Commit graph

135 commits

Author SHA1 Message Date
Brad Beckmann
97a5e5b25e ruby: changed all references to numCPs to num-cp 2016-01-22 10:42:12 -05:00
Tony Gutierrez
1a7d3f9fcb gpu-compute: AMD's baseline GPU model 2016-01-19 14:28:22 -05:00
Brad Beckmann
173a786921 ruby: more flexible ruby tester support
This patch allows the ruby random tester to use ruby ports that may only
support instr or data requests.  This patch is similar to a previous changeset
(8932:1b2c17565ac8) that was unfortunately broken by subsequent changesets.
This current patch implements the support in a more straight-forward way.
Since retries are now tested when running the ruby random tester, this patch
splits up the retry and drain check behavior so that RubyPort children, such
as the GPUCoalescer, can perform those operations correctly without having to
duplicate code.  Finally, the patch also includes better DPRINTFs for
debugging the tester.
2015-07-20 09:15:18 -05:00
Nilay Vaish
4453537ead ruby: profiler: provide the number of vnets through ruby system
The aim is to ultimately do away with the static function
Network::getNumberOfVirtualNetworks().
2015-10-14 00:29:43 -05:00
Nilay Vaish
fe47f0a72f ruby: remove random seed
We no longer use the C library based random number generator: random().
Instead we use the C++ library provided rng.  So setting the random seed for
the RubySystem class has no effect.  Hence the variable and the corresponding
option are being dropped.
2015-09-01 15:50:33 -05:00
Nilay Vaish
a60a93eb05 ruby: specify number of vnets for each protocol
The default value for number of virtual networks is being removed.  Each protocol
should now specify the value it needs.
2015-08-30 12:24:18 -05:00
Andreas Hansson
d71a0d790d ruby: Move Rubys cache class from Cache.py to RubyCache.py
This patch serves to avoid name clashes with the classic cache. For
some reason having two 'SimObject' files with the same name creates
problems.

--HG--
rename : src/mem/ruby/structures/Cache.py => src/mem/ruby/structures/RubyCache.py
2015-08-21 07:03:21 -04:00
Nilay Vaish
2f44dada68 ruby: reverts to changeset: bf82f1f7b040 2015-08-19 10:02:01 -05:00
Nilay Vaish
d0cf41300b ruby: profiler: provide the number of vnets through ruby system
The aim is to ultimately do away with the static function
Network::getNumberOfVirtualNetworks().
2015-08-14 19:28:44 -05:00
Nilay Vaish
d660b3145b ruby: remove random seed
We no longer use the C library based random number generator: random().
Instead we use the C++ library provided rng.  So setting the random seed for
the RubySystem class has no effect.  Hence the variable and the corresponding
option are being dropped.
2015-08-14 19:28:44 -05:00
Joel Hestness
905c0b347c ruby: Protocol changes for SimObject MessageBuffers 2015-08-14 00:19:45 -05:00
Joel Hestness
581bae9ecb ruby: Expose MessageBuffers as SimObjects
Expose MessageBuffers from SLICC controllers as SimObjects that can be
manipulated in Python. This patch has numerous benefits:
1) First and foremost, it exposes MessageBuffers as SimObjects that can be
manipulated in Python code. This allows parameters to be set and checked in
Python code to avoid obfuscating parameters within protocol files. Further, now
as SimObjects, MessageBuffer parameters are printed to config output files as a
way to track parameters across simulations (e.g. buffer sizes)

2) Cleans up special-case code for responseFromMemory buffers, and aligns their
instantiation and use with mandatoryQueue buffers. These two special buffers
are the only MessageBuffers that are exposed to components outside of SLICC
controllers, and they're both slave ends of these buffers. They should be
exposed outside of SLICC in the same way, and this patch does it.

