.push_back(newDesc);
igbe->anDq(annSmFetch, annUnusedDescQ);
igbe->anQ(annSmFetch, annUnusedCacheQ);
igbe->anQ(annSmFetch, annDescQ);
}
#ifndef NDEBUG
int oldCp = cachePnt;
#endif
cachePnt += curFetching;
assert(cachePnt <= descLen());
if (cachePnt == descLen())
cachePnt = 0;
curFetching = 0;
DPRINTF(EthernetDesc, "Fetching complete cachePnt %d -> %d\n",
oldCp, cachePnt);
if ((descTail() >= cachePnt ? (descTail() - cachePnt) : (descLen() -
cachePnt)) == 0)
{
igbe->anWe(annSmFetch, annUnusedDescQ);
} else if (!(size - usedCache.size() - unusedCache.size())) {
igbe->anWf(annSmFetch, annDescQ);
} else {
igbe->anBegin(annSmFetch, "Wait", CPA::FL_WAIT);
}
enableSm();
igbe->checkDrain();
}
template<class T>
void
IGbE::DescCache<T>::wbComplete()
{
igbe->anBegin(annSmWb, "Finish Writeback");
long curHead = descHead();
#ifndef NDEBUG
long oldHead = curHead;
#endif
for (int x = 0; x < wbOut; x++) {
assert(usedCache.size());
delete usedCache[0];
usedCache.pop_front();
igbe->anDq(annSmWb, annUsedCacheQ);
igbe->anDq(annSmWb, annDescQ);
}
curHead += wbOut;
wbOut = 0;
if (curHead >= descLen())
curHead -= descLen();
// Update the head
updateHead(curHead);
DPRINTF(EthernetDesc, "Writeback complete curHead %d -> %d\n",
oldHead, curHead);
// If we still have more to wb, call wb now
actionAfterWb();
if (moreToWb) {
moreToWb = false;
DPRINTF(EthernetDesc, "Writeback has more todo\n");
writeback(wbAlignment);
}
if (!wbOut) {
igbe->checkDrain();
if (usedCache.size())
igbe->anBegin(annSmWb, "Wait", CPA::FL_WAIT);
else
igbe->anWe(annSmWb, annUsedCacheQ);
}
fetchAfterWb();
}
template<class T>
void
IGbE::DescCache<T>::reset()
{
DPRINTF(EthernetDesc, "Reseting descriptor cache\n");
for (typename CacheType::size_type x = 0; x < usedCache.size(); x++)
delete usedCache[x];
for (typename CacheType::size_type x = 0; x < unusedCache.size(); x++)
delete unusedCache[x];
usedCache.clear();
unusedCache.clear();
cachePnt = 0;
}
template<class T>
void
IGbE::DescCache<T>::serialize(std::ostream &os)
{
SERIALIZE_SCALAR(cachePnt);
SERIALIZE_SCALAR(curFetching);
SERIALIZE_SCALAR(wbOut);
SERIALIZE_SCALAR(moreToWb);
SERIALIZE_SCALAR(wbAlignment);
typename CacheType::size_type usedCacheSize = usedCache.size();
SERIALIZE_SCALAR(usedCacheSize);
for (typename CacheType::size_type x = 0; x < usedCacheSize; x++) {
arrayParamOut(os, csprintf("usedCache_%d", x),
(uint8_t*)usedCache[x],sizeof(T));
}
typename CacheType::size_type unusedCacheSize = unusedCache.size();
SERIALIZE_SCALAR(unusedCacheSize);
for (typename CacheType::size_type x = 0; x < unusedCacheSize; x++) {
arrayParamOut(os, csprintf("unusedCache_%d", x),
(uint8_t*)unusedCache[x],sizeof(T));
}
Tick fetch_delay = 0, wb_delay = 0;
if (fetchDelayEvent.scheduled())
fetch_delay = fetchDelayEvent.when();
SERIALIZE_SCALAR(fetch_delay);
if (wbDelayEvent.scheduled())
wb_delay = wbDelayEvent.when();
SERIALIZE_SCALAR(wb_delay);
}
template<class T>
void
IGbE::DescCache<T>::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_SCALAR(cachePnt);
UNSERIALIZE_SCALAR(curFetching);
UNSERIALIZE_SCALAR(wbOut);
UNSERIALIZE_SCALAR(moreToWb);
UNSERIALIZE_SCALAR(wbAlignment);
typename CacheType::size_type usedCacheSize;
UNSERIALIZE_SCALAR(usedCacheSize);
T *temp;
for (typename CacheType::size_type x = 0; x < usedCacheSize; x++) {
temp = new T;
arrayParamIn(cp, section, csprintf("usedCache_%d", x),
(uint8_t*)temp,sizeof(T));
usedCache.push_back(temp);
}
typename CacheType::size_type unusedCacheSize;
UNSERIALIZE_SCALAR(unusedCacheSize);
for (typename CacheType::size_type x = 0; x < unusedCacheSize; x++) {
temp = new T;
arrayParamIn(cp, section, csprintf("unusedCache_%d", x),
(uint8_t*)temp,sizeof(T));
unusedCache.push_back(temp);
}
Tick fetch_delay = 0, wb_delay = 0;
UNSERIALIZE_SCALAR(fetch_delay);
UNSERIALIZE_SCALAR(wb_delay);
if (fetch_delay)
igbe->schedule(fetchDelayEvent, fetch_delay);
if (wb_delay)
igbe->schedule(wbDelayEvent, wb_delay);
}
///////////////////////////// IGbE::RxDescCache //////////////////////////////
IGbE::RxDescCache::RxDescCache(IGbE *i, const std::string n, int s)
: DescCache<RxDesc>(i, n, s), pktDone(false), splitCount(0),
pktEvent(this), pktHdrEvent(this), pktDataEvent(this)
{
annSmFetch = "RX Desc Fetch";
annSmWb = "RX Desc Writeback";
annUnusedDescQ = "RX Unused Descriptors";
annUnusedCacheQ = "RX Unused Descriptor Cache";
annUsedCacheQ = "RX Used Descriptor Cache";
annUsedDescQ = "RX Used Descriptors";
annDescQ = "RX Descriptors";
}
void
IGbE::RxDescCache::pktSplitDone()
{
splitCount++;
DPRINTF(EthernetDesc,
"Part of split packet done: splitcount now %d\n", splitCount);
assert(splitCount <= 2);
if (splitCount != 2)
return;
splitCount = 0;
DPRINTF(EthernetDesc,
"Part of split packet done: calling pktComplete()\n");
