Tick was not correctly wrapped for the stats system, and therefore it was not
possible to configure the stats dumping from the python scripts without
defining Ticks as long long. This patch fixes the wrapping of Tick by copying
the typemap of uint64_t to Tick.
This patch introduces the following sanity checks when switching
between CPUs:
* Check that the set of new and old CPUs do not overlap. Having an
overlap between the set of new CPUs and the set of old CPUs is
currently not supported. Doing such a switch used to result in the
following assertion error:
BaseCPU::takeOverFrom(BaseCPU*): \
Assertion `!new_itb_port->isConnected()' failed.
* Check that all new CPUs are in the switched out state.
* Check that all old CPUs are in the switched in state.
This patch adds support for interleaving bits for the address
ranges. What was previously just a start and end address, now has an
additional three fields, for the high bit, and number of bits to use
for interleaving, and a match value to compare against. If the number
of interleaving bits is set to zero it is effectively disabled.
A number of convenience functions are added to the range to enquire
about the interleaving, its granularity and the number of stripes it
is part of.
This patch makes the all proxy traverse any potential list that is
encountered in the object hierarchy instead of only looking at
children that are SimObjects. An example of where this is useful is
when creating a multi-channel memory system as a list of controllers,
whilst ensuring that the memories are still visible in the system.
This patch adds a _curTick variable to an eventq. This variable is updated
whenever an event is serviced in function serviceOne(), or all events upto
a particular time are processed in function serviceEvents(). This change
helps when there are eventqs that do not make use of curTick for scheduling
events.
This patch adds the following two methods to the Drainable base class:
memWriteback() - Write back all dirty cache lines to memory using
functional accesses.
memInvalidate() - Invalidate memory system buffers. Dirty data
won't be written back.
Specifying calling memWriteback() after draining will allow us to
checkpoint systems with caches. memInvalidate() can be used to drop
memory system buffers in preparation for switching to an accelerated
CPU model that bypasses the gem5 memory system (e.g., hardware
virtualized CPUs).
Note: This patch only adds the methods to Drainable, the code for
flushing the TLB and the cache is committed separately.
This changeset adds a SWIG interface for the Serializable class, which
fixes a warning when compiling the SWIG interface for the event
queue. Currently, the only method exported is the name() method.
There is no point in exporting the old drain() method in
Simulate.py. It should only be used internally by doDrain(). This
patch moves the old drain() method into doDrain() and renames
doDrain() to drain().
changeToAtomic and changeToTiming both do essentially the same thing,
they check the type of their input argument, drain the system, and
switch to the desired memory mode. This patch moves all of that code
to a separate method (changeMemoryMode) and calls that from both
changeToAtomic and changeToTiming.
This patch moves the draining interface from SimObject to a separate
class that can be used by any object needing draining. However,
objects not visible to the Python code (i.e., objects not deriving
from SimObject) still depend on their parents informing them when to
drain. This patch also gets rid of the CountedDrainEvent (which isn't
really an event) and replaces it with a DrainManager.
When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.
This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
Changeset 4f54b0f229b5 removed the call to doDrain in changeToTiming
based on the assumption that the system does not need draining when
running in atomic mode. This is a false assumption since at least the
System class requires the system to be drained before it allows
switching of memory modes. This patch reverts that part of the
changeset.
This patch adds an additional level of ports in the inheritance
hierarchy, separating out the protocol-specific and protocl-agnostic
parts. All the functionality related to the binding of ports is now
confined to use BaseMaster/BaseSlavePorts, and all the
protocol-specific parts stay in the Master/SlavePort. In the future it
will be possible to add other protocol-specific implementations.
The functions used in the binding of ports, i.e. getMaster/SlavePort
now use the base classes, and the index parameter is updated to use
the PortID typedef with the symbolic InvalidPortID as the default.
This patch modifies how proxies are traversed and unproxied to allow
chained proxies. The issue that is solved manifested itself when a
proxy during its evaluation ended up being hitting another proxy, and
the second one got evaluated using the object that was originally used
for the first proxy.
For a more tangible example, see the following patch on making the
default clock being inherited from the parent. In this patch, the CPU
clock is a proxy Parent.clock, which is overridden in the system to be
an actual value. This all works fine, but the AlphaLinuxSystem has a
boot_cpu_frequency parameter that is Self.cpu[0].clock.frequency. When
the latter is evaluated, it all happens relative to the current object
of the proxy, i.e. the system. Thus the cpu.clock is evaluated as
Parent.clock, but using the system rather than the cpu as the object
to enquire.