3) Distinguishes buffer-specific parameters from buffer-to-network parameters.
Specifically, buffer size, randomization, ordering, recycle latency, and ports
are all specific to a MessageBuffer, while the virtual network ID and type are
intrinsics of how the buffer is connected to network ports. The former are
specified in the Python object, while the latter are specified in the
controller *.sm files. Unlike buffer-specific parameters, which may need to
change depending on the simulated system structure, buffer-to-network
parameters can be specified statically for most or all different simulated
systems.
2015-08-14 00:19:44 -05:00
Joel Hestness
9567c839fe ruby: Remove the RubyCache/CacheMemory latency
The RubyCache (CacheMemory) latency parameter is only used for top-level caches
instantiated for Ruby coherence protocols. However, the top-level cache hit
latency is assessed by the Sequencer as accesses flow through to the cache
hierarchy. Further, protocol state machines should be enforcing these cache hit
latencies, but RubyCaches do not expose their latency to any existng state
machines through the SLICC/C++ interface. Thus, the RubyCache latency parameter
is superfluous for all caches. This is confusing for users.

As a step toward pushing L0/L1 cache hit latency into the top-level cache
controllers, move their latencies out of the RubyCache declarations and over to
their Sequencers. Eventually, these Sequencer parameters should be exposed as
parameters to the top-level cache controllers, which should assess the latency.
NOTE: Assessing these latencies in the cache controllers will require modifying
each to eliminate instantaneous Ruby hit callbacks in transitions that finish
accesses, which is likely a large undertaking.
2015-08-14 00:19:37 -05:00
Nilay Vaish
3d782f8df7 ruby: correctly number the sequencer in MESI_Three_Level.py 2015-08-03 22:44:27 -05:00
David Hashe
fbb220b4ae config: add base class for ruby controllers
The CntrlBase python class handles configuration parameters such as running
counts of controllers and sequencers.
2015-07-20 09:15:18 -05:00
David Hashe
1850ed410f ruby: initialize replacement policies with their own simobjs
this is in preparation for other replacement policies that take additional
parameters.
2015-07-20 09:15:18 -05:00
Brandon Potter
9eda4bdc5a ruby: remove extra whitespace and correct misspelled words 2015-07-10 16:05:23 -05:00
David Hashe
64af6dafb1 config: Update location of ruby topologies in help
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2015-07-04 10:43:47 -05:00
Andreas Hansson
36dc93a5fa mem: Move crossbar default latencies to subclasses
This patch introduces a few subclasses to the CoherentXBar and
NoncoherentXBar to distinguish the different uses in the system. We
use the crossbar in a wide range of places: interfacing cores to the
L2, as a system interconnect, connecting I/O and peripherals,
etc. Needless to say, these crossbars have very different performance,
and the clock frequency alone is not enough to distinguish these
scenarios.

Instead of trying to capture every possible case, this patch
introduces dedicated subclasses for the three primary use-cases:
L2XBar, SystemXBar and IOXbar. More can be added if needed, and the
defaults can be overridden.
2015-03-02 04:00:47 -05:00
Jason Power
670f44e05e Ruby: Update backing store option to propagate through to all RubyPorts
Previously, the user would have to manually set access_backing_store=True
on all RubyPorts (Sequencers) in the config files.
Now, instead there is one global option that each RubyPort checks on
initialization.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2015-02-26 09:58:26 -06:00
Malek Musleh
be3a952394 config, ruby: connect dma to network
DMA Controller was not being connected to the network for the MESI_Three_Level
protocol as was being done in the other protocol config files. Without this
patch, this protocol segfaults during startup.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2015-01-20 14:15:28 -06:00
Nilay Vaish
1ee70e9d84 configs: ruby: removes bug introduced by 05b5a6cf3521 2015-01-03 17:51:48 -06:00
Nilay Vaish
cca1608bd5 config: ruby: mi protocol: correct master slave setting for dma
In the MI protocol, the master slave connection between the dma controller
and network was being set incorrectly.  This patch corrects it.
2014-12-04 08:59:44 -06:00
Steve Reinhardt
252a463b6b Backed out prior changeset f9fb64a72259
Back out use of importlib to avoid implicitly creating
dependency on Python 2.7.
2014-11-23 18:00:47 -08:00
Gabe Black
12243a3835 config: ruby: Get rid of an "eval" and an "exec" operating on generated code.
We can get the same result using importlib.
2014-11-23 05:55:26 -08:00
Marc Orr
bf80734b2c x86 isa: This patch attempts an implementation at mwait.
Mwait works as follows:
1. A cpu monitors an address of interest (monitor instruction)
2. A cpu calls mwait - this loads the cache line into that cpu's cache.
3. The cpu goes to sleep.
4. When another processor requests write permission for the line, it is
   evicted from the sleeping cpu's cache. This eviction is forwarded to the
   sleeping cpu, which then wakes up.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-11-06 05:42:22 -06:00
Nilay Vaish
0811f21f67 ruby: provide a backing store
Ruby's functional accesses are not guaranteed to succeed as of now.  While
this is not a problem for the protocols that are currently in the mainline
repo, it seems that coherence protocols for gpus rely on a backing store to
supply the correct data.  The aim of this patch is to make this backing store
configurable i.e. it comes into play only when a particular option:
--access-backing-store is invoked.