pktComplete();
}
int
IGbE::RxDescCache::writePacket(EthPacketPtr packet, int pkt_offset)
{
assert(unusedCache.size());
//if (!unusedCache.size())
// return false;
pktPtr = packet;
pktDone = false;
unsigned buf_len, hdr_len;
RxDesc *desc = unusedCache.front();
switch (igbe->regs.srrctl.desctype()) {
case RXDT_LEGACY:
assert(pkt_offset == 0);
bytesCopied = packet->length;
DPRINTF(EthernetDesc, "Packet Length: %d Desc Size: %d\n",
packet->length, igbe->regs.rctl.descSize());
assert(packet->length < igbe->regs.rctl.descSize());
igbe->dmaWrite(pciToDma(desc->legacy.buf),
packet->length, &pktEvent, packet->data,
igbe->rxWriteDelay);
break;
case RXDT_ADV_ONEBUF:
assert(pkt_offset == 0);
bytesCopied = packet->length;
buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
igbe->regs.rctl.descSize();
DPRINTF(EthernetDesc, "Packet Length: %d srrctl: %#x Desc Size: %d\n",
packet->length, igbe->regs.srrctl(), buf_len);
assert(packet->length < buf_len);
igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
packet->length, &pktEvent, packet->data,
igbe->rxWriteDelay);
desc->adv_wb.header_len = htole(0);
desc->adv_wb.sph = htole(0);
desc->adv_wb.pkt_len = htole((uint16_t)(pktPtr->length));
break;
case RXDT_ADV_SPLIT_A:
int split_point;
buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
igbe->regs.rctl.descSize();
hdr_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.hdrLen() : 0;
DPRINTF(EthernetDesc,
"lpe: %d Packet Length: %d offset: %d srrctl: %#x "
"hdr addr: %#x Hdr Size: %d desc addr: %#x Desc Size: %d\n",
igbe->regs.rctl.lpe(), packet->length, pkt_offset,
igbe->regs.srrctl(), desc->adv_read.hdr, hdr_len,
desc->adv_read.pkt, buf_len);
split_point = hsplit(pktPtr);
if (packet->length <= hdr_len) {
bytesCopied = packet->length;
assert(pkt_offset == 0);
DPRINTF(EthernetDesc, "Hdr split: Entire packet in header\n");
igbe->dmaWrite(pciToDma(desc->adv_read.hdr),
packet->length, &pktEvent, packet->data,
igbe->rxWriteDelay);
desc->adv_wb.header_len = htole((uint16_t)packet->length);
desc->adv_wb.sph = htole(0);
desc->adv_wb.pkt_len = htole(0);
} else if (split_point) {
if (pkt_offset) {
// we are only copying some data, header/data has already been
// copied
int max_to_copy =
std::min(packet->length - pkt_offset, buf_len);
bytesCopied += max_to_copy;
DPRINTF(EthernetDesc,
"Hdr split: Continuing data buffer copy\n");
igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
max_to_copy, &pktEvent,
packet->data + pkt_offset, igbe->rxWriteDelay);
desc->adv_wb.header_len = htole(0);
desc->adv_wb.pkt_len = htole((uint16_t)max_to_copy);
desc->adv_wb.sph = htole(0);
} else {
int max_to_copy =
std::min(packet->length - split_point, buf_len);
bytesCopied += max_to_copy + split_point;
DPRINTF(EthernetDesc, "Hdr split: splitting at %d\n",
split_point);
igbe->dmaWrite(pciToDma(desc->adv_read.hdr),
split_point, &pktHdrEvent,
packet->data, igbe->rxWriteDelay);
igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
max_to_copy, &pktDataEvent,
packet->data + split_point, igbe->rxWriteDelay);
desc->adv_wb.header_len = htole(split_point);
desc->adv_wb.sph = 1;
desc->adv_wb.pkt_len = htole((uint16_t)(max_to_copy));
}
} else {
panic("Header split not fitting within header buffer or "
"undecodable packet not fitting in header unsupported\n");
}
break;
default:
panic("Unimplemnted RX receive buffer type: %d\n",
igbe->regs.srrctl.desctype());
}
return bytesCopied;
}
void
IGbE::RxDescCache::pktComplete()
{
assert(unusedCache.size());
RxDesc *desc;
desc = unusedCache.front();
igbe->anBegin("RXS", "Update Desc");
uint16_t crcfixup = igbe->regs.rctl.secrc() ? 0 : 4 ;
DPRINTF(EthernetDesc, "pktPtr->length: %d bytesCopied: %d "
"stripcrc offset: %d value written: %d %d\n",
pktPtr->length, bytesCopied, crcfixup,
htole((uint16_t)(pktPtr->length + crcfixup)),
(uint16_t)(pktPtr->length + crcfixup));
// no support for anything but starting at 0
assert(igbe->regs.rxcsum.pcss() == 0);
DPRINTF(EthernetDesc, "Packet written to memory updating Descriptor\n");
uint16_t status = RXDS_DD;
uint8_t err = 0;
uint16_t ext_err = 0;
uint16_t csum = 0;
uint16_t ptype = 0;
uint16_t ip_id = 0;
assert(bytesCopied <= pktPtr->length);
if (bytesCopied == pktPtr->length)
status |= RXDS_EOP;
IpPtr ip(pktPtr);
if (ip) {
DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n", ip->id());
ptype |= RXDP_IPV4;
ip_id = ip->id();
if (igbe->regs.rxcsum.ipofld()) {
DPRINTF(EthernetDesc, "Checking IP checksum\n");
status |= RXDS_IPCS;
csum = htole(cksum(ip));
igbe->rxIpChecksums++;
if (cksum(ip) != 0) {
err |= RXDE_IPE;
ext_err |= RXDEE_IPE;
DPRINTF(EthernetDesc, "Checksum is bad!!\n");
}
}
TcpPtr tcp(ip);
if (tcp && igbe->regs.rxcsum.tuofld()) {
DPRINTF(EthernetDesc, "Checking TCP checksum\n");
