DOT: improved dot-based system visualization

Revised system visualization to reflect structure and memory hierarchy.
Improved visualization: less congested and cluttered; more colorful.
Nodes reflect components; directed edges reflect dirctional relation, from
a master port to a slave port. Requires pydot.
This commit is contained in:
Uri Wiener 2012-05-10 18:04:27 -05:00
parent cb1b63ea61
commit 29a5e6ff35
4 changed files with 195 additions and 63 deletions

View file

@ -54,6 +54,7 @@ PySource('m5.util', 'm5/util/__init__.py')
PySource('m5.util', 'm5/util/attrdict.py')
PySource('m5.util', 'm5/util/code_formatter.py')
PySource('m5.util', 'm5/util/convert.py')
PySource('m5.util', 'm5/util/dot_writer.py')
PySource('m5.util', 'm5/util/grammar.py')
PySource('m5.util', 'm5/util/jobfile.py')
PySource('m5.util', 'm5/util/multidict.py')

View file

@ -44,11 +44,6 @@
import sys
from types import FunctionType, MethodType, ModuleType
try:
import pydot
except:
pydot = False
import m5
from m5.util import *
@ -1060,44 +1055,6 @@ class SimObject(object):
def takeOverFrom(self, old_cpu):
self._ccObject.takeOverFrom(old_cpu._ccObject)
# generate output file for 'dot' to display as a pretty graph.
def outputDot(self, dot):
if isRoot(self):
label = "{root|"
else:
label = "{%s|" % self._name
if isSimObject(self._base):
label += '%s|' % self.type
if self._children:
for c in self._children:
child = self._children[c]
if isSimObjectVector(child):
for obj in child:
dot.add_edge(pydot.Edge(self.path(), obj.path(), style="bold"))
else:
dot.add_edge(pydot.Edge(self.path(), child.path(), style="bold"))
for param in self._params.keys():
value = self._values.get(param)
if value != None:
ini_str_value = self._values[param].ini_str()
label += '%s = %s\\n' % (param, re.sub(':', '-', ini_str_value))
label += '}'
dot.add_node(pydot.Node(self.path(), shape="Mrecord",label=label))
# recursively dump out children
for c in self._children:
child = self._children[c]
if isSimObjectVector(child):
for obj in child:
obj.outputDot(dot)
else:
child.outputDot(dot)
# Function to provide to C++ so it can look up instances based on paths
def resolveSimObject(name):
obj = instanceDict[name]

View file

@ -1,3 +1,15 @@
# Copyright (c) 2012 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2005 The Regents of The University of Michigan
# Copyright (c) 2010 Advanced Micro Devices, Inc.
# All rights reserved.
@ -32,12 +44,6 @@ import atexit
import os
import sys
try:
import pydot
except:
pydot = False
# import the SWIG-wrapped main C++ functions
import internal
import core
@ -45,6 +51,8 @@ import stats
import SimObject
import ticks
import objects
from m5.util.dot_writer import do_dot
from util import fatal
from util import attrdict
@ -88,8 +96,7 @@ def instantiate(ckpt_dir=None):
except ImportError:
pass
if pydot:
doDot(root)
do_dot(root, options.outdir, options.dot_config)
# Initialize the global statistics
stats.initSimStats()
@ -120,18 +127,6 @@ def instantiate(ckpt_dir=None):
# Reset to put the stats in a consistent state.
stats.reset()
def doDot(root):
from m5 import options
dot = pydot.Dot()
root.outputDot(dot)
dot.orientation = "portrait"
dot.size = "8.5,11"
dot.ranksep="equally"
dot.rank="samerank"
dot_filename = os.path.join(options.outdir, options.dot_config)
dot.write(dot_filename)
dot.write_pdf(dot_filename + ".pdf")
need_resume = []
need_startup = True
def simulate(*args, **kwargs):

