gem5/src/arch/mips/isa/decoder.isa

2522 lines
120 KiB
Plaintext
Raw Normal View History

// -*- mode:c++ -*-
// Copyright (c) 2007 MIPS Technologies, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Korey Sewell
// Brett Miller
// Jaidev Patwardhan
////////////////////////////////////////////////////////////////////
//
// The actual MIPS32 ISA decoder
// -----------------------------
// The following instructions are specified in the MIPS32 ISA
// Specification. Decoding closely follows the style specified
// in the MIPS32 ISA specification document starting with Table
// A-2 (document available @ http://www.mips.com)
//
decode OPCODE_HI default Unknown::unknown() {
//Table A-2
0x0: decode OPCODE_LO {
0x0: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
0x1: decode MOVCI {
format BasicOp {
0: movf({{
Rd = (getCondCode(FCSR, CC) == 0) ? Rd : Rs;
}});
1: movt({{
Rd = (getCondCode(FCSR, CC) == 1) ? Rd : Rs;
}});
}
}
format BasicOp {
//Table A-3 Note: "Specific encodings of the rd, rs, and
//rt fields are used to distinguish SLL, SSNOP, and EHB
//functions
0x0: decode RS {
0x0: decode RT_RD {
0x0: decode SA default Nop::nop() {
0x1: ssnop({{;}});
0x3: ehb({{;}});
}
default: sll({{ Rd = Rt_uw << SA; }});
}
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x2: decode RS_SRL {
0x0:decode SRL {
0: srl({{ Rd = Rt_uw >> SA; }});
//Hardcoded assuming 32-bit ISA,
//probably need parameter here
1: rotr({{
Rd = (Rt_uw << (32 - SA)) | (Rt_uw >> SA);
}});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x3: decode RS {
0x0: sra({{
uint32_t temp = Rt >> SA;
if ( (Rt & 0x80000000) > 0 ) {
uint32_t mask = 0x80000000;
for(int i=0; i < SA; i++) {
temp |= mask;
mask = mask >> 1;
}
}
Rd = temp;
}});
}
0x4: sllv({{ Rd = Rt_uw << Rs<4:0>; }});
0x6: decode SRLV {
0: srlv({{ Rd = Rt_uw >> Rs<4:0>; }});
//Hardcoded assuming 32-bit ISA,
//probably need parameter here
1: rotrv({{
Rd = (Rt_uw << (32 - Rs<4:0>)) |
(Rt_uw >> Rs<4:0>);
}});
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x7: srav({{
int shift_amt = Rs<4:0>;
uint32_t temp = Rt >> shift_amt;
if ((Rt & 0x80000000) > 0) {
uint32_t mask = 0x80000000;
for (int i = 0; i < shift_amt; i++) {
temp |= mask;
mask = mask >> 1;
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
Rd = temp;
}});
}
}
0x1: decode FUNCTION_LO {
//Table A-3 Note: "Specific encodings of the hint field are
//used to distinguish JR from JR.HB and JALR from JALR.HB"
format Jump {
0x0: decode HINT {
0x1: jr_hb({{
Config1Reg config1 = Config1;
if (config1.ca == 0) {
NNPC = Rs;
} else {
panic("MIPS16e not supported\n");
}
}}, IsReturn, ClearHazards);
default: jr({{
Config1Reg config1 = Config1;
if (config1.ca == 0) {
NNPC = Rs;
} else {
panic("MIPS16e not supported\n");
}
}}, IsReturn);
}
0x1: decode HINT {
ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors. This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-10-31 08:07:20 +01:00
0x1: jalr_hb({{
Rd = NNPC;
NNPC = Rs;
ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors. This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-10-31 08:07:20 +01:00