status |= RXDS_TCPCS;
ptype |= RXDP_TCP;
csum = htole(cksum(tcp));
igbe->rxTcpChecksums++;
if (cksum(tcp) != 0) {
DPRINTF(EthernetDesc, "Checksum is bad!!\n");
err |= RXDE_TCPE;
ext_err |= RXDEE_TCPE;
}
}
UdpPtr udp(ip);
if (udp && igbe->regs.rxcsum.tuofld()) {
DPRINTF(EthernetDesc, "Checking UDP checksum\n");
status |= RXDS_UDPCS;
ptype |= RXDP_UDP;
csum = htole(cksum(udp));
igbe->rxUdpChecksums++;
if (cksum(udp) != 0) {
DPRINTF(EthernetDesc, "Checksum is bad!!\n");
ext_err |= RXDEE_TCPE;
err |= RXDE_TCPE;
}
}
} else { // if ip
DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
}
switch (igbe->regs.srrctl.desctype()) {
case RXDT_LEGACY:
desc->legacy.len = htole((uint16_t)(pktPtr->length + crcfixup));
desc->legacy.status = htole(status);
desc->legacy.errors = htole(err);
// No vlan support at this point... just set it to 0
desc->legacy.vlan = 0;
break;
case RXDT_ADV_SPLIT_A:
case RXDT_ADV_ONEBUF:
desc->adv_wb.rss_type = htole(0);
desc->adv_wb.pkt_type = htole(ptype);
if (igbe->regs.rxcsum.pcsd()) {
// no rss support right now
desc->adv_wb.rss_hash = htole(0);
} else {
desc->adv_wb.id = htole(ip_id);
desc->adv_wb.csum = htole(csum);
}
desc->adv_wb.status = htole(status);
desc->adv_wb.errors = htole(ext_err);
// no vlan support
desc->adv_wb.vlan_tag = htole(0);
break;
default:
panic("Unimplemnted RX receive buffer type %d\n",
igbe->regs.srrctl.desctype());
}
DPRINTF(EthernetDesc, "Descriptor complete w0: %#x w1: %#x\n",
desc->adv_read.pkt, desc->adv_read.hdr);
if (bytesCopied == pktPtr->length) {
DPRINTF(EthernetDesc,
"Packet completely written to descriptor buffers\n");
// Deal with the rx timer interrupts
if (igbe->regs.rdtr.delay()) {
Tick delay = igbe->regs.rdtr.delay() * igbe->intClock();
DPRINTF(EthernetSM, "RXS: Scheduling DTR for %d\n", delay);
igbe->reschedule(igbe->rdtrEvent, curTick() + delay);
}
if (igbe->regs.radv.idv()) {
Tick delay = igbe->regs.radv.idv() * igbe->intClock();
DPRINTF(EthernetSM, "RXS: Scheduling ADV for %d\n", delay);
if (!igbe->radvEvent.scheduled()) {
igbe->schedule(igbe->radvEvent, curTick() + delay);
}
}
// if neither radv or rdtr, maybe itr is set...
if (!igbe->regs.rdtr.delay() && !igbe->regs.radv.idv()) {
DPRINTF(EthernetSM,
"RXS: Receive interrupt delay disabled, posting IT_RXT\n");
igbe->postInterrupt(IT_RXT);
}
// If the packet is small enough, interrupt appropriately
// I wonder if this is delayed or not?!
if (pktPtr->length <= igbe->regs.rsrpd.idv()) {
DPRINTF(EthernetSM,
"RXS: Posting IT_SRPD beacuse small packet received\n");
igbe->postInterrupt(IT_SRPD);
}
bytesCopied = 0;
}
pktPtr = NULL;
igbe->checkDrain();
enableSm();
pktDone = true;
igbe->anBegin("RXS", "Done Updating Desc");
DPRINTF(EthernetDesc, "Processing of this descriptor complete\n");
igbe->anDq("RXS", annUnusedCacheQ);
unusedCache.pop_front();
igbe->anQ("RXS", annUsedCacheQ);
usedCache.push_back(desc);
}
void
IGbE::RxDescCache::enableSm()
{
if (!igbe->drainEvent) {
igbe->rxTick = true;
igbe->restartClock();
}
}
bool
IGbE::RxDescCache::packetDone()
{
if (pktDone) {
pktDone = false;
return true;
}
return false;
}
bool
IGbE::RxDescCache::hasOutstandingEvents()
{
return pktEvent.scheduled() || wbEvent.scheduled() ||
fetchEvent.scheduled() || pktHdrEvent.scheduled() ||
pktDataEvent.scheduled();
}
void
IGbE::RxDescCache::serialize(std::ostream &os)
{
DescCache<RxDesc>::serialize(os);
SERIALIZE_SCALAR(pktDone);
SERIALIZE_SCALAR(splitCount);
SERIALIZE_SCALAR(bytesCopied);
}
void
IGbE::RxDescCache::unserialize(Checkpoint *cp, const std::string &section)
{
DescCache<RxDesc>::unserialize(cp, section);
UNSERIALIZE_SCALAR(pktDone);
UNSERIALIZE_SCALAR(splitCount);
UNSERIALIZE_SCALAR(bytesCopied);
}
///////////////////////////// IGbE::TxDescCache //////////////////////////////
IGbE::TxDescCache::TxDescCache(IGbE *i, const std::string n, int s)
: DescCache<TxDesc>(i,n, s), pktDone(false), isTcp(false),
pktWaiting(false), completionAddress(0), completionEnabled(false),
useTso(false), pktEvent(this), headerEvent(this), nullEvent(this)
{
annSmFetch = "TX Desc Fetch";
annSmWb = "TX Desc Writeback";
annUnusedDescQ = "TX Unused Descriptors";
annUnusedCacheQ = "TX Unused Descriptor Cache";
annUsedCacheQ = "TX Used Descriptor Cache";
annUsedDescQ = "TX Used Descriptors";
annDescQ = "TX Descriptors";
}
void
IGbE::TxDescCache::processContextDesc()
{
assert(unusedCache.size());
TxDesc *desc;
DPRINTF(EthernetDesc, "Checking and processing context descriptors\n");
while (!useTso && unusedCache.size() &&
TxdOp::isContext(unusedCache.front())) {
DPRINTF(EthernetDesc, "Got context descriptor type...\n");
desc = unusedCache.front();
DPRINTF(EthernetDesc, "Descriptor upper: %#x lower: %#X\n",
desc->d1, desc->d2);
// is this going to be a tcp or udp packet?
