This patch fixes two warnings, one related to a narrowing conversion
(int to MachInst), and one due to the cast operator for arguments and
a mismatch in const-ness (const void* and void*).
The LRU policy always evicted the least recently touched way, even if it
contained valid data and another way was invalid, as can happen if a block has
been invalidated by coherance. This can result in caches never warming up even
though they are replacing blocks. This modifies the LRU policy to move blocks
to LRU position on invalidation.
Currently when multiple CPUs perform a load-linked/store-conditional sequence,
the loads all create a list of reservations which is then scanned when the
stores occur. A reservation matching the context and address of the store is
sought, BUT all reservations matching the address are also erased at this point.
The upshot is that a store-conditional will remove all reservations even if the
store itself does not succeed. A livelock was observed using 7-8 CPUs where a
thread would erase the reservations of other threads, not succeed, loop and put
its own reservation in again only to have it blown by another thread that
unsuccessfully now tries to store-conditional -- no forward progress was made,
hanging the system.
The correct way to do this is to only blow a reservation when a store
(conditional or not) actually /occurs/ to its address. One thread always wins
(the one that does the store-conditional first).
Add new flag (named pushedRAS) in the PredictorHistory structure.
This flag tracks whether the RAS has been pushed or not during a prediction.
Then, in the squash function it is used to pop the RAS if necessary.
npc in PCState for ARM was being calculated before the current flags were
updated with the next flags. This causes an issue as the npc is incremented by
two or four depending on the current flags (thumb or not) and was leading to
branches that were predicted correctly being identified as mispredicted.
This patch updates the message printed if the user does not have
tcmalloc available. It turns out that the correct package (which
creates all required symlinks etc) is libgoogle-perftools-dev. This
has been verified on Ubuntu 12.04.
1) Modifies Benchmarks.py to add support for Android ICS and BBench on Android ICS.
2) An rcS script is added for BBench on ICS.
3) Separates benchmark entries and rcS scripts for GB/ICS
4) Removes the debugging output from the existing BBench run script. These
print statements were used for debugging and they seemed to confuse users
into believing they should see some terminal output.
This patch fixes a failing compilation caused by MaxMiscDestRegs being
zero. According to gcc 4.6, the result is a comparison that is always
false due to limited range of data type.
This patch is a temporary fix until Andreas' four-phase patches
get reviewed and committed. Removing FastAlloc seems to have exposed
an issue which previously was reasonable rare in which packets are freed
before the sending cache is done with them. This change puts incoming packets
no a pendingDelete queue which are deleted at the start of the next call and
thus breaks the dependency between when the caller returns true and when the
packet is actually used by the sending cache.
Running valgrind on a multi-core linux boot and the memtester results in no
valgrind warnings.
Due to recent changes to X86 TLB, gem5 stopped compiling on
gcc version 4.4.3. This patch provides the fix for that problem. The patch
is tested on gcc 4.4.3. The change is not required for more recent
versions of gcc (like on 4.6.3).
As status matrix, MIPS fs does not work. Hence, these options are not
required. Secondly, the function is setting param values for a CPU class.
This seems strange, should probably be done in a different way.
initCPU() will be called to initialize switched out CPUs for the simple and
inorder CPU models. this patch prevents those CPUs from being initialized
because they should get their state from the active CPU when it is switched
out.
This change allows designating a system as MP capable or not as some
bootloaders/kernels care that it's set right. You can have a single
processor MP capable system, but you can't have a multi-processor
UP only system. This change also fixes the initialization of the MIDR
register.
This package is available in Ubuntu, Debian, and Redhat as google-perftools.
With multiple tests on a single machine I've seen a little over 10% performance
gain with tcmalloc.
While FastAlloc provides a small performance increase (~1.5%) over regular malloc it isn't thread safe.
After removing FastAlloc and using tcmalloc I've seen a performance increase of 12% over libc malloc
when running twolf for ARM.
The CPUID instruction was implemented so that it would only write its results
if the instruction was successful. This works fine on the simple CPU where
unwritten registers retain their old values, but on a CPU like O3 with
renaming this is broken. The instruction needs to write the old values back
into the registers explicitly if they aren't being changed.
There are some bits of some fields of the ExtMachInst which are not actually
used for anything but are included in the hash of an ExtMachInst for
simplicity and efficiency. This change makes sure the decoder's internal
working ExtMachInst is completely initialized, even these unused bits, so that
there isn't any nondeterministic behavior, no valgrind messages about
uninitialized variables, and no potential false misses/redundant entries in
the decode cache.
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh