Commit graph

321 commits

Author SHA1 Message Date
Brandon Potter
582793468d ruby: dma sequencer: removes redundant code 2015-07-24 12:25:22 -07:00
Brandon Potter
bfe7ee96ad ruby: replace global g_abs_controls with per-RubySystem var
This is another step in the process of removing global variables
from Ruby to enable multiple RubySystem instances in a single simulation.

The list of abstract controllers is per-RubySystem and should be
represented that way, rather than as a global.

Since this is the last remaining Ruby global variable, the
src/mem/ruby/Common/Global.* files are also removed.
2015-07-10 16:05:24 -05:00
Brandon Potter
f9a370f172 ruby: replace global g_system_ptr with per-object pointers
This is another step in the process of removing global variables
from Ruby to enable multiple RubySystem instances in a single simulation.

With possibly multiple RubySystem objects, we can no longer use a global
variable to find "the" RubySystem object.  Instead, each Ruby component
has to carry a pointer to the RubySystem object to which it belongs.
2015-07-10 16:05:23 -05:00
Brandon Potter
c38f5098b1 ruby: replace g_ruby_start with per-RubySystem m_start_cycle
This patch begins the process of removing global variables from the Ruby
source with the goal of eventually allowing users to create multiple Ruby
instances in a single simulation.  Currently, users cannot do so because
several global variables and static members are referenced by the RubySystem
object in a way that assumes that there will only ever be a single RubySystem.
These need to be replaced with per-RubySystem equivalents.

This specific patch replaces the global var g_ruby_start, which is used
to calculate throughput statistics for Throttles in simple networks and
links in Garnet networks, with a RubySystem instance var m_start_cycle.
2015-07-10 16:05:23 -05:00
Brandon Potter
9eda4bdc5a ruby: remove extra whitespace and correct misspelled words 2015-07-10 16:05:23 -05:00
Andreas Sandberg
ed38e3432c sim: Refactor and simplify the drain API
The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.

This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.

Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
2015-07-07 09:51:05 +01:00
Andreas Sandberg
f16c0a4a90 sim: Decouple draining from the SimObject hierarchy
Draining is currently done by traversing the SimObject graph and
calling drain()/drainResume() on the SimObjects. This is not ideal
when non-SimObjects (e.g., ports) need draining since this means that
SimObjects owning those objects need to be aware of this.

This changeset moves the responsibility for finding objects that need
draining from SimObjects and the Python-side of the simulator to the
DrainManager. The DrainManager now maintains a set of all objects that
need draining. To reduce the overhead in classes owning non-SimObjects
that need draining, objects inheriting from Drainable now
automatically register with the DrainManager. If such an object is
destroyed, it is automatically unregistered. This means that drain()
and drainResume() should never be called directly on a Drainable
object.

While implementing the new functionality, the DrainManager has now
been made thread safe. In practice, this means that it takes a lock
whenever it manipulates the set of Drainable objects since SimObjects
in different threads may create Drainable objects
dynamically. Similarly, the drain counter is now an atomic_uint, which
ensures that it is manipulated correctly when objects signal that they
are done draining.

A nice side effect of these changes is that it makes the drain state
changes stricter, which the simulation scripts can exploit to avoid
redundant drains.
2015-07-07 09:51:05 +01:00
Andreas Sandberg
e9c3d59aae sim: Make the drain state a global typed enum
The drain state enum is currently a part of the Drainable
interface. The same state machine will be used by the DrainManager to
identify the global state of the simulator. Make the drain state a
global typed enum to better cater for this usage scenario.
2015-07-07 09:51:04 +01:00
Andreas Sandberg
76cd4393c0 sim: Refactor the serialization base class
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

  * Add a set of APIs to serialize into a subsection of the current
    object. Previously, objects that needed this functionality would
    use ad-hoc solutions using nameOut() and section name
    generation. In the new world, an object that implements the
    interface has the methods serializeSection() and
    unserializeSection() that serialize into a named /subsection/ of
    the current object. Calling serialize() serializes an object into
    the current section.

  * Move the name() method from Serializable to SimObject as it is no
    longer needed for serialization. The fully qualified section name
    is generated by the main serialization code on the fly as objects
    serialize sub-objects.

  * Add a scoped ScopedCheckpointSection helper class. Some objects
    need to serialize data structures, that are not deriving from
    Serializable, into subsections. Previously, this was done using
    nameOut() and manual section name generation. To simplify this,
    this changeset introduces a ScopedCheckpointSection() helper
    class. When this class is instantiated, it adds a new /subsection/
    and subsequent serialization calls during the lifetime of this
    helper class happen inside this section (or a subsection in case
    of nested sections).

