Ruby: Update backing store option to propagate through to all RubyPorts

Previously, the user would have to manually set access_backing_store=True
on all RubyPorts (Sequencers) in the config files.
Now, instead there is one global option that each RubyPort checks on
initialization.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This commit is contained in:
Jason Power 2015-02-26 09:58:26 -06:00
parent f18d2120fa
commit 670f44e05e
8 changed files with 58 additions and 39 deletions

View file

@ -235,7 +235,8 @@ def create_system(options, full_system, system, piobus = None, dma_ports = []):
# Create a backing copy of physical memory in case required
if options.access_backing_store:
ruby.phys_mem = SimpleMemory(range=AddrRange(options.mem_size),
ruby.access_backing_store = True
ruby.phys_mem = SimpleMemory(range=system.mem_ranges[0],
in_addr_map=False)
def send_evicts(options):

View file

@ -40,7 +40,8 @@
DMASequencer::DMASequencer(const Params *p)
: MemObject(p), m_version(p->version), m_controller(NULL),
m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester),
slave_port(csprintf("%s.slave", name()), this, 0),
slave_port(csprintf("%s.slave", name()), this, 0, p->ruby_system,
p->ruby_system->getAccessBackingStore()),
drainManager(NULL), system(p->system), retry(false)
{
assert(m_version != -1);
@ -73,8 +74,10 @@ DMASequencer::getSlavePort(const std::string &if_name, PortID idx)
}
DMASequencer::MemSlavePort::MemSlavePort(const std::string &_name,
DMASequencer *_port, PortID id)
: QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this)
DMASequencer *_port, PortID id, RubySystem* _ruby_system,
bool _access_backing_store)
: QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
ruby_system(_ruby_system), access_backing_store(_access_backing_store)
{
DPRINTF(RubyDma, "Created slave memport on ruby sequencer %s\n", _name);
}
@ -208,8 +211,14 @@ DMASequencer::MemSlavePort::hitCallback(PacketPtr pkt)
DPRINTF(RubyDma, "Hit callback needs response %d\n", needsResponse);
// turn packet around to go back to requester if response expected
if (needsResponse) {
if (access_backing_store) {
ruby_system->getPhysMem()->access(pkt);
} else if (needsResponse) {
pkt->makeResponse();
}
if (needsResponse) {
DPRINTF(RubyDma, "Sending packet back over port\n");
// send next cycle
schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());

View file

@ -29,8 +29,8 @@
#ifndef __MEM_RUBY_SYSTEM_DMASEQUENCER_HH__
#define __MEM_RUBY_SYSTEM_DMASEQUENCER_HH__
#include <ostream>
#include <memory>
#include <ostream>
#include "mem/protocol/DMASequencerRequestType.hh"
#include "mem/protocol/RequestStatus.hh"
@ -38,6 +38,7 @@
#include "mem/ruby/network/MessageBuffer.hh"
#include "mem/ruby/system/System.hh"
#include "mem/mem_object.hh"
#include "mem/simple_mem.hh"
#include "mem/tport.hh"
#include "params/DMASequencer.hh"
@ -66,10 +67,13 @@ class DMASequencer : public MemObject
{
private:
SlavePacketQueue queue;
RubySystem* ruby_system;
bool access_backing_store;
public:
MemSlavePort(const std::string &_name, DMASequencer *_port,
PortID id);
PortID id, RubySystem *_ruby_system,
bool _access_backing_store);
void hitCallback(PacketPtr pkt);
void evictionCallback(const Address& address);

View file

@ -58,7 +58,7 @@ RubyPort::RubyPort(const Params *p)
pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
memMasterPort(csprintf("%s.mem-master-port", name()), this),
memSlavePort(csprintf("%s-mem-slave-port", name()), this,
p->ruby_system, p->access_backing_store, -1),
p->ruby_system, p->ruby_system->getAccessBackingStore(), -1),
gotAddrRanges(p->port_master_connection_count), drainManager(NULL)
{
assert(m_version != -1);
@ -66,7 +66,8 @@ RubyPort::RubyPort(const Params *p)
// create the slave ports based on the number of connected ports
for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
i), this, p->ruby_system, p->access_backing_store, i));
i), this, p->ruby_system,
p->ruby_system->getAccessBackingStore(), i));
}
// create the master ports based on the number of connected ports
@ -297,40 +298,40 @@ RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
line_address(Address(pkt->getAddr())).getAddress() +
RubySystem::getBlockSizeBytes());
bool accessSucceeded = false;
bool needsResponse = pkt->needsResponse();
// Do the functional access on ruby memory
if (pkt->isRead()) {
accessSucceeded = ruby_system->functionalRead(pkt);
} else if (pkt->isWrite()) {
accessSucceeded = ruby_system->functionalWrite(pkt);
} else {
panic("Unsupported functional command %s\n", pkt->cmdString());
}
// Unless the requester explicitly said otherwise, generate an error if
// the functional request failed
if (!accessSucceeded && !pkt->suppressFuncError()) {
fatal("Ruby functional %s failed for address %#x\n",
pkt->isWrite() ? "write" : "read", pkt->getAddr());
}
if (access_backing_store) {
// The attached physmem contains the official version of data.
// The following command performs the real functional access.
// This line should be removed once Ruby supplies the official version
// of data.
ruby_system->getPhysMem()->functionalAccess(pkt);
}
} else {
bool accessSucceeded = false;
bool needsResponse = pkt->needsResponse();
// turn packet around to go back to requester if response expected
if (needsResponse) {
pkt->setFunctionalResponseStatus(accessSucceeded);
}
// Do the functional access on ruby memory
if (pkt->isRead()) {
accessSucceeded = ruby_system->functionalRead(pkt);
} else if (pkt->isWrite()) {
accessSucceeded = ruby_system->functionalWrite(pkt);
} else {
panic("Unsupported functional command %s\n", pkt->cmdString());
}
DPRINTF(RubyPort, "Functional access %s!\n",
accessSucceeded ? "successful":"failed");
// Unless the requester explicitly said otherwise, generate an error if
// the functional request failed
if (!accessSucceeded && !pkt->suppressFuncError()) {
fatal("Ruby functional %s failed for address %#x\n",
pkt->isWrite() ? "write" : "read", pkt->getAddr());
}
// turn packet around to go back to requester if response expected
if (needsResponse) {
pkt->setFunctionalResponseStatus(accessSucceeded);
}
DPRINTF(RubyPort, "Functional access %s!\n",
accessSucceeded ? "successful":"failed");
}
}
void
@ -495,7 +496,7 @@ RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
if (accessPhysMem) {
ruby_system->getPhysMem()->functionalAccess(pkt);
ruby_system->getPhysMem()->access(pkt);
} else if (needsResponse) {
pkt->makeResponse();
}

View file

@ -47,3 +47,6 @@ class RubySystem(ClockedObject):
all_instructions = Param.Bool(False, "")
num_of_sequencers = Param.Int("")
phys_mem = Param.SimpleMemory(NULL, "")
access_backing_store = Param.Bool(False, "Use phys_mem as the functional \
store and only use ruby for timing.")

View file

@ -45,8 +45,6 @@ class RubyPort(MemObject):
mem_slave_port = SlavePort("Ruby memory port")
using_ruby_tester = Param.Bool(False, "")
access_backing_store = Param.Bool(False,
"should the rubyport atomically update phys_mem")
ruby_system = Param.RubySystem("")
system = Param.System(Parent.any, "system object")
support_data_reqs = Param.Bool(True, "data cache requests supported")

View file

@ -38,6 +38,7 @@
#include "mem/ruby/common/Address.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/ruby/system/System.hh"
#include "mem/simple_mem.hh"
#include "sim/eventq.hh"
#include "sim/simulate.hh"
@ -50,7 +51,7 @@ uint32_t RubySystem::m_block_size_bits;
uint32_t RubySystem::m_memory_size_bits;
RubySystem::RubySystem(const Params *p)
: ClockedObject(p)
: ClockedObject(p), m_access_backing_store(p->access_backing_store)
{
if (g_system_ptr != NULL)
fatal("Only one RubySystem object currently allowed.\n");

View file

@ -76,6 +76,7 @@ class RubySystem : public ClockedObject
static uint32_t getMemorySizeBits() { return m_memory_size_bits; }
SimpleMemory *getPhysMem() { return m_phys_mem; }
const bool getAccessBackingStore() { return m_access_backing_store; }
// Public Methods
Profiler*
@ -125,6 +126,7 @@ class RubySystem : public ClockedObject
static uint32_t m_block_size_bits;
static uint32_t m_memory_size_bits;
SimpleMemory *m_phys_mem;
const bool m_access_backing_store;
Network* m_network;
std::vector<AbstractController *> m_abs_cntrl_vec;