}}, IsCall, ClearHazards);
default: jalr({{
Rd = NNPC;
NNPC = Rs;
ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors. This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-10-31 08:07:20 +01:00
}}, IsCall);
}
}
format BasicOp {
0x2: movz({{ Rd = (Rt == 0) ? Rs : Rd; }});
0x3: movn({{ Rd = (Rt != 0) ? Rs : Rd; }});
0x4: decode FullSystemInt {
syscall_emul: [patch 13/22] add system call retry capability This changeset adds functionality that allows system calls to retry without affecting thread context state such as the program counter or register values for the associated thread context (when system calls return with a retry fault). This functionality is needed to solve problems with blocking system calls in multi-process or multi-threaded simulations where information is passed between processes/threads. Blocking system calls can cause deadlock because the simulator itself is single threaded. There is only a single thread servicing the event queue which can cause deadlock if the thread hits a blocking system call instruction. To illustrate the problem, consider two processes using the producer/consumer sharing model. The processes can use file descriptors and the read and write calls to pass information to one another. If the consumer calls the blocking read system call before the producer has produced anything, the call will block the event queue (while executing the system call instruction) and deadlock the simulation. The solution implemented in this changeset is to recognize that the system calls will block and then generate a special retry fault. The fault will be sent back up through the function call chain until it is exposed to the cpu model's pipeline where the fault becomes visible. The fault will trigger the cpu model to replay the instruction at a future tick where the call has a chance to succeed without actually going into a blocking state. In subsequent patches, we recognize that a syscall will block by calling a non-blocking poll (from inside the system call implementation) and checking for events. When events show up during the poll, it signifies that the call would not have blocked and the syscall is allowed to proceed (calling an underlying host system call if necessary). If no events are returned from the poll, we generate the fault and try the instruction for the thread context at a distant tick. Note that retrying every tick is not efficient. As an aside, the simulator has some multi-threading support for the event queue, but it is not used by default and needs work. Even if the event queue was completely multi-threaded, meaning that there is a hardware thread on the host servicing a single simulator thread contexts with a 1:1 mapping between them, it's still possible to run into deadlock due to the event queue barriers on quantum boundaries. The solution of replaying at a later tick is the simplest solution and solves the problem generally.
2015-07-20 16:15:21 +02:00