  * The serialize() call is now const which prevents accidental state
    manipulation during serialization. Objects that rely on modifying
    state can use the serializeOld() call instead. The default
    implementation simply calls serialize(). Note: The old-style calls
    need to be explicitly called using the
    serializeOld()/serializeSectionOld() style APIs. These are used by
    default when serializing SimObjects.

  * Both the input and output checkpoints now use their own named
    types. This hides underlying checkpoint implementation from
    objects that need checkpointing and makes it easier to change the
    underlying checkpoint storage code.
2015-07-07 09:51:03 +01:00
Andreas Hansson
71856cfbbc mem: Split WriteInvalidateReq into write and invalidate
WriteInvalidateReq ensures that a whole-line write does not incur the
cost of first doing a read exclusive, only to later overwrite the
data. This patch splits the existing WriteInvalidateReq into a
WriteLineReq, which is done locally, and an InvalidateReq that is sent
out throughout the memory system. The WriteLineReq re-uses the normal
WriteResp.

The change allows us to better express the difference between the
cache that is performing the write, and the ones that are merely
invalidating. As a consequence, we no longer have to rely on the
isTopLevel flag. Moreover, the actual memory in the system does not
see the intitial write, only the writeback. We were marking the
written line as dirty already, so there is really no need to also push
the write all the way to the memory.

The overall flow of the write-invalidate operation remains the same,
i.e. the operation is only carried out once the response for the
invalidate comes back. This patch adds the InvalidateResp for this
very reason.
2015-07-03 10:14:41 -04:00
Jason Power
2f3c467883 Ruby: Remove assert in RubyPort retry list logic
Remove the assert when adding a port to the RubyPort retry list.
Instead of asserting, just ignore the added port, since it's
already on the list.
Without this patch, Ruby+detailed fails for even the simplest tests
2015-06-25 11:58:28 -05:00
Joel Hestness
0479569f67 ruby: Fix RubySystem warm-up and cool-down scope
The processes of warming up and cooling down Ruby caches are simulation-wide
processes, not just RubySystem instance-specific processes. Thus, the warm-up
and cool-down variables should be globally visible to any Ruby components
participating in either process. Make these variables static members and track
the warm-up and cool-down processes as appropriate.

This patch also has two side benefits:
1) It removes references to the RubySystem g_system_ptr, which are problematic
for allowing multiple RubySystem instances in a single simulation. Warmup and
cooldown variables being static (global) reduces the need for instance-specific
dereferences through the RubySystem.
2) From the AbstractController, it removes local RubySystem pointers, which are
used inconsistently with other uses of the RubySystem: 11 other uses reference
the RubySystem with the g_system_ptr. Only sequencers have local pointers.
2015-05-19 10:56:51 -05:00
Steve Reinhardt
6677b9122a mem: rename Locked/LOCKED to LockedRMW/LOCKED_RMW
Makes x86-style locked operations even more distinct from
LLSC operations.  Using "locked" by itself should be
obviously ambiguous now.
2015-03-23 16:14:20 -07:00
Andreas Hansson
f26a289295 mem: Split port retry for all different packet classes
This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.

The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.

The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
2015-03-02 04:00:35 -05:00
Jason Power
670f44e05e Ruby: Update backing store option to propagate through to all RubyPorts
Previously, the user would have to manually set access_backing_store=True
on all RubyPorts (Sequencers) in the config files.
Now, instead there is one global option that each RubyPort checks on
initialization.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2015-02-26 09:58:26 -06:00
Andreas Hansson
00536b0efc mem: Always use SenderState for response routing in RubyPort
This patch aligns how the response routing is done in the RubyPort,
using the SenderState for both memory and I/O accesses. Before this
patch, only the I/O used the SenderState, whereas the memory accesses
relied on the src field in the packet. With this patch we shift to
using SenderState in both cases, thus not relying on the src field any
longer.
2015-01-22 05:01:24 -05:00
Andreas Hansson
f49830ce0b mem: Clean up Request initialisation
This patch tidies up how we create and set the fields of a Request. In
essence it tries to use the constructor where possible (as opposed to
setPhys and setVirt), thus avoiding spreading the information across a
number of locations. In fact, setPhys is made private as part of this
patch, and a number of places where we callede setVirt instead uses
the appropriate constructor.
2015-01-22 05:00:53 -05:00
Andreas Hansson
9779ba2e37 mem: Add const getters for write packet data
This patch takes a first step in tightening up how we use the data
pointer in write packets. A const getter is added for the pointer
itself (getConstPtr), and a number of member functions are also made
const accordingly. In a range of places throughout the memory system
the new member is used.

