The necessary companion conversion of Ruby objects generated by SLICC
are converted to M5 SimObjects in the following patch, so this patch
alone does not compile.
Conversion of Garnet network models is also handled in a separate
patch; that code is temporarily disabled from compiling to allow
testing of interim code.
Though OutPort's message type is not used to generate code, this fix checks
that the programmer's intent is correct. Eventually, we may want to
remove the message type from the OutPort declaration statement.
1) Move alpha-specific code out of page_table.cc:serialize().
2) Begin serializing M5_pid and unserializing it, but adding an function to do optional paramIn so that old checkpoints don't need to be fixed up.
3) Fix up alpha startup code so that the unserialized M5_pid value is properly written to DTB_IPR_ASN.
4) Fix the memory unserialize that I forgot somehow in the last changeset.
5) Add in an agg_se.py to handle aggregated checkpoints. --bench foo-bar plus positional arguments foo bar are the only changes in usage from se.py.
Note this aggregation stuff has only been tested for Alpha and nothing else, though it should take a very minimal amount of work to get it to work with another ISA.
This patch changes the way that Ruby handles atomic RMW instructions. This implementation, unlike the prior one, is protocol independent. It works by locking an address from the sequencer immediately after the read portion of an RMW completes. When that address is locked, the coherence controller will only satisfy requests coming from one port (e.g., the mandatory queue) and will ignore all others. After the write portion completed, the line is unlocked. This should also work with multi-line atomics, as long as the blocks are always acquired in the same order.
Added error messages when:
- a state does not exist in a machine's list of known states.
- an event does not exist in a machine
- the actions of a certain machine have not been declared
Connects M5 cpu and dma ports directly to ruby sequencers and dma
sequencers. Rubymem also includes a pio port so that pio requests
and be forwarded to a special pio bus connecting to device pio
ports.
Right now .cc and .hh files are handled separately, but then
they're just munged together at the end by scons, so it
doesn't buy us anything. Might as well munge from the start
since we'll eventually be adding generated Python files
to the list too.
This mostly was a matter of changing the license owner to Princeton
which is as it should have been. The code was originally licensed
under the GPL but was relicensed as BSD by Li-Shiuan Peh on July 27,
2009. This relicensing was in an explicit e-mail to Nathan Binkert,
Brad Beckmann, Mark Hill, David Wood, and Steve Reinhardt.
This prevents redundant prefetches from being issued, solving the
occasional 'needsExclusive && !blk->isWritable()' assertion failure
in cache_impl.hh that several people have run into.
Eliminates "prefetch_cache_check_push" flag, neither setting of
which really solved the problem.
This is simply a translation of the C++ slicc into python with very minimal
reorganization of the code. The output can be verified as nearly identical
by doing a "diff -wBur".
Slicc can easily be run manually by using util/slicc
Get rid of misc.py and just stick misc things in __init__.py
Move utility functions out of SCons files and into m5.util
Move utility type stuff from m5/__init__.py to m5/util/__init__.py
Remove buildEnv from m5 and allow access only from m5.defines
Rename AddToPath to addToPath while we're moving it to m5.util
Rename read_command to readCommand while we're moving it
Rename compare_versions to compareVersions while we're moving it.
--HG--
rename : src/python/m5/convert.py => src/python/m5/util/convert.py
rename : src/python/m5/smartdict.py => src/python/m5/util/smartdict.py