0: syscall_se({{ xc->syscall(R2, &fault); }},
IsSerializeAfter, IsNonSpeculative);
default: syscall({{ fault = std::make_shared<SystemCallFault>(); }});
}
0x7: sync({{ ; }}, IsMemBarrier);
0x5: break({{fault = std::make_shared<BreakpointFault>();}});
}
}
0x2: decode FUNCTION_LO {
0x0: HiLoRsSelOp::mfhi({{ Rd = HI_RS_SEL; }},
IntMultOp, IsIprAccess);
0x1: HiLoRdSelOp::mthi({{ HI_RD_SEL = Rs; }});
0x2: HiLoRsSelOp::mflo({{ Rd = LO_RS_SEL; }},
IntMultOp, IsIprAccess);
0x3: HiLoRdSelOp::mtlo({{ LO_RD_SEL = Rs; }});
}
0x3: decode FUNCTION_LO {
format HiLoRdSelValOp {
0x0: mult({{ val = Rs_sd * Rt_sd; }}, IntMultOp);
0x1: multu({{ val = Rs_ud * Rt_ud; }}, IntMultOp);
}
format HiLoOp {
0x2: div({{
if (Rt_sd != 0) {
HI0 = Rs_sd % Rt_sd;
LO0 = Rs_sd / Rt_sd;
}
}}, IntDivOp);
0x3: divu({{
if (Rt_ud != 0) {
HI0 = Rs_ud % Rt_ud;
LO0 = Rs_ud / Rt_ud;
}
}}, IntDivOp);
}
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x4: decode HINT {
0x0: decode FUNCTION_LO {
format IntOp {
0x0: add({{
IntReg result;
Rd = result = Rs + Rt;
if (FullSystem &&
findOverflow(32, result, Rs, Rt)) {
fault = std::make_shared<IntegerOverflowFault>();
}
}});
0x1: addu({{ Rd_sw = Rs_sw + Rt_sw;}});
0x2: sub({{
IntReg result;
Rd = result = Rs - Rt;
if (FullSystem &&
findOverflow(32, result, Rs, ~Rt)) {
fault = std::make_shared<IntegerOverflowFault>();
}
}});
0x3: subu({{ Rd_sw = Rs_sw - Rt_sw; }});
0x4: and({{ Rd = Rs & Rt; }});
0x5: or({{ Rd = Rs | Rt; }});
0x6: xor({{ Rd = Rs ^ Rt; }});
0x7: nor({{ Rd = ~(Rs | Rt); }});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}
}
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x5: decode HINT {
0x0: decode FUNCTION_LO {
format IntOp{
0x2: slt({{ Rd_sw = (Rs_sw < Rt_sw) ? 1 : 0 }});
0x3: sltu({{ Rd_uw = (Rs_uw < Rt_uw) ? 1 : 0 }});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}
}
}
0x6: decode FUNCTION_LO {
format Trap {
0x0: tge({{ cond = (Rs_sw >= Rt_sw); }});
0x1: tgeu({{ cond = (Rs_uw >= Rt_uw); }});
0x2: tlt({{ cond = (Rs_sw < Rt_sw); }});
0x3: tltu({{ cond = (Rs_uw < Rt_uw); }});
0x4: teq({{ cond = (Rs_sw == Rt_sw); }});
0x6: tne({{ cond = (Rs_sw != Rt_sw); }});
}
}
}
0x1: decode REGIMM_HI {
0x0: decode REGIMM_LO {
format Branch {
0x0: bltz({{ cond = (Rs_sw < 0); }});
0x1: bgez({{ cond = (Rs_sw >= 0); }});
0x2: bltzl({{ cond = (Rs_sw < 0); }}, Likely);
0x3: bgezl({{ cond = (Rs_sw >= 0); }}, Likely);
}
}
0x1: decode REGIMM_LO {
format TrapImm {
0x0: tgei( {{ cond = (Rs_sw >= (int16_t)INTIMM); }});
0x1: tgeiu({{
cond = (Rs_uw >= (uint32_t)(int32_t)(int16_t)INTIMM);
}});
0x2: tlti( {{ cond = (Rs_sw < (int16_t)INTIMM); }});
0x3: tltiu({{
cond = (Rs_uw < (uint32_t)(int32_t)(int16_t)INTIMM);
}});
0x4: teqi( {{ cond = (Rs_sw == (int16_t)INTIMM); }});
0x6: tnei( {{ cond = (Rs_sw != (int16_t)INTIMM); }});
}
}
0x2: decode REGIMM_LO {
format Branch {
0x0: bltzal({{ cond = (Rs_sw < 0); }}, Link);
0x1: decode RS {
0x0: bal ({{ cond = 1; }}, IsCall, Link);
default: bgezal({{ cond = (Rs_sw >= 0); }}, Link);
}
0x2: bltzall({{ cond = (Rs_sw < 0); }}, Link, Likely);