isTcp = TxdOp::tcp(desc) ? true : false;
// setup all the TSO variables, they'll be ignored if we don't use
// tso for this connection
tsoHeaderLen = TxdOp::hdrlen(desc);
tsoMss = TxdOp::mss(desc);
if (TxdOp::isType(desc, TxdOp::TXD_CNXT) && TxdOp::tse(desc)) {
DPRINTF(EthernetDesc, "TCP offload enabled for packet hdrlen: "
"%d mss: %d paylen %d\n", TxdOp::hdrlen(desc),
TxdOp::mss(desc), TxdOp::getLen(desc));
useTso = true;
tsoTotalLen = TxdOp::getLen(desc);
tsoLoadedHeader = false;
tsoDescBytesUsed = 0;
tsoUsedLen = 0;
tsoPrevSeq = 0;
tsoPktHasHeader = false;
tsoPkts = 0;
}
TxdOp::setDd(desc);
unusedCache.pop_front();
igbe->anDq("TXS", annUnusedCacheQ);
usedCache.push_back(desc);
igbe->anQ("TXS", annUsedCacheQ);
}
if (!unusedCache.size())
return;
desc = unusedCache.front();
if (!useTso && TxdOp::isType(desc, TxdOp::TXD_ADVDATA) &&
TxdOp::tse(desc)) {
DPRINTF(EthernetDesc, "TCP offload(adv) enabled for packet "
"hdrlen: %d mss: %d paylen %d\n",
tsoHeaderLen, tsoMss, TxdOp::getTsoLen(desc));
useTso = true;
tsoTotalLen = TxdOp::getTsoLen(desc);
tsoLoadedHeader = false;
tsoDescBytesUsed = 0;
tsoUsedLen = 0;
tsoPrevSeq = 0;
tsoPktHasHeader = false;
tsoPkts = 0;
}
if (useTso && !tsoLoadedHeader) {
// we need to fetch a header
DPRINTF(EthernetDesc, "Starting DMA of TSO header\n");
assert(TxdOp::isData(desc) && TxdOp::getLen(desc) >= tsoHeaderLen);
pktWaiting = true;
assert(tsoHeaderLen <= 256);
igbe->dmaRead(pciToDma(TxdOp::getBuf(desc)),
tsoHeaderLen, &headerEvent, tsoHeader, 0);
}
}
void
IGbE::TxDescCache::headerComplete()
{
DPRINTF(EthernetDesc, "TSO: Fetching TSO header complete\n");
pktWaiting = false;
assert(unusedCache.size());
TxDesc *desc = unusedCache.front();
DPRINTF(EthernetDesc, "TSO: len: %d tsoHeaderLen: %d\n",
TxdOp::getLen(desc), tsoHeaderLen);
if (TxdOp::getLen(desc) == tsoHeaderLen) {
tsoDescBytesUsed = 0;
tsoLoadedHeader = true;
unusedCache.pop_front();
usedCache.push_back(desc);
} else {
// I don't think this case happens, I think the headrer is always
// it's own packet, if it wasn't it might be as simple as just
// incrementing descBytesUsed by the header length, but I'm not
// completely sure
panic("TSO header part of bigger packet, not implemented\n");
}
enableSm();
igbe->checkDrain();
}
unsigned
IGbE::TxDescCache::getPacketSize(EthPacketPtr p)
{
if (!unusedCache.size())
return 0;
DPRINTF(EthernetDesc, "Starting processing of descriptor\n");
assert(!useTso || tsoLoadedHeader);
TxDesc *desc = unusedCache.front();
if (useTso) {
DPRINTF(EthernetDesc, "getPacket(): TxDescriptor data "
"d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d "
"used: %d loaded hdr: %d\n", useTso, tsoHeaderLen, tsoMss,
tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d "
"this descLen: %d\n",
tsoDescBytesUsed, tsoCopyBytes, TxdOp::getLen(desc));
DPRINTF(EthernetDesc, "TSO: pktHasHeader: %d\n", tsoPktHasHeader);
if (tsoPktHasHeader)
tsoCopyBytes = std::min((tsoMss + tsoHeaderLen) - p->length,
TxdOp::getLen(desc) - tsoDescBytesUsed);
else
tsoCopyBytes = std::min(tsoMss,
TxdOp::getLen(desc) - tsoDescBytesUsed);
unsigned pkt_size =
tsoCopyBytes + (tsoPktHasHeader ? 0 : tsoHeaderLen);
DPRINTF(EthernetDesc, "TSO: Next packet is %d bytes\n", pkt_size);
return pkt_size;
}
DPRINTF(EthernetDesc, "Next TX packet is %d bytes\n",
TxdOp::getLen(unusedCache.front()));
return TxdOp::getLen(desc);
}
void
IGbE::TxDescCache::getPacketData(EthPacketPtr p)
{
assert(unusedCache.size());
TxDesc *desc;
desc = unusedCache.front();
DPRINTF(EthernetDesc, "getPacketData(): TxDescriptor data "
"d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) &&
TxdOp::getLen(desc));
pktPtr = p;
pktWaiting = true;
DPRINTF(EthernetDesc, "Starting DMA of packet at offset %d\n", p->length);
if (useTso) {
assert(tsoLoadedHeader);
if (!tsoPktHasHeader) {
DPRINTF(EthernetDesc,
"Loading TSO header (%d bytes) into start of packet\n",
tsoHeaderLen);
memcpy(p->data, &tsoHeader,tsoHeaderLen);
p->length +=tsoHeaderLen;
tsoPktHasHeader = true;
}
}
if (useTso) {
tsoDescBytesUsed += tsoCopyBytes;
assert(tsoDescBytesUsed <= TxdOp::getLen(desc));
DPRINTF(EthernetDesc,
"Starting DMA of packet at offset %d length: %d\n",
p->length, tsoCopyBytes);
igbe->dmaRead(pciToDma(TxdOp::getBuf(desc))
+ tsoDescBytesUsed,
tsoCopyBytes, &pktEvent, p->data + p->length,
igbe->txReadDelay);
} else {
igbe->dmaRead(pciToDma(TxdOp::getBuf(desc)),
TxdOp::getLen(desc), &pktEvent, p->data + p->length,
igbe->txReadDelay);
}
}
void
IGbE::TxDescCache::pktComplete()
{
TxDesc *desc;
assert(unusedCache.size());
assert(pktPtr);
igbe->anBegin("TXS", "Update Desc");
DPRINTF(EthernetDesc, "DMA of packet complete\n");
desc = unusedCache.front();
assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) &&