The patch also removes the unused isReadWrite function.
2014-12-02 06:07:36 -05:00
Andreas Hansson
25bfc24999 mem: Remove null-check bypassing in Packet::getPtr
This patch removes the parameter that enables bypassing the null check
in the Packet::getPtr method. A number of call sites assume the value
to be non-null.

The one odd case is the RubyTester, which issues zero-sized
prefetches(!), and despite being reads they had no valid data
pointer. This is now fixed, but the size oddity remains (unless anyone
object or has any good suggestions).

Finally, in the Ruby Sequencer, appropriate checks are made for flush
packets as they have no valid data pointer.
2014-12-02 06:07:34 -05:00
Nilay Vaish
0811f21f67 ruby: provide a backing store
Ruby's functional accesses are not guaranteed to succeed as of now.  While
this is not a problem for the protocols that are currently in the mainline
repo, it seems that coherence protocols for gpus rely on a backing store to
supply the correct data.  The aim of this patch is to make this backing store
configurable i.e. it comes into play only when a particular option:
--access-backing-store is invoked.

The backing store has been there since M5 and GEMS were integrated.  The only
difference is that earlier the system used to maintain the backing store and
ruby's copy was write-only.  Sometime last year, we moved to data being
supplied supplied by ruby in SE mode simulations.  And now we have patches on
the reviewboard, which remove ruby's copy of memory altogether and rely
completely on the system's memory to supply data.  This patch adds back a
SimpleMemory member to RubySystem.  This member is used only if the option:
access-backing-store is set to true.  By default, the memory would not be
accessed.
2014-11-06 05:42:21 -06:00
Nilay Vaish
3022d463fb ruby: interface with classic memory controller
This patch is the final in the series.  The whole series and this patch in
particular were written with the aim of interfacing ruby's directory controller
with the memory controller in the classic memory system.  This is being done
since ruby's memory controller has not being kept up to date with the changes
going on in DRAMs.  Classic's memory controller is more up to date and
supports multiple different types of DRAM.  This also brings classic and
ruby ever more close.  The patch also changes ruby's memory controller to
expose the same interface.
2014-11-06 05:42:21 -06:00
Nilay Vaish
d25b722e4a ruby: coherence protocols: remove data block from dirctory entry
This patch removes the data block present in the directory entry structure
of each protocol in gem5's mainline.  Firstly, this is required for moving
towards common set of memory controllers for classic and ruby memory systems.
Secondly, the data block was being misused in several places.  It was being
used for having free access to the physical memory instead of calling on the
memory controller.

From now on, the directory controller will not have a direct visibility into
the physical memory.  The Memory Vector object now resides in the
Memory Controller class.  This also means that some significant changes are
being made to the functional accesses in ruby.
2014-11-06 05:42:20 -06:00
Nilay Vaish
85c29973a3 ruby: remove sparse memory.
In my opinion, it creates needless complications in rest of the code.
Also, this structure hinders the move towards common set of code for
physical memory controllers.
2014-11-06 05:42:20 -06:00
Nilay Vaish
95a0b18431 ruby: single physical memory in fs mode
Both ruby and the system used to maintain memory copies.  With the changes
carried for programmed io accesses, only one single memory is required for
fs simulations.  This patch sets the copy of memory that used to reside
with the system to null, so that no space is allocated, but address checks
can still be carried out.  All the memory accesses now source and sink values
to the memory maintained by ruby.
2014-11-06 05:41:44 -06:00
Nilay Vaish
8ccfd9defa ruby: dma sequencer: remove RubyPort as parent class
As of now DMASequencer inherits from the RubyPort class.  But the code in
RubyPort class is heavily tailored for the CPU Sequencer.  There are parts of
the code that are not required at all for the DMA sequencer.  Moreover, the
next patch uses the dma sequencer for carrying out memory accesses for all the
io devices.  Hence, it is better to have a leaner dma sequencer.
2014-11-06 00:55:09 -06:00
Andreas Hansson
edc77fc03c misc: Move AddrRangeList from port.hh to addr_range.hh
The new location seems like a better fit. The iterator typedefs are
removed in favour of using C++11 auto.
2014-10-16 05:49:59 -04:00
Andreas Hansson
db3739682d mem: Use shared_ptr for Ruby Message classes
This patch transitions the Ruby Message and its derived classes from
the ad-hoc RefCountingPtr to the c++11 shared_ptr. There are no
changes in behaviour, and the code modifications are mainly replacing
"new" with "make_shared".