0x3: bgezall({{ cond = (Rs_sw >= 0); }}, Link, Likely);
}
}
0x3: decode REGIMM_LO {
// from Table 5-4 MIPS32 REGIMM Encoding of rt Field
// (DSP ASE MANUAL)
0x4: DspBranch::bposge32({{ cond = (dspctl<5:0> >= 32); }});
format WarnUnimpl {
0x7: synci();
}
}
}
format Jump {
0x2: j({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }});
0x3: jal({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }},
IsCall, Link);
}
format Branch {
0x4: decode RS_RT {
0x0: b({{ cond = 1; }});
default: beq({{ cond = (Rs_sw == Rt_sw); }});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}
0x5: bne({{ cond = (Rs_sw != Rt_sw); }});
0x6: blez({{ cond = (Rs_sw <= 0); }});
0x7: bgtz({{ cond = (Rs_sw > 0); }});
}
}
0x1: decode OPCODE_LO {
format IntImmOp {
0x0: addi({{
IntReg result;
Rt = result = Rs + imm;
if (FullSystem &&
findOverflow(32, result, Rs, imm)) {
fault = std::make_shared<IntegerOverflowFault>();
}
}});
0x1: addiu({{ Rt_sw = Rs_sw + imm; }});
0x2: slti({{ Rt_sw = (Rs_sw < imm) ? 1 : 0 }});
0x3: sltiu({{ Rt_uw = (Rs_uw < (uint32_t)sextImm) ? 1 : 0;}});
0x4: andi({{ Rt_sw = Rs_sw & zextImm; }});
0x5: ori({{ Rt_sw = Rs_sw | zextImm; }});
0x6: xori({{ Rt_sw = Rs_sw ^ zextImm; }});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x7: decode RS {
0x0: lui({{ Rt = imm << 16; }});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}
}
}
0x2: decode OPCODE_LO {
//Table A-11 MIPS32 COP0 Encoding of rs Field
0x0: decode RS_MSB {
0x0: decode RS {
format CP0Control {
0x0: mfc0({{
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
Rt = CP0_RD_SEL;
/* Hack for PageMask */
if (RD == 5) {
// PageMask
if (config3.sp == 0 || pageGrain.esp == 0)
Rt &= 0xFFFFE7FF;
}
}});
0x4: mtc0({{
CP0_RD_SEL = Rt;
CauseReg cause = Cause;
IntCtlReg intCtl = IntCtl;
if (RD == 11) {
// Compare
if (cause.ti == 1) {
cause.ti = 0;
int offset = 10; // corresponding to cause.ip0
offset += intCtl.ipti - 2;
replaceBits(cause, offset, offset, 0);
}
}
Cause = cause;
}});
}
format CP0Unimpl {
0x1: dmfc0();
0x5: dmtc0();
default: unknown();
}
format MT_MFTR {
// Decode MIPS MT MFTR instruction into sub-instructions
0x8: decode MT_U {
0x0: mftc0({{
data = xc->readRegOtherThread((RT << 3 | SEL) +
Misc_Reg_Base);
}});
0x1: decode SEL {
0x0: mftgpr({{
data = xc->readRegOtherThread(RT);
}});
0x1: decode RT {
0x0: mftlo_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_LO0); }});
0x1: mfthi_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_HI0); }});
0x2: mftacx_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_ACX0); }});
0x4: mftlo_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_LO1); }});
0x5: mfthi_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_HI1); }});
0x6: mftacx_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_ACX1); }});
0x8: mftlo_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_LO2); }});
0x9: mfthi_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_HI2); }});
0x10: mftacx_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_ACX2); }});
0x12: mftlo_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_LO3); }});