TxdOp::getLen(desc));
DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n",
desc->d1, desc->d2);
DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d "
"used: %d loaded hdr: %d\n", useTso, tsoHeaderLen, tsoMss,
tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
// Set the length of the data in the EtherPacket
if (useTso) {
pktPtr->length += tsoCopyBytes;
tsoUsedLen += tsoCopyBytes;
} else
pktPtr->length += TxdOp::getLen(desc);
DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d\n",
tsoDescBytesUsed, tsoCopyBytes);
if ((!TxdOp::eop(desc) && !useTso) ||
(pktPtr->length < ( tsoMss + tsoHeaderLen) &&
tsoTotalLen != tsoUsedLen && useTso)) {
assert(!useTso || (tsoDescBytesUsed == TxdOp::getLen(desc)));
igbe->anDq("TXS", annUnusedCacheQ);
unusedCache.pop_front();
igbe->anQ("TXS", annUsedCacheQ);
usedCache.push_back(desc);
tsoDescBytesUsed = 0;
pktDone = true;
pktWaiting = false;
pktMultiDesc = true;
DPRINTF(EthernetDesc, "Partial Packet Descriptor of %d bytes Done\n",
pktPtr->length);
pktPtr = NULL;
enableSm();
igbe->checkDrain();
return;
}
pktMultiDesc = false;
// no support for vlans
assert(!TxdOp::vle(desc));
// we only support single packet descriptors at this point
if (!useTso)
assert(TxdOp::eop(desc));
// set that this packet is done
if (TxdOp::rs(desc))
TxdOp::setDd(desc);
DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n",
desc->d1, desc->d2);
if (useTso) {
IpPtr ip(pktPtr);
if (ip) {
DPRINTF(EthernetDesc, "TSO: Modifying IP header. Id + %d\n",
tsoPkts);
ip->id(ip->id() + tsoPkts++);
ip->len(pktPtr->length - EthPtr(pktPtr)->size());
TcpPtr tcp(ip);
if (tcp) {
DPRINTF(EthernetDesc,
"TSO: Modifying TCP header. old seq %d + %d\n",
tcp->seq(), tsoPrevSeq);
tcp->seq(tcp->seq() + tsoPrevSeq);
if (tsoUsedLen != tsoTotalLen)
tcp->flags(tcp->flags() & ~9); // clear fin & psh
}
UdpPtr udp(ip);
if (udp) {
DPRINTF(EthernetDesc, "TSO: Modifying UDP header.\n");
udp->len(pktPtr->length - EthPtr(pktPtr)->size());
}
}
tsoPrevSeq = tsoUsedLen;
}
if (DTRACE(EthernetDesc)) {
IpPtr ip(pktPtr);
if (ip)
DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n",
ip->id());
else
DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
}
// Checksums are only ofloaded for new descriptor types
if (TxdOp::isData(desc) && ( TxdOp::ixsm(desc) || TxdOp::txsm(desc)) ) {
DPRINTF(EthernetDesc, "Calculating checksums for packet\n");
IpPtr ip(pktPtr);
assert(ip);
if (TxdOp::ixsm(desc)) {
ip->sum(0);
ip->sum(cksum(ip));
igbe->txIpChecksums++;
DPRINTF(EthernetDesc, "Calculated IP checksum\n");
}
if (TxdOp::txsm(desc)) {
TcpPtr tcp(ip);
UdpPtr udp(ip);
if (tcp) {
tcp->sum(0);
tcp->sum(cksum(tcp));
igbe->txTcpChecksums++;
DPRINTF(EthernetDesc, "Calculated TCP checksum\n");
} else if (udp) {
assert(udp);
udp->sum(0);
udp->sum(cksum(udp));
igbe->txUdpChecksums++;
DPRINTF(EthernetDesc, "Calculated UDP checksum\n");
} else {
panic("Told to checksum, but don't know how\n");
}
}
}
if (TxdOp::ide(desc)) {
// Deal with the rx timer interrupts
DPRINTF(EthernetDesc, "Descriptor had IDE set\n");
if (igbe->regs.tidv.idv()) {
Tick delay = igbe->regs.tidv.idv() * igbe->intClock();
DPRINTF(EthernetDesc, "setting tidv\n");
igbe->reschedule(igbe->tidvEvent, curTick() + delay, true);
}
if (igbe->regs.tadv.idv() && igbe->regs.tidv.idv()) {
Tick delay = igbe->regs.tadv.idv() * igbe->intClock();
DPRINTF(EthernetDesc, "setting tadv\n");
if (!igbe->tadvEvent.scheduled()) {
igbe->schedule(igbe->tadvEvent, curTick() + delay);
}
}
}
if (!useTso || TxdOp::getLen(desc) == tsoDescBytesUsed) {
DPRINTF(EthernetDesc, "Descriptor Done\n");
igbe->anDq("TXS", annUnusedCacheQ);
unusedCache.pop_front();
igbe->anQ("TXS", annUsedCacheQ);
usedCache.push_back(desc);
tsoDescBytesUsed = 0;
}
if (useTso && tsoUsedLen == tsoTotalLen)
useTso = false;
DPRINTF(EthernetDesc,
"------Packet of %d bytes ready for transmission-------\n",
pktPtr->length);
pktDone = true;
pktWaiting = false;
pktPtr = NULL;
tsoPktHasHeader = false;
if (igbe->regs.txdctl.wthresh() == 0) {
igbe->anBegin("TXS", "Desc Writeback");
DPRINTF(EthernetDesc, "WTHRESH == 0, writing back descriptor\n");
writeback(0);
} else if (igbe->regs.txdctl.gran() && igbe->regs.txdctl.wthresh() >=
descInBlock(usedCache.size())) {
DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
igbe->anBegin("TXS", "Desc Writeback");
writeback((igbe->cacheBlockSize()-1)>>4);
} else if (igbe->regs.txdctl.wthresh() >= usedCache.size()) {
DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
igbe->anBegin("TXS", "Desc Writeback");
writeback((igbe->cacheBlockSize()-1)>>4);
}
enableSm();
igbe->checkDrain();
}
void
IGbE::TxDescCache::actionAfterWb()
{
DPRINTF(EthernetDesc, "actionAfterWb() completionEnabled: %d\n",