The backing store has been there since M5 and GEMS were integrated.  The only
difference is that earlier the system used to maintain the backing store and
ruby's copy was write-only.  Sometime last year, we moved to data being
supplied supplied by ruby in SE mode simulations.  And now we have patches on
the reviewboard, which remove ruby's copy of memory altogether and rely
completely on the system's memory to supply data.  This patch adds back a
SimpleMemory member to RubySystem.  This member is used only if the option:
access-backing-store is set to true.  By default, the memory would not be
accessed.
2014-11-06 05:42:21 -06:00
Nilay Vaish
3022d463fb ruby: interface with classic memory controller
This patch is the final in the series.  The whole series and this patch in
particular were written with the aim of interfacing ruby's directory controller
with the memory controller in the classic memory system.  This is being done
since ruby's memory controller has not being kept up to date with the changes
going on in DRAMs.  Classic's memory controller is more up to date and
supports multiple different types of DRAM.  This also brings classic and
ruby ever more close.  The patch also changes ruby's memory controller to
expose the same interface.
2014-11-06 05:42:21 -06:00
Nilay Vaish
95a0b18431 ruby: single physical memory in fs mode
Both ruby and the system used to maintain memory copies.  With the changes
carried for programmed io accesses, only one single memory is required for
fs simulations.  This patch sets the copy of memory that used to reside
with the system to null, so that no space is allocated, but address checks
can still be carried out.  All the memory accesses now source and sink values
to the memory maintained by ruby.
2014-11-06 05:41:44 -06:00
Nilay Vaish
0f28d63272 ruby: moesi hammer: correct typo in master-slave assignment 2014-10-11 15:02:22 -05:00
Nilay Vaish
7a0d5aafe4 ruby: message buffers: significant changes
This patch is the final patch in a series of patches.  The aim of the series
is to make ruby more configurable than it was.  More specifically, the
connections between controllers are not at all possible (unless one is ready
to make significant changes to the coherence protocol).  Moreover the buffers
themselves are magically connected to the network inside the slicc code.
These connections are not part of the configuration file.

This patch makes changes so that these connections will now be made in the
python configuration files associated with the protocols.  This requires
each state machine to expose the message buffers it uses for input and output.
So, the patch makes these buffers configurable members of the machines.

The patch drops the slicc code that usd to connect these buffers to the
network.  Now these buffers are exposed to the python configuration system
as Master and Slave ports.  In the configuration files, any master port
can be connected any slave port.  The file pyobject.cc has been modified to
take care of allocating the actual message buffer.  This is inline with how
other port connections work.
2014-09-01 16:55:47 -05:00
Emilio Castillo ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E)
01f792a367 ruby: Fixes clock domains in configuration files
This patch fixes scripts related to ruby by adding the ruby clock domain.
Now the L1 controllers and  the Sequencer shares the cpu clock domain,
while the rest of the components use the ruby clock domain.