0x13: mfthi_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_HI3); }});
0x14: mftacx_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_ACX3); }});
0x16: mftdsp({{ data = xc->readRegOtherThread(INTREG_DSP_CONTROL); }});
default: CP0Unimpl::unknown();
}
0x2: decode MT_H {
0x0: mftc1({{ data = xc->readRegOtherThread(RT +
FP_Reg_Base);
}});
0x1: mfthc1({{ data = xc->readRegOtherThread(RT +
FP_Reg_Base);
}});
}
0x3: cftc1({{
uint32_t fcsr_val = xc->readRegOtherThread(FLOATREG_FCSR +
FP_Reg_Base);
switch (RT) {
case 0:
data = xc->readRegOtherThread(FLOATREG_FIR +
Misc_Reg_Base);
break;
case 25:
data = (fcsr_val & 0xFE000000 >> 24) |
(fcsr_val & 0x00800000 >> 23);
break;
case 26:
data = fcsr_val & 0x0003F07C;
break;
case 28:
data = (fcsr_val & 0x00000F80) |
(fcsr_val & 0x01000000 >> 21) |
(fcsr_val & 0x00000003);
break;
case 31:
data = fcsr_val;
break;
default:
fatal("FP Control Value (%d) Not Valid");
}
}});
default: CP0Unimpl::unknown();
}
}
}
format MT_MTTR {
// Decode MIPS MT MTTR instruction into sub-instructions
0xC: decode MT_U {
0x0: mttc0({{ xc->setRegOtherThread((RD << 3 | SEL) + Misc_Reg_Base,
Rt);
}});
0x1: decode SEL {
0x0: mttgpr({{ xc->setRegOtherThread(RD, Rt); }});
0x1: decode RT {
0x0: mttlo_dsp0({{ xc->setRegOtherThread(INTREG_DSP_LO0, Rt);
}});
0x1: mtthi_dsp0({{ xc->setRegOtherThread(INTREG_DSP_HI0,
Rt);
}});
0x2: mttacx_dsp0({{ xc->setRegOtherThread(INTREG_DSP_ACX0,
Rt);
}});
0x4: mttlo_dsp1({{ xc->setRegOtherThread(INTREG_DSP_LO1,
Rt);
}});
0x5: mtthi_dsp1({{ xc->setRegOtherThread(INTREG_DSP_HI1,
Rt);
}});
0x6: mttacx_dsp1({{ xc->setRegOtherThread(INTREG_DSP_ACX1,
Rt);
}});
0x8: mttlo_dsp2({{ xc->setRegOtherThread(INTREG_DSP_LO2,
Rt);
}});
0x9: mtthi_dsp2({{ xc->setRegOtherThread(INTREG_DSP_HI2,
Rt);
}});
0x10: mttacx_dsp2({{ xc->setRegOtherThread(INTREG_DSP_ACX2,
Rt);
}});
0x12: mttlo_dsp3({{ xc->setRegOtherThread(INTREG_DSP_LO3,
Rt);
}});
0x13: mtthi_dsp3({{ xc->setRegOtherThread(INTREG_DSP_HI3,
Rt);
}});
0x14: mttacx_dsp3({{ xc->setRegOtherThread(INTREG_DSP_ACX3, Rt);
}});
0x16: mttdsp({{ xc->setRegOtherThread(INTREG_DSP_CONTROL, Rt); }});
default: CP0Unimpl::unknown();
}
0x2: mttc1({{
uint64_t data = xc->readRegOtherThread(RD +
FP_Reg_Base);
data = insertBits(data, MT_H ? 63 : 31,
MT_H ? 32 : 0, Rt);
xc->setRegOtherThread(RD + FP_Reg_Base,
data);
}});
0x3: cttc1({{
uint32_t data;
switch (RD) {
case 25:
data = (Rt_uw<7:1> << 25) | // move 31-25
(FCSR & 0x01000000) | // bit 24
(FCSR & 0x004FFFFF); // bit 22-0
break;
case 26:
data = (FCSR & 0xFFFC0000) | // move 31-18
Rt_uw<17:12> << 12 | // bit 17-12
(FCSR & 0x00000F80) << 7 | // bit 11-7
Rt_uw<6:2> << 2 | // bit 6-2
(FCSR & 0x00000002); // bit 1...0
break;
case 28:
data = (FCSR & 0xFE000000) | // move 31-25
Rt_uw<2:2> << 24 | // bit 24
(FCSR & 0x00FFF000) << 23 | // bit 23-12
Rt_uw<11:7> << 7 | // bit 24
(FCSR & 0x000007E) |
Rt_uw<1:0>; // bit 22-0
break;
case 31:
data = Rt_uw;
break;
default:
panic("FP Control Value (%d) "
"Not Available. Ignoring "
"Access to Floating Control "