completionEnabled);
igbe->postInterrupt(iGbReg::IT_TXDW);
if (completionEnabled) {
descEnd = igbe->regs.tdh();
DPRINTF(EthernetDesc,
"Completion writing back value: %d to addr: %#x\n", descEnd,
completionAddress);
igbe->dmaWrite(pciToDma(mbits(completionAddress, 63, 2)),
sizeof(descEnd), &nullEvent, (uint8_t*)&descEnd, 0);
}
}
void
IGbE::TxDescCache::serialize(std::ostream &os)
{
DescCache<TxDesc>::serialize(os);
SERIALIZE_SCALAR(pktDone);
SERIALIZE_SCALAR(isTcp);
SERIALIZE_SCALAR(pktWaiting);
SERIALIZE_SCALAR(pktMultiDesc);
SERIALIZE_SCALAR(useTso);
SERIALIZE_SCALAR(tsoHeaderLen);
SERIALIZE_SCALAR(tsoMss);
SERIALIZE_SCALAR(tsoTotalLen);
SERIALIZE_SCALAR(tsoUsedLen);
SERIALIZE_SCALAR(tsoPrevSeq);;
SERIALIZE_SCALAR(tsoPktPayloadBytes);
SERIALIZE_SCALAR(tsoLoadedHeader);
SERIALIZE_SCALAR(tsoPktHasHeader);
SERIALIZE_ARRAY(tsoHeader, 256);
SERIALIZE_SCALAR(tsoDescBytesUsed);
SERIALIZE_SCALAR(tsoCopyBytes);
SERIALIZE_SCALAR(tsoPkts);
SERIALIZE_SCALAR(completionAddress);
SERIALIZE_SCALAR(completionEnabled);
SERIALIZE_SCALAR(descEnd);
}
void
IGbE::TxDescCache::unserialize(Checkpoint *cp, const std::string &section)
{
DescCache<TxDesc>::unserialize(cp, section);
UNSERIALIZE_SCALAR(pktDone);
UNSERIALIZE_SCALAR(isTcp);
UNSERIALIZE_SCALAR(pktWaiting);
UNSERIALIZE_SCALAR(pktMultiDesc);
UNSERIALIZE_SCALAR(useTso);
UNSERIALIZE_SCALAR(tsoHeaderLen);
UNSERIALIZE_SCALAR(tsoMss);
UNSERIALIZE_SCALAR(tsoTotalLen);
UNSERIALIZE_SCALAR(tsoUsedLen);
UNSERIALIZE_SCALAR(tsoPrevSeq);;
UNSERIALIZE_SCALAR(tsoPktPayloadBytes);
UNSERIALIZE_SCALAR(tsoLoadedHeader);
UNSERIALIZE_SCALAR(tsoPktHasHeader);
UNSERIALIZE_ARRAY(tsoHeader, 256);
UNSERIALIZE_SCALAR(tsoDescBytesUsed);
UNSERIALIZE_SCALAR(tsoCopyBytes);
UNSERIALIZE_SCALAR(tsoPkts);
UNSERIALIZE_SCALAR(completionAddress);
UNSERIALIZE_SCALAR(completionEnabled);
UNSERIALIZE_SCALAR(descEnd);
}
bool
IGbE::TxDescCache::packetAvailable()
{
if (pktDone) {
pktDone = false;
return true;
}
return false;
}
void
IGbE::TxDescCache::enableSm()
{
if (!igbe->drainEvent) {
igbe->txTick = true;
igbe->restartClock();
}
}
bool
IGbE::TxDescCache::hasOutstandingEvents()
{
return pktEvent.scheduled() || wbEvent.scheduled() ||
fetchEvent.scheduled();
}
///////////////////////////////////// IGbE /////////////////////////////////
void
IGbE::restartClock()
{
if (!tickEvent.scheduled() && (rxTick || txTick || txFifoTick) &&
getState() == SimObject::Running)
schedule(tickEvent, (curTick() / ticks(1)) * ticks(1) + ticks(1));
}
unsigned int
IGbE::drain(Event *de)
{
unsigned int count;
count = pioPort->drain(de) + dmaPort->drain(de);
if (rxDescCache.hasOutstandingEvents() ||
txDescCache.hasOutstandingEvents()) {
count++;
drainEvent = de;
}
txFifoTick = false;
txTick = false;
rxTick = false;
if (tickEvent.scheduled())
deschedule(tickEvent);
if (count)
changeState(Draining);
else
changeState(Drained);
DPRINTF(EthernetSM, "got drain() returning %d", count);
return count;
}
void
IGbE::resume()
{
SimObject::resume();
txFifoTick = true;
txTick = true;
rxTick = true;
restartClock();
DPRINTF(EthernetSM, "resuming from drain");
}
void
IGbE::checkDrain()
{
if (!drainEvent)
return;
DPRINTF(EthernetSM, "checkDrain() in drain\n");
txFifoTick = false;
txTick = false;
rxTick = false;
if (!rxDescCache.hasOutstandingEvents() &&
!txDescCache.hasOutstandingEvents()) {
drainEvent->process();
drainEvent = NULL;
}
}
void
IGbE::txStateMachine()
{
if (!regs.tctl.en()) {
txTick = false;
DPRINTF(EthernetSM, "TXS: TX disabled, stopping ticking\n");
return;
}
// If we have a packet available and it's length is not 0 (meaning it's not
// a multidescriptor packet) put it in the fifo, otherwise an the next
// iteration we'll get the rest of the data
if (txPacket && txDescCache.packetAvailable()
&& !txDescCache.packetMultiDesc() && txPacket->length) {
bool success;
anQ("TXS", "TX FIFO Q");
DPRINTF(EthernetSM, "TXS: packet placed in TX FIFO\n");
success = txFifo.push(txPacket);
txFifoTick = true && !drainEvent;
assert(success);
txPacket = NULL;
anBegin("TXS", "Desc Writeback");
txDescCache.writeback((cacheBlockSize()-1)>>4);
return;
}
// Only support descriptor granularity
if (regs.txdctl.lwthresh() &&
txDescCache.descLeft() < (regs.txdctl.lwthresh() * 8)) {
DPRINTF(EthernetSM, "TXS: LWTHRESH caused posting of TXDLOW\n");
postInterrupt(IT_TXDLOW);
}
if (!txPacket) {
txPacket = new EthPacketData(16384);
}
if (!txDescCache.packetWaiting()) {
if (txDescCache.descLeft() == 0) {
postInterrupt(IT_TXQE);
anBegin("TXS", "Desc Writeback");
txDescCache.writeback(0);
anBegin("TXS", "Desc Fetch");
anWe("TXS", txDescCache.annUnusedCacheQ);
txDescCache.fetchDescriptors();
DPRINTF(EthernetSM, "TXS: No descriptors left in ring, forcing "