Before this patch, running simulations with the cpu clock set at 2GHz or
1GHz will output the same time results and could distort power measurements.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-09-01 16:55:30 -05:00
Nilay Vaish
097aadc2cd config: ruby: remove memory controller from network test
It is not in use and not required as such.
2014-04-19 09:00:30 -05:00
Nilay Vaish
4b67ada89e ruby: garnet: convert network interfaces into clocked objects
This helps in configuring the network interfaces from the python script and
these objects no longer rely on the network object for the timing information.
2014-03-20 09:14:14 -05:00
Nilay Vaish
b5cc4c7604 config: ruby: rename _cpu_ruby_ports to _cpu_ports 2014-03-20 09:14:14 -05:00
Nilay Vaish
d5b5d89b34 config: remove ruby_fs.py
The patch removes the ruby_fs.py file.  The functionality is being moved to
fs.py.  This would being ruby fs simulations in line with how ruby se
simulations are started (using --ruby option).  The alpha fs config functions
are being combined for classing and ruby memory systems.  This required
renaming the piobus in ruby to iobus.  So, we will have stats being renamed
in the stats file for ruby fs regression.
2014-03-20 08:03:09 -05:00
Nilay Vaish
a20fbdfc23 config: ruby: remove piobus from protocols
This patch removes the piobus from the protocol config files.  The ports
are now connected to the piobus in the Ruby.py file.
2014-03-17 17:40:15 -05:00
Nilay Vaish
8504b079b8 ruby: correct errors in changeset 4eec7bdde5b0
Couple of errors were discovered in 4eec7bdde5b0 which necessitated this patch.
Firstly, we create interrupt controllers in the se mode, but no piobus was
being created.  RubyPort, which earlier used to ignore range changes now
forwards those to the piobus.  The lack of piobus resulted in segmentation
fault.  This patch creates a piobus even in se mode.  It is not created only
when some tester is running.  Secondly,  I had missed out on modifying port
connections for other coherence protocols.
2014-02-24 20:50:05 -06:00
Nilay Vaish
7e27860ef4 ruby: route all packets through ruby port
Currently, the interrupt controller in x86 is connected to the io bus
directly.  Therefore the packets between the io devices and the interrupt
controller do not go through ruby.  This patch changes ruby port so that
these packets arrive at the ruby port first, which then routes them to their
destination.  Note that the patch does not make these packets go through the
ruby network.  That would happen in a subsequent patch.
2014-02-23 19:16:16 -06:00
Nilay Vaish
407f37e15f ruby: move all statistics to stats.txt, eliminate ruby.stats 2014-01-10 16:19:47 -06:00
Nilay Vaish
4070b00875 ruby: add a three level MESI protocol.
The first two levels (L0, L1) are private to the core, the third level (L2)is
possibly shared. The protocol supports clustered designs.  For example, one
can have two sets of two cores. Each core has an L0 and L1 cache. There are
two L2 controllers where each set accesses only one of the L2 controllers.
2014-01-04 00:03:34 -06:00
Nilay Vaish
bb6d7d402b ruby: rename MESI_CMP_directory to MESI_Two_Level
This is because the next patch introduces a three level hierarchy.