This patch adds a function, periodicStatDump(long long period), which will dump
and reset the statistics every period. This function is designed to be called
from the python configuration scripts. This allows the periodic stats dumping to
be configured more easilly at run time.
The period is currently specified as a long long as there are issues passing
Tick into the C++ from the python as they have conflicting definitions. If the
period is less than curTick, the first occurance occurs at curTick. If the
period is set to 0, then the event is descheduled and the stats are not
periodically dumped.
Due to issues when resumung from a checkpoint, the StatDump event must be moved
forward such that it occues AFTER the current tick. As the function is called
from the python, the event is scheduled before the system resumes from the
checkpoint. Therefore, the event is moved using the updateEvents() function.
This is called from simulate.py once the system has resumed from the checkpoint.
NOTE: It should be noted that this is a fairly temporary patch which re-adds the
capability to extract temporal information from the communication monitors. It
should not be used at the same time as anything that relies on dumping the
statistics based on in simulation events i.e. a context switch.
Remove SimObject::setMemoryMode from the main SimObject class since it
is only valid for the System class. In addition to removing the method
from the C++ sources, this patch also removes getMemoryMode and
changeTiming from SimObject.py and updates the simulation code to call
the (get|set)MemoryMode method on the System object instead.
This patch takes the final plunge and transitions from the templated
Range class to the more specific AddrRange. In doing so it changes the
obvious Range<Addr> to AddrRange, and also bumps the range_map to be
AddrRangeMap.
In addition to the obvious changes, including the removal of redundant
includes, this patch also does some house keeping in preparing for the
introduction of address interleaving support in the ranges. The Range
class is also stripped of all the functionality that is never used.
--HG--
rename : src/base/range.hh => src/base/addr_range.hh
rename : src/base/range_map.hh => src/base/addr_range_map.hh
This patch simplifies the Range object hierarchy in preparation for an
address range class that also allows striping (e.g. selecting a few
bits as matching in addition to the range).
To extend the AddrRange class to an AddrRegion, the first step is to
simplify the hierarchy such that we can make it as lean as possible
before adding the new functionality. The only class using Range and
MetaRange is AddrRange, and the three classes are now collapsed into
one.
When switching from an atomic CPU to any of the timing CPUs, a drain is
unnecessary since no events are scheduled in atomic mode. However, when
trying to switch CPUs starting with a timing CPU, there may be events
scheduled. This change ensures that all events are drained from the system
by calling m5.drain before switching CPUs.
Simulation objects normally register derived statistics, presumably
what regFormulas originally was meant for, in regStats(). This patch
removes regRegformulas since there is no need to have a separate
method call to register formulas.
This patch is a first step to using Cycles as a parameter type. The
main affected modules are the CPUs and the Ruby caches. There are
definitely plenty more places that are affected, but this patch serves
as a starting point to making the transition.
An important part of this patch is to actually enable parameters to be
specified as Param.Cycles which involves some changes to params.py.
This patch addresses the comments and feedback on the preceding patch
that reworks the clocks and now more clearly shows where cycles
(relative cycle counts) are used to express time.
Instead of bumping the existing patch I chose to make this a separate
patch, merely to try and focus the discussion around a smaller set of
changes. The two patches will be pushed together though.
This changes done as part of this patch are mostly following directly
from the introduction of the wrapper class, and change enough code to
make things compile and run again. There are definitely more places
where int/uint/Tick is still used to represent cycles, and it will
take some time to chase them all down. Similarly, a lot of parameters
should be changed from Param.Tick and Param.Unsigned to
Param.Cycles.
In addition, the use of curTick is questionable as there should not be
an absolute cycle. Potential solutions can be built on top of this
patch. There is a similar situation in the o3 CPU where
lastRunningCycle is currently counting in Cycles, and is still an
absolute time. More discussion to be had in other words.
An additional change that would be appropriate in the future is to
perform a similar wrapping of Tick and probably also introduce a
Ticks class along with suitable operators for all these classes.
Instead of just passing a list of controllers to the makeTopology function
in src/mem/ruby/network/topologies/<Topo>.py we pass in a function pointer
which knows how to make the topology, possibly with some extra state set
in the configs/ruby/<protocol>.py file. Thus, we can move all of the files
from network/topologies to configs/topologies. A new class BaseTopology
is added which all topologies in configs/topologies must inheirit from and
follow its API.