The cloning of derived messages is slightly changed as they previously
relied on overriding the base-class through covariant return types.
2014-10-16 05:49:49 -04:00
Andreas Hansson
2475862747 arch,x86,mem: Dynamically determine the ISA for Ruby store check
This patch makes the memory system ISA-agnostic by enabling the Ruby
Sequencer to dynamically determine if it has to do a store check. To
enable this check, the ISA is encoded as an enum, and the system
is able to provide the ISA to the Sequencer at run time.

--HG--
rename : src/arch/x86/insts/microldstop.hh => src/arch/x86/ldstflags.hh
2014-10-16 05:49:44 -04:00
Andreas Hansson
6498ccddb2 misc: Fix issues identified by static analysis
Another bunch of issues addressed.
2014-10-01 08:05:54 -04:00
Andreas Hansson
de62aedabc misc: Fix a bunch of minor issues identified by static analysis
Add some missing initialisation, and fix a handful benign resource
leaks (including some false positives).
2014-09-27 09:08:29 -04:00
Nilay Vaish
cc2cc58869 ruby: eliminate type Time
There is another type Time in src/base class which results in a conflict.
2014-09-01 16:55:41 -05:00
Nilay Vaish
82d136285d ruby: move files from ruby/system to ruby/structures
The directory ruby/system is crowded and unorganized. Hence, the files the
hold actual physical structures, are being moved to the directory
ruby/structures.  This includes Cache Memory, Directory Memory,
Memory Controller, Wire Buffer, TBE Table, Perfect Cache Memory, Timer Table,
Bank Array.

The directory ruby/systems has the glue code that holds these structures
together.

--HG--
rename : src/mem/ruby/system/MachineID.hh => src/mem/ruby/common/MachineID.hh
rename : src/mem/ruby/buffers/MessageBuffer.cc => src/mem/ruby/network/MessageBuffer.cc
rename : src/mem/ruby/buffers/MessageBuffer.hh => src/mem/ruby/network/MessageBuffer.hh
rename : src/mem/ruby/buffers/MessageBufferNode.cc => src/mem/ruby/network/MessageBufferNode.cc
rename : src/mem/ruby/buffers/MessageBufferNode.hh => src/mem/ruby/network/MessageBufferNode.hh
rename : src/mem/ruby/system/AbstractReplacementPolicy.hh => src/mem/ruby/structures/AbstractReplacementPolicy.hh
rename : src/mem/ruby/system/BankedArray.cc => src/mem/ruby/structures/BankedArray.cc
rename : src/mem/ruby/system/BankedArray.hh => src/mem/ruby/structures/BankedArray.hh
rename : src/mem/ruby/system/Cache.py => src/mem/ruby/structures/Cache.py
rename : src/mem/ruby/system/CacheMemory.cc => src/mem/ruby/structures/CacheMemory.cc
rename : src/mem/ruby/system/CacheMemory.hh => src/mem/ruby/structures/CacheMemory.hh
rename : src/mem/ruby/system/DirectoryMemory.cc => src/mem/ruby/structures/DirectoryMemory.cc
rename : src/mem/ruby/system/DirectoryMemory.hh => src/mem/ruby/structures/DirectoryMemory.hh
rename : src/mem/ruby/system/DirectoryMemory.py => src/mem/ruby/structures/DirectoryMemory.py
rename : src/mem/ruby/system/LRUPolicy.hh => src/mem/ruby/structures/LRUPolicy.hh
rename : src/mem/ruby/system/MemoryControl.cc => src/mem/ruby/structures/MemoryControl.cc
rename : src/mem/ruby/system/MemoryControl.hh => src/mem/ruby/structures/MemoryControl.hh
rename : src/mem/ruby/system/MemoryControl.py => src/mem/ruby/structures/MemoryControl.py
rename : src/mem/ruby/system/MemoryNode.cc => src/mem/ruby/structures/MemoryNode.cc
rename : src/mem/ruby/system/MemoryNode.hh => src/mem/ruby/structures/MemoryNode.hh
rename : src/mem/ruby/system/MemoryVector.hh => src/mem/ruby/structures/MemoryVector.hh
rename : src/mem/ruby/system/PerfectCacheMemory.hh => src/mem/ruby/structures/PerfectCacheMemory.hh
rename : src/mem/ruby/system/PersistentTable.cc => src/mem/ruby/structures/PersistentTable.cc
rename : src/mem/ruby/system/PersistentTable.hh => src/mem/ruby/structures/PersistentTable.hh
rename : src/mem/ruby/system/PseudoLRUPolicy.hh => src/mem/ruby/structures/PseudoLRUPolicy.hh
rename : src/mem/ruby/system/RubyMemoryControl.cc => src/mem/ruby/structures/RubyMemoryControl.cc
rename : src/mem/ruby/system/RubyMemoryControl.hh => src/mem/ruby/structures/RubyMemoryControl.hh
rename : src/mem/ruby/system/RubyMemoryControl.py => src/mem/ruby/structures/RubyMemoryControl.py
rename : src/mem/ruby/system/SparseMemory.cc => src/mem/ruby/structures/SparseMemory.cc
rename : src/mem/ruby/system/SparseMemory.hh => src/mem/ruby/structures/SparseMemory.hh
rename : src/mem/ruby/system/TBETable.hh => src/mem/ruby/structures/TBETable.hh
rename : src/mem/ruby/system/TimerTable.cc => src/mem/ruby/structures/TimerTable.cc
rename : src/mem/ruby/system/TimerTable.hh => src/mem/ruby/structures/TimerTable.hh
rename : src/mem/ruby/system/WireBuffer.cc => src/mem/ruby/structures/WireBuffer.cc
rename : src/mem/ruby/system/WireBuffer.hh => src/mem/ruby/structures/WireBuffer.hh
rename : src/mem/ruby/system/WireBuffer.py => src/mem/ruby/structures/WireBuffer.py
rename : src/mem/ruby/recorder/CacheRecorder.cc => src/mem/ruby/system/CacheRecorder.cc
rename : src/mem/ruby/recorder/CacheRecorder.hh => src/mem/ruby/system/CacheRecorder.hh
2014-09-01 16:55:40 -05:00
Steve Reinhardt
0be64ffe2f style: eliminate equality tests with true and false
Using '== true' in a boolean expression is totally redundant,
and using '== false' is pretty verbose (and arguably less
readable in most cases) compared to '!'.