--HG--
rename : build_opts/ALPHA_MESI_CMP_directory => build_opts/ALPHA_MESI_Two_Level
rename : build_opts/X86_MESI_CMP_directory => build_opts/X86_MESI_Two_Level
rename : configs/ruby/MESI_CMP_directory.py => configs/ruby/MESI_Two_Level.py
rename : src/mem/protocol/MESI_CMP_directory-L1cache.sm => src/mem/protocol/MESI_Two_Level-L1cache.sm
rename : src/mem/protocol/MESI_CMP_directory-L2cache.sm => src/mem/protocol/MESI_Two_Level-L2cache.sm
rename : src/mem/protocol/MESI_CMP_directory-dir.sm => src/mem/protocol/MESI_Two_Level-dir.sm
rename : src/mem/protocol/MESI_CMP_directory-dma.sm => src/mem/protocol/MESI_Two_Level-dma.sm
rename : src/mem/protocol/MESI_CMP_directory-msg.sm => src/mem/protocol/MESI_Two_Level-msg.sm
rename : src/mem/protocol/MESI_CMP_directory.slicc => src/mem/protocol/MESI_Two_Level.slicc
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/config.ini => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/config.ini
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/ruby.stats => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/ruby.stats
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/simerr => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/simerr
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/simout => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/simout
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/stats.txt => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/stats.txt
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/system.pc.com_1.terminal => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/system.pc.com_1.terminal
rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/config.ini => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/config.ini
rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/ruby.stats
rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/simerr => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/simerr
rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/simout => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/simout
rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/stats.txt
rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/config.ini => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/config.ini
rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/ruby.stats
rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/simerr => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/simerr
rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/simout => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/simout
rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/stats.txt
rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/config.ini => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/config.ini
rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/ruby.stats
rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/simerr => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/simerr
rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/simout => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/simout
rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/stats.txt
rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/config.ini => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/config.ini
rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/ruby.stats
rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/simerr => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/simerr
rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/simout => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/simout
rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/stats.txt
2014-01-04 00:03:33 -06:00
Nilay Vaish
9ec59e8b69 ruby: remove cntrl_id from python config scripts. 2014-01-04 00:03:32 -06:00
Nilay Vaish
9853ef6651 ruby: some small changes 2014-01-04 00:03:30 -06:00
Nilay Vaish
f5b52a265a ruby: mesi: remove owner and sharer fields from directory tags
The directory controller should not have the sharer field since there is
only one level 2 cache. Anyway the field was not in use.  The owner field
was being used to track the l2 cache version (in case of distributed l2) that
has the cache block under consideration.  The information is not required
since the version of the level 2 cache can be obtained from a subset of the
address bits.
2013-12-20 20:34:03 -06:00
Nilay Vaish
e9ae8b7d29 ruby: network: correct naming of routers
The routers are created before the network class. This results in the routers
becoming children of the first link they are connected to and they get generic
names like int_node and node_b. This patch creates the network object first
and passes it to the topology creation function. Now the routers are children
of the network object and names are much more sensible.
2013-09-06 16:21:33 -05:00
Nilay Vaish
c4e7e18eeb ruby: add option for number of transitions per cycle
The number of transitions per cycle that a controller can carry out is
a proxy for the number of ports that a controller has. This value is
currently 32 which is way too high. The patch introduces an option
for the number of ports and uses this option in the protocol files
to set the number of transitions. The default value is being set to
4. None of the se regressions change. Ruby stats for the fs regression
change and are being updated.
2013-08-20 11:32:31 -05:00
Andreas Hansson
a8480fe1c3 config: Move the memory instantiation outside FSConfig
This patch moves the instantiation of the memory controller outside
FSConfig and instead relies on the mem_ranges to pass the information
to the caller (e.g. fs.py or one of the regression scripts). The main
motivation for this change is to expose the structural composition of
the memory system and allow more tuning and configuration without
adding a large number of options to the makeSystem functions.

The patch updates the relevant example scripts to maintain the current
functionality. As the order that ports are connected to the memory bus
changes (in certain regresisons), some bus stats are shuffled
around. For example, what used to be layer 0 is now layer 1.

Going forward, options will be added to support the addition of
multi-channel memory controllers.
2013-08-19 03:52:27 -04:00
Nilay Vaish
62a93f0bf0 ruby: check for compatibility between mem size and num dirs
The configuration scripts provided for ruby assume that the available
physical memory is equally distributed amongst the directory controllers.
But there is no check to ensure this assumption has been adhered to. This
patch adds the required check.
2013-06-28 21:36:11 -05:00
Akash Bagdia
7d7ab73862 sim: Add the notion of clock domains to all ClockedObjects
This patch adds the notion of source- and derived-clock domains to the
ClockedObjects. As such, all clock information is moved to the clock
domain, and the ClockedObjects are grouped into domains.

The clock domains are either source domains, with a specific clock
period, or derived domains that have a parent domain and a divider
(potentially chained). For piece of logic that runs at a derived clock
(a ratio of the clock its parent is running at) the necessary derived
clock domain is created from its corresponding parent clock
domain. For now, the derived clock domain only supports a divider,
thus ensuring a lower speed compared to its parent. Multiplier
functionality implies a PLL logic that has not been modelled yet
(create a separate clock instead).

The clock domains should be used as a mechanism to provide a
controllable clock source that affects clock for every clocked object
lying beneath it. The clock of the domain can (in a future patch) be
controlled by a handler responsible for dynamic frequency scaling of
the respective clock domains.

All the config scripts have been retro-fitted with clock domains. For
the System a default SrcClockDomain is created. For CPUs that run at a
different speed than the system, there is a seperate clock domain
created. This domain incorporates the CPU and the associated
caches. As before, Ruby runs under its own clock domain.

The clock period of all domains are pre-computed, such that no virtual
functions or multiplications are needed when calling
clockPeriod. Instead, the clock period is pre-computed when any
changes occur. For this to be possible, each clock domain tracks its
children.
2013-06-27 05:49:49 -04:00