View file

@ -0,0 +1,179 @@
# Copyright (c) 2012 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Andreas Hansson
# Uri Wiener
#####################################################################
#
# System visualization using DOT
#
# While config.ini and config.json provide an almost complete listing
# of a system's components and connectivity, they lack a birds-eye view.
# The output generated by do_dot() is a DOT-based figure (pdf) and its
# source dot code. Nodes are components, and edges represent
# the memory hierarchy: the edges are directed, from a master to a slave.
# Initially all nodes are generated, and then all edges are added.
# do_dot should be called with the top-most SimObject (namely root
# but not necessarily), the output folder and the output dot source
# filename. From the given node, both processes (node and edge creation)
# is performed recursivly, traversing all children of the given root.
#
# pydot is required. When missing, no output will be generated.
#
#####################################################################
import m5, os, re
from m5.SimObject import isRoot, isSimObjectVector
try:
import pydot
except:
pydot = False
# need to create all nodes (components) before creating edges (memory channels)
def dot_create_nodes(simNode, callgraph):
if isRoot(simNode):
label = "root"
else:
label = simNode._name
full_path = re.sub('\.', '_', simNode.path())
# each component is a sub-graph (cluster)
cluster = dot_create_cluster(simNode, full_path, label)
# create nodes per port
for port_name in simNode._ports.keys():
port = simNode._port_refs.get(port_name, None)
if port != None:
full_port_name = full_path + "_" + port_name
port_node = dot_create_node(simNode, full_port_name, port_name)
cluster.add_node(port_node)
# recurse to children
if simNode._children:
for c in simNode._children:
child = simNode._children[c]
if isSimObjectVector(child):
for obj in child:
dot_create_nodes(obj, cluster)
else:
dot_create_nodes(child, cluster)
callgraph.add_subgraph(cluster)
# create all edges according to memory hierarchy
def dot_create_edges(simNode, callgraph):
for port_name in simNode._ports.keys():
port = simNode._port_refs.get(port_name, None)
if port != None:
full_path = re.sub('\.', '_', simNode.path())
full_port_name = full_path + "_" + port_name
port_node = dot_create_node(simNode, full_port_name, port_name)
# create edges
if type(port) is m5.params.PortRef:
dot_add_edge(simNode, callgraph, full_port_name, port)
else:
for p in port.elements:
dot_add_edge(simNode, callgraph, full_port_name, p)
# recurse to children
if simNode._children:
for c in simNode._children:
child = simNode._children[c]
if isSimObjectVector(child):
for obj in child:
dot_create_edges(obj, callgraph)
else:
dot_create_edges(child, callgraph)
def dot_add_edge(simNode, callgraph, full_port_name, peerPort):
if peerPort.role == "MASTER":
peer_port_name = re.sub('\.', '_', peerPort.peer.simobj.path() \
+ "." + peerPort.peer.name)
callgraph.add_edge(pydot.Edge(full_port_name, peer_port_name))
def dot_create_cluster(simNode, full_path, label):
# if you read this, feel free to modify colors / style
return pydot.Cluster( \
full_path, \
shape = "Mrecord", \
label = label, \
style = "\"rounded, filled\"", \
color = "#000000", \
fillcolor = dot_gen_color(simNode), \
fontname = "Arial", \
fontsize = "14", \
fontcolor = "#000000" \
)
def dot_create_node(simNode, full_path, label):
# if you read this, feel free to modify colors / style.
# leafs may have a different style => seperate function
return pydot.Node( \
full_path, \
shape = "Mrecord", \
label = label, \
style = "\"rounded, filled\"", \
color = "#000000", \
fillcolor = "#808080", \
fontname = "Arial", \
fontsize = "14", \
fontcolor = "#000000" \
)
# generate color for nodes
# currently a simple grayscale. placeholder for aesthetic programmers.
def dot_gen_color(simNode):
depth = len(simNode.path().split('.'))
depth = 256 - depth * 16 * 3
return dot_rgb_to_html(simNode, depth, depth, depth)
def dot_rgb_to_html(simNode, r, g, b):
return "#%.2x%.2x%.2x" % (r, g, b)
def do_dot(root, outdir, dotFilename):
if not pydot:
return
callgraph = pydot.Dot(graph_type='digraph')
dot_create_nodes(root, callgraph)
dot_create_edges(root, callgraph)
dot_filename = os.path.join(outdir, dotFilename)
callgraph.write(dot_filename)
try:
# dot crashes if the figure is extremely wide.
# So avoid terminating simulation unnecessarily
callgraph.write_pdf(dot_filename + ".pdf")
except:
print "warning: failed to generate pdf output from %s" % dot_filename