- Make the initialized flag always available, not just in debug mode.
- Make the Initialized flag actually use several bits so it is very
unlikely that something that's uninitialized accidentally looks
initialized.
- Add an initialized() function that tells you if the current event is
indeed initialized.
- Clear the flags on delete so it can't be accidentally thought of as
initialized.
- Fix getFlags assert statement. "How did this ever work?"
Symbolic names should still be used, but this makes it easier to do
things like:
Event::Priority MyObject_Pri = Event::Default_Pri + 1
Remember that higher numbers are lower priority (should we fix this?)
In addition to obvious changes, this required a slight change to the slicc
grammar to allow types with :: in them. Otherwise slicc barfs on std::string
which we need for the headers that slicc generates.
make sure to only read 1 src reg. for write-hint and any other similar
'store' instruction. Reading the source reg when its not necessary
can cause the simulator to read from uninitialized values
add -n/--no-exec which doesn't execute scons, but just prints the command line
add -j0 which tries to calculate how many cpus you have
add -D/--build-dir to specify a build directory other than ./build
These recordEvent() calls could cause crashes since they
access the req pointer after it's potentially been
deleted during a failed translation call. (Similar
problem to the traceData bug fixed in the previous cset.)
Moving them above the translation call (as was done
recentlyi in cset 8b2b8e5e7d35) avoids the crash
but doesn't work, since at that point we don't know if
the access is uncached or not.
It's not clear why these calls are there, and no one
seems to use them, so we'll just delete them. If they
are needed, they should be moved to somewhere that's
guaranteed to be after the translation completes but
before the request is possibly deleted, e.g., in
finishTranslation().
Accessing traceData (to call setAddress() and/or setData())
after initiating a timing translation was causing crashes,
since a failed translation could delete the traceData
object before returning.
It turns out that there was never a need to access traceData
after initiating the translation, as the traced data was
always available earlier; this ordering was merely
historical. Furthermore, traceData->setAddress() and
traceData->setData() were being called both from the CPU
model and the ISA definition, often redundantly.
This patch standardizes all setAddress and setData calls
for memory instructions to be in the CPU models and not
in the ISA definition. It also moves those calls above
the translation calls to eliminate the crashes.
Previously, the set size was set to 4. This was mostly do to the fact that a
crazy graduate student use to create networks with 256 l2 cache banks. Now it
is far more likely that users will create systems with less than 64 of any
particular controller type. Therefore Ruby should be optimized for a set size
of 1.
The patch creates a specific mesh network where directories are at the corners.
The patch is a good example of how to create an arbitrary network, similar to
the old file specified network, while leveraging scripts and loops when
possible.