It's somewhat of a pet peeve, perhaps, but I had some time
waiting for some tests to run and decided to clean these up.

Unfortunately, SLICC appears not to have the '!' operator,
so I had to leave the '== false' tests in the SLICC code.
2014-05-31 18:00:23 -07:00
Marco Elver
d9fa950396 ruby: recorder: Fix (de-)serializing with different cache block-sizes
Upon aggregating records, serialize system's cache-block size, as the
cache-block size can be different when restoring from a checkpoint. This way,
we can correctly read all records when restoring from a checkpoints, even if
the cache-block size is different.

Note, that it is only possible to restore from a checkpoint if the
desired cache-block size is smaller or equal to the cache-block size
when the checkpoint was taken; we can split one larger request into
multiple small ones, but it is not reliable to do the opposite.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-04-19 09:00:30 -05:00
Nilay Vaish
9b3418d163 ruby: no piobus in se mode
Piobus was recently added to se scripts for ruby so that the interrupt
controller can be connected to something (required since the interrupt
controller sends address range messages).  This patch removes the piobus
and instead, the pio port of ruby port will now ignore the range change
messages in se mode.
2014-03-20 08:03:09 -05:00
Nilay Vaish
f7e7fa6d90 ruby: remove some of the unnecessary code 2014-03-17 17:40:14 -05:00
Nilay Vaish
7e27860ef4 ruby: route all packets through ruby port
Currently, the interrupt controller in x86 is connected to the io bus
directly.  Therefore the packets between the io devices and the interrupt
controller do not go through ruby.  This patch changes ruby port so that
these packets arrive at the ruby port first, which then routes them to their
destination.  Note that the patch does not make these packets go through the
ruby network.  That would happen in a subsequent patch.
2014-02-23 19:16:16 -06:00
Andreas Hansson
5755fff998 ruby: Simplify RubyPort flow control and routing
This patch simplfies the retry logic in the RubyPort, avoiding
redundant attributes, and enforcing more stringent checks on the
interactions with the normal ports. The patch also simplifies the
routing done by the RubyPort, using the port identifiers instead of a
heavy-weight sender state.