"writeback stopping ticking and posting TXQE\n");
txTick = false;
return;
}
if (!(txDescCache.descUnused())) {
anBegin("TXS", "Desc Fetch");
txDescCache.fetchDescriptors();
anWe("TXS", txDescCache.annUnusedCacheQ);
DPRINTF(EthernetSM, "TXS: No descriptors available in cache, "
"fetching and stopping ticking\n");
txTick = false;
return;
}
anPq("TXS", txDescCache.annUnusedCacheQ);
txDescCache.processContextDesc();
if (txDescCache.packetWaiting()) {
DPRINTF(EthernetSM,
"TXS: Fetching TSO header, stopping ticking\n");
txTick = false;
return;
}
unsigned size = txDescCache.getPacketSize(txPacket);
if (size > 0 && txFifo.avail() > size) {
anRq("TXS", "TX FIFO Q");
anBegin("TXS", "DMA Packet");
DPRINTF(EthernetSM, "TXS: Reserving %d bytes in FIFO and "
"beginning DMA of next packet\n", size);
txFifo.reserve(size);
txDescCache.getPacketData(txPacket);
} else if (size == 0) {
DPRINTF(EthernetSM, "TXS: getPacketSize returned: %d\n", size);
DPRINTF(EthernetSM,
"TXS: No packets to get, writing back used descriptors\n");
anBegin("TXS", "Desc Writeback");
txDescCache.writeback(0);
} else {
anWf("TXS", "TX FIFO Q");
DPRINTF(EthernetSM, "TXS: FIFO full, stopping ticking until space "
"available in FIFO\n");
txTick = false;
}
return;
}
DPRINTF(EthernetSM, "TXS: Nothing to do, stopping ticking\n");
txTick = false;
}
bool
IGbE::ethRxPkt(EthPacketPtr pkt)
{
rxBytes += pkt->length;
rxPackets++;
DPRINTF(Ethernet, "RxFIFO: Receiving pcakte from wire\n");
anBegin("RXQ", "Wire Recv");
if (!regs.rctl.en()) {
DPRINTF(Ethernet, "RxFIFO: RX not enabled, dropping\n");
anBegin("RXQ", "FIFO Drop", CPA::FL_BAD);
return true;
}
// restart the state machines if they are stopped
rxTick = true && !drainEvent;
if ((rxTick || txTick) && !tickEvent.scheduled()) {
DPRINTF(EthernetSM,
"RXS: received packet into fifo, starting ticking\n");
restartClock();
}
if (!rxFifo.push(pkt)) {
DPRINTF(Ethernet, "RxFIFO: Packet won't fit in fifo... dropped\n");
postInterrupt(IT_RXO, true);
anBegin("RXQ", "FIFO Drop", CPA::FL_BAD);
return false;
}
if (CPA::available() && cpa->enabled()) {
assert(sys->numSystemsRunning <= 2);
System *other_sys;
if (sys->systemList[0] == sys)
other_sys = sys->systemList[1];
else
other_sys = sys->systemList[0];
cpa->hwDq(CPA::FL_NONE, sys, macAddr, "RXQ", "WireQ", 0, other_sys);
anQ("RXQ", "RX FIFO Q");
cpa->hwWe(CPA::FL_NONE, sys, macAddr, "RXQ", "WireQ", 0, other_sys);
}
return true;
}
void
IGbE::rxStateMachine()
{
if (!regs.rctl.en()) {
rxTick = false;
DPRINTF(EthernetSM, "RXS: RX disabled, stopping ticking\n");
return;
}
// If the packet is done check for interrupts/descriptors/etc
if (rxDescCache.packetDone()) {
rxDmaPacket = false;
DPRINTF(EthernetSM, "RXS: Packet completed DMA to memory\n");
int descLeft = rxDescCache.descLeft();
DPRINTF(EthernetSM, "RXS: descLeft: %d rdmts: %d rdlen: %d\n",
descLeft, regs.rctl.rdmts(), regs.rdlen());
switch (regs.rctl.rdmts()) {
case 2: if (descLeft > .125 * regs.rdlen()) break;
case 1: if (descLeft > .250 * regs.rdlen()) break;
case 0: if (descLeft > .500 * regs.rdlen()) break;
DPRINTF(Ethernet, "RXS: Interrupting (RXDMT) "
"because of descriptors left\n");
postInterrupt(IT_RXDMT);
break;
}
if (rxFifo.empty())
rxDescCache.writeback(0);
if (descLeft == 0) {
anBegin("RXS", "Writeback Descriptors");
rxDescCache.writeback(0);
DPRINTF(EthernetSM, "RXS: No descriptors left in ring, forcing"
" writeback and stopping ticking\n");
rxTick = false;
}
// only support descriptor granulaties
assert(regs.rxdctl.gran());
if (regs.rxdctl.wthresh() >= rxDescCache.descUsed()) {
DPRINTF(EthernetSM,
"RXS: Writing back because WTHRESH >= descUsed\n");
anBegin("RXS", "Writeback Descriptors");
if (regs.rxdctl.wthresh() < (cacheBlockSize()>>4))
rxDescCache.writeback(regs.rxdctl.wthresh()-1);
else
rxDescCache.writeback((cacheBlockSize()-1)>>4);
}
if ((rxDescCache.descUnused() < regs.rxdctl.pthresh()) &&
((rxDescCache.descLeft() - rxDescCache.descUnused()) >
regs.rxdctl.hthresh())) {
DPRINTF(EthernetSM, "RXS: Fetching descriptors because "
"descUnused < PTHRESH\n");
anBegin("RXS", "Fetch Descriptors");
rxDescCache.fetchDescriptors();
}
if (rxDescCache.descUnused() == 0) {
anBegin("RXS", "Fetch Descriptors");
rxDescCache.fetchDescriptors();
anWe("RXS", rxDescCache.annUnusedCacheQ);
DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
"fetching descriptors and stopping ticking\n");
rxTick = false;
}
return;
}
if (rxDmaPacket) {
DPRINTF(EthernetSM,
"RXS: stopping ticking until packet DMA completes\n");
rxTick = false;
return;
}
if (!rxDescCache.descUnused()) {
anBegin("RXS", "Fetch Descriptors");
rxDescCache.fetchDescriptors();
anWe("RXS", rxDescCache.annUnusedCacheQ);
DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
"stopping ticking\n");