--HG--
rename : src/mem/ruby/network/topologies/Crossbar.py => configs/topologies/Crossbar.py
rename : src/mem/ruby/network/topologies/Mesh.py => configs/topologies/Mesh.py
rename : src/mem/ruby/network/topologies/MeshDirCorners.py => configs/topologies/MeshDirCorners.py
rename : src/mem/ruby/network/topologies/Pt2Pt.py => configs/topologies/Pt2Pt.py
rename : src/mem/ruby/network/topologies/Torus.py => configs/topologies/Torus.py
While FastAlloc provides a small performance increase (~1.5%) over regular malloc it isn't thread safe.
After removing FastAlloc and using tcmalloc I've seen a performance increase of 12% over libc malloc
when running twolf for ARM.
This patch changes the organisation of the JSON output slightly to
make it easier to traverse and use the files. Most importantly, the
hierarchical dictionaries now use keys that correspond to the
attribute names also in the case of VectorParams (used to be
e.f. "cpu0 cpu1"). It also adds the name and the path to each
SimObject directory entry. Before this patch, to get cpu0, you would
have to query dict['system']['cpu0 cpu1'][0] and this could be a dict
with 'cpu0' : { cpu parameters }. Now you use dict['system']['cpu'][0]
and get { cpu parameters } (where one is "name" : "cpu0").
Additionally this patch includes more verbose information about the
ports, specifying their role, and using a JSON array rather than a
concatenated string for the peer.
This patch turns the existing warning into a fatal, as there should
never be any cases where a (non-vector) port is assigned to and then
later connected to something else. If this behaviour is allowed, as it
used to be, there are cases where the wrong number of C++ ports are
created when instantiating objects with VectorPorts (obviously that
could be fixed, but the better approach is to simply not allow it).
Revised system visualization to reflect structure and memory hierarchy.
Improved visualization: less congested and cluttered; more colorful.
Nodes reflect components; directed edges reflect dirctional relation, from
a master port to a slave port. Requires pydot.
Fixed broken code which visualizes the system configuration by generating a
tree from each component's children, starting from root.
Requires DOT (hence pydot).
Track the point in the initialization where statistics have been registered.
After this point registering new masterIds can no longer work as some
SimObjects may have sized stats vectors based on the previous value. If someone
tries to register a masterId after this point the simulator executes fatal().
This patch adds a very basic pretty-printing of the test status
(passed or failed) to highlight failing tests even more: green for
passed, and red for failed. The printing only uses ANSI it the target
output is a tty and supports ANSI colours. Hence, any regression
scripts that are outputting to files or sending e-mails etc should
still be fine.
This patch changes the behaviour of the All proxy parameter to not
only consider the direct children, but also do a pre-order depth-first
traversal of the object tree and append all results from the
children.
This is used in a later patch to find all the memories in the system,
independent of where they are located in the hierarchy.
This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.
The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.
The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.
The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
This patch cleans up a number of minor issues aiming to get closer to
compliance with the C++0x standard as interpreted by gcc and clang
(compile with std=c++0x and -pedantic-errors). In particular, the
patch cleans up enums where the last item was succeded by a comma,
namespaces closed by a curcly brace followed by a semi-colon, and the
use of the GNU-extension typeof (replaced by templated functions). It
does not address variable-length arrays, zero-size arrays, anonymous
structs, range expressions in switch statements, and the use of long
long. The generated CPU code also has a large number of issues that
remain to be fixed, mainly related to overflows in implicit constant
conversion (due to shifts).
This patch fixes a compilation error that occurs with gcc >= 4.6.1,
caused by swig not including cstddef and not using the std:: namespace
prefix for ptrdiff_t. There is an old patch,
http://reviews.m5sim.org/r/913/ that no longer applies cleanly and
this might be re-iterating the same issue.
We work around the problem by always enforcing the inclusion of
cstddef in all swig interface declarations, and also by explicitly
using std::ptrdiff_t.
Without this patch, undefined params cause a cryptic KeyError
in multidict inside get_config_as_dict(). This patch lets
undefined params through get_config_as_dict() so they can
once again generate meaningful error messages later on in
the configuration process.
This patch adds basic information about the ports in the parameter
classes to be passed from the Python world to the corresponding C++
object. Currently, the only information passed is the number of
connected peers, which for a Port is either 0 or 1, and for a
VectorPort reflects the size of the VectorPort. The default port of
the bus had to be renamed to avoid using the name "default" as a field
in the parameter class. It is possible to extend the Swig'ed
information further and add e.g. a pair with a description and size.
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).
clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
In preparation for the introduction of Master and Slave ports, this
patch removes the default port parameter in the Python port and thus
forces the argument list of the Port to contain only the
description. The drawback at this point is that the config port and
dma port of PCI and DMA devices have to be connected explicitly. This
is key for future diversification as the pio and config port are
slaves, but the dma port is a master.