The patch also fixes a bug in the sending of responses from PIO
ports. Previously these responses bypassed the queue in the queued
port, and ignored the return value, potentially leading to response
packets being lost.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-02-23 19:16:16 -06:00
Nilay Vaish
cde20fd476 ruby: remove few not required #includes 2014-02-23 19:16:15 -06:00
Nilay Vaish
307f53e164 ruby: cache: remove not required variable m_cache_name 2014-02-21 08:02:02 -06:00
Nilay Vaish
b312a41f21 ruby: message buffer: removes some unecessary functions. 2014-02-20 17:26:41 -06:00
Nilay Vaish
bb0e9119e7 ruby: memory controller: use MemoryNode * 2014-02-06 16:30:12 -06:00
Nilay Vaish
407f37e15f ruby: move all statistics to stats.txt, eliminate ruby.stats 2014-01-10 16:19:47 -06:00
Nilay Vaish
9853ef6651 ruby: some small changes 2014-01-04 00:03:30 -06:00
Steve Reinhardt
b10ff075b1 ruby: eliminate non-determinism from ruby.stats output
Get rid of non-deterministic "stats" in ruby.stats output
such as time & date of run, elapsed & CPU time used,
and memory usage.  These values cause spurious
miscomparisons when looking at output diffs (though
they don't affect regressions, since the regressions
pass/fail status currently ignores ruby.stats entirely).

Most of this information is already captured in other
places (time & date in stdout, elapsed time & mem usage
in stats.txt), where the regression script is smart
enough to filter it out.  It seems easier to get rid of
the redundant output rather than teaching the
regression tester to ignore the same information in
two different places.
2013-10-15 18:22:49 -04:00
Nilay Vaish
90bfbd9793 ruby: network: convert to gem5 style stats 2013-09-06 16:21:35 -05:00
Nilay Vaish
c0a8ad0a35 ruby: converts sparse memory stats to gem5 style 2013-09-06 16:21:28 -05:00
Andreas Hansson
d4273cc9a6 mem: Set the cache line size on a system level
This patch removes the notion of a peer block size and instead sets
the cache line size on the system level.

Previously the size was set per cache, and communicated through the
interconnect. There were plenty checks to ensure that everyone had the
same size specified, and these checks are now removed. Another benefit
that is not yet harnessed is that the cache line size is now known at
construction time, rather than after the port binding. Hence, the
block size can be locally stored and does not have to be queried every
time it is used.

A follow-on patch updates the configuration scripts accordingly.
2013-07-18 08:31:16 -04:00
Akash Bagdia
7d7ab73862 sim: Add the notion of clock domains to all ClockedObjects
This patch adds the notion of source- and derived-clock domains to the
ClockedObjects. As such, all clock information is moved to the clock
domain, and the ClockedObjects are grouped into domains.

The clock domains are either source domains, with a specific clock
period, or derived domains that have a parent domain and a divider
(potentially chained). For piece of logic that runs at a derived clock
(a ratio of the clock its parent is running at) the necessary derived
clock domain is created from its corresponding parent clock
domain. For now, the derived clock domain only supports a divider,
thus ensuring a lower speed compared to its parent. Multiplier
functionality implies a PLL logic that has not been modelled yet
(create a separate clock instead).

The clock domains should be used as a mechanism to provide a
controllable clock source that affects clock for every clocked object
lying beneath it. The clock of the domain can (in a future patch) be
controlled by a handler responsible for dynamic frequency scaling of
the respective clock domains.

All the config scripts have been retro-fitted with clock domains. For
the System a default SrcClockDomain is created. For CPUs that run at a
different speed than the system, there is a seperate clock domain
created. This domain incorporates the CPU and the associated
caches. As before, Ruby runs under its own clock domain.

The clock period of all domains are pre-computed, such that no virtual
functions or multiplications are needed when calling
clockPeriod. Instead, the clock period is pre-computed when any
changes occur. For this to be possible, each clock domain tracks its
children.
2013-06-27 05:49:49 -04:00
Akash Bagdia
7eccb1b779 config: Remove redundant explicit setting of default clocks
This patch removes the explicit setting of the clock period for
certain instances of CoherentBus, NonCoherentBus and IOCache where the
specified clock is same as the default value of the system clock. As
all the values used are the defaults, there are no performance
changes. There are similar cases where the toL2Bus is set to use the
parent CPU clock which is already the default behaviour.

The main motivation for these simplifications is to ease the
introduction of clock domains.
2013-06-27 05:49:49 -04:00