rxTick = false;
DPRINTF(EthernetSM, "RXS: No descriptors available, fetching\n");
return;
}
anPq("RXS", rxDescCache.annUnusedCacheQ);
if (rxFifo.empty()) {
anWe("RXS", "RX FIFO Q");
DPRINTF(EthernetSM, "RXS: RxFIFO empty, stopping ticking\n");
rxTick = false;
return;
}
anPq("RXS", "RX FIFO Q");
anBegin("RXS", "Get Desc");
EthPacketPtr pkt;
pkt = rxFifo.front();
pktOffset = rxDescCache.writePacket(pkt, pktOffset);
DPRINTF(EthernetSM, "RXS: Writing packet into memory\n");
if (pktOffset == pkt->length) {
anBegin( "RXS", "FIFO Dequeue");
DPRINTF(EthernetSM, "RXS: Removing packet from FIFO\n");
pktOffset = 0;
anDq("RXS", "RX FIFO Q");
rxFifo.pop();
}
DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
rxTick = false;
rxDmaPacket = true;
anBegin("RXS", "DMA Packet");
}
void
IGbE::txWire()
{
if (txFifo.empty()) {
anWe("TXQ", "TX FIFO Q");
txFifoTick = false;
return;
}
anPq("TXQ", "TX FIFO Q");
if (etherInt->sendPacket(txFifo.front())) {
cpa->hwQ(CPA::FL_NONE, sys, macAddr, "TXQ", "WireQ", 0);
if (DTRACE(EthernetSM)) {
IpPtr ip(txFifo.front());
if (ip)
DPRINTF(EthernetSM, "Transmitting Ip packet with Id=%d\n",
ip->id());
else
DPRINTF(EthernetSM, "Transmitting Non-Ip packet\n");
}
anDq("TXQ", "TX FIFO Q");
anBegin("TXQ", "Wire Send");
DPRINTF(EthernetSM,
"TxFIFO: Successful transmit, bytes available in fifo: %d\n",
txFifo.avail());
txBytes += txFifo.front()->length;
txPackets++;
txFifoTick = false;
txFifo.pop();
} else {
// We'll get woken up when the packet ethTxDone() gets called
txFifoTick = false;
}
}
void
IGbE::tick()
{
DPRINTF(EthernetSM, "IGbE: -------------- Cycle --------------\n");
if (rxTick)
rxStateMachine();
if (txTick)
txStateMachine();
if (txFifoTick)
txWire();
if (rxTick || txTick || txFifoTick)
schedule(tickEvent, curTick() + ticks(1));
}
void
IGbE::ethTxDone()
{
anBegin("TXQ", "Send Done");
// restart the tx state machines if they are stopped
// fifo to send another packet
// tx sm to put more data into the fifo
txFifoTick = true && !drainEvent;
if (txDescCache.descLeft() != 0 && !drainEvent)
txTick = true;
restartClock();
txWire();
DPRINTF(EthernetSM, "TxFIFO: Transmission complete\n");
}
void
IGbE::serialize(std::ostream &os)
{
PciDev::serialize(os);
regs.serialize(os);
SERIALIZE_SCALAR(eeOpBits);
SERIALIZE_SCALAR(eeAddrBits);
SERIALIZE_SCALAR(eeDataBits);
SERIALIZE_SCALAR(eeOpcode);
SERIALIZE_SCALAR(eeAddr);
SERIALIZE_SCALAR(lastInterrupt);
SERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
rxFifo.serialize("rxfifo", os);
txFifo.serialize("txfifo", os);
bool txPktExists = txPacket;
SERIALIZE_SCALAR(txPktExists);
if (txPktExists)
txPacket->serialize("txpacket", os);
Tick rdtr_time = 0, radv_time = 0, tidv_time = 0, tadv_time = 0,
inter_time = 0;
if (rdtrEvent.scheduled())
rdtr_time = rdtrEvent.when();
SERIALIZE_SCALAR(rdtr_time);
if (radvEvent.scheduled())
radv_time = radvEvent.when();
SERIALIZE_SCALAR(radv_time);
if (tidvEvent.scheduled())
tidv_time = tidvEvent.when();
SERIALIZE_SCALAR(tidv_time);
if (tadvEvent.scheduled())
tadv_time = tadvEvent.when();
SERIALIZE_SCALAR(tadv_time);
if (interEvent.scheduled())
inter_time = interEvent.when();
SERIALIZE_SCALAR(inter_time);
SERIALIZE_SCALAR(pktOffset);
nameOut(os, csprintf("%s.TxDescCache", name()));
txDescCache.serialize(os);
nameOut(os, csprintf("%s.RxDescCache", name()));
rxDescCache.serialize(os);
}
void
IGbE::unserialize(Checkpoint *cp, const std::string &section)
{
PciDev::unserialize(cp, section);
regs.unserialize(cp, section);
UNSERIALIZE_SCALAR(eeOpBits);
UNSERIALIZE_SCALAR(eeAddrBits);
UNSERIALIZE_SCALAR(eeDataBits);
UNSERIALIZE_SCALAR(eeOpcode);
UNSERIALIZE_SCALAR(eeAddr);
UNSERIALIZE_SCALAR(lastInterrupt);
UNSERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
rxFifo.unserialize("rxfifo", cp, section);
txFifo.unserialize("txfifo", cp, section);
bool txPktExists;
UNSERIALIZE_SCALAR(txPktExists);
if (txPktExists) {
txPacket = new EthPacketData(16384);
txPacket->unserialize("txpacket", cp, section);
}
rxTick = true;
txTick = true;
txFifoTick = true;
Tick rdtr_time, radv_time, tidv_time, tadv_time, inter_time;
UNSERIALIZE_SCALAR(rdtr_time);
UNSERIALIZE_SCALAR(radv_time);
UNSERIALIZE_SCALAR(tidv_time);
UNSERIALIZE_SCALAR(tadv_time);
UNSERIALIZE_SCALAR(inter_time);
if (rdtr_time)
schedule(rdtrEvent, rdtr_time);
if (radv_time)
schedule(radvEvent, radv_time);
if (tidv_time)
schedule(tidvEvent, tidv_time);
if (tadv_time)
schedule(tadvEvent, tadv_time);
if (inter_time)
schedule(interEvent, inter_time);
UNSERIALIZE_SCALAR(pktOffset);
txDescCache.unserialize(cp, csprintf("%s.TxDescCache", section));
rxDescCache.unserialize(cp, csprintf("%s.RxDescCache", section));
}
IGbE *
IGbEParams::create()
{
return new IGbE(this);
}