"S""tatus Register", FS);
}
xc->setRegOtherThread(FLOATREG_FCSR + FP_Reg_Base, data);
}});
default: CP0Unimpl::unknown();
}
}
}
0xB: decode RD {
format MT_Control {
0x0: decode POS {
0x0: decode SEL {
0x1: decode SC {
0x0: dvpe({{
MVPControlReg mvpControl = MVPControl;
VPEConf0Reg vpeConf0 = VPEConf0;
Rt = MVPControl;
if (vpeConf0.mvp == 1)
mvpControl.evp = 0;
MVPControl = mvpControl;
}});
0x1: evpe({{
MVPControlReg mvpControl = MVPControl;
VPEConf0Reg vpeConf0 = VPEConf0;
Rt = MVPControl;
if (vpeConf0.mvp == 1)
mvpControl.evp = 1;
MVPControl = mvpControl;
}});
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
0x1: decode POS {
0xF: decode SEL {
0x1: decode SC {
0x0: dmt({{
VPEControlReg vpeControl = VPEControl;
Rt = vpeControl;
vpeControl.te = 0;
VPEControl = vpeControl;
}});
0x1: emt({{
VPEControlReg vpeControl = VPEControl;
Rt = vpeControl;
vpeControl.te = 1;
VPEControl = vpeControl;
}});
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
}
0xC: decode POS {
0x0: decode SC {
0x0: CP0Control::di({{
StatusReg status = Status;
ConfigReg config = Config;
// Rev 2.0 or beyond?
if (config.ar >= 1) {
Rt = status;
status.ie = 0;
} else {
// Enable this else branch once we
// actually set values for Config on init
fault = std::make_shared<ReservedInstructionFault>();
}
Status = status;
}});
0x1: CP0Control::ei({{
StatusReg status = Status;
ConfigReg config = Config;
if (config.ar >= 1) {
Rt = status;
status.ie = 1;
} else {
fault = std::make_shared<ReservedInstructionFault>();
}
}});
default:CP0Unimpl::unknown();
}
}
default: CP0Unimpl::unknown();
}
format CP0Control {
0xA: rdpgpr({{
ConfigReg config = Config;
if (config.ar >= 1) {
// Rev 2 of the architecture
panic("Shadow Sets Not Fully Implemented.\n");
} else {
fault = std::make_shared<ReservedInstructionFault>();
}
}});
0xE: wrpgpr({{
ConfigReg config = Config;
if (config.ar >= 1) {
// Rev 2 of the architecture
panic("Shadow Sets Not Fully Implemented.\n");
} else {
fault = std::make_shared<ReservedInstructionFault>();
}
}});
}
}
//Table A-12 MIPS32 COP0 Encoding of Function Field When rs=CO
0x1: decode FUNCTION {
format CP0Control {
0x18: eret({{
StatusReg status = Status;
ConfigReg config = Config;
SRSCtlReg srsCtl = SRSCtl;
DPRINTF(MipsPRA,"Restoring PC - %x\n",EPC);
if (status.erl == 1) {
status.erl = 0;
NPC = ErrorEPC;
// Need to adjust NNPC, otherwise things break
NNPC = ErrorEPC + sizeof(MachInst);
} else {
NPC = EPC;
// Need to adjust NNPC, otherwise things break
NNPC = EPC + sizeof(MachInst);
status.exl = 0;
if (config.ar >=1 &&
srsCtl.hss > 0 &&
status.bev == 0) {
srsCtl.css = srsCtl.pss;
//xc->setShadowSet(srsCtl.pss);
}
}
LLFlag = 0;
Status = status;
SRSCtl = srsCtl;
}}, IsReturn, IsSerializing, IsERET);
0x1F: deret({{
DebugReg debug = Debug;
if (debug.dm == 1) {
debug.dm = 1;
debug.iexi = 0;
NPC = DEPC;
} else {
NPC = NPC;
// Undefined;
}
Debug = debug;
}}, IsReturn, IsSerializing, IsERET);
}
format CP0TLB {
0x01: tlbr({{
MipsISA::PTE *PTEntry =
xc->tcBase()->getITBPtr()->
getEntry(Index & 0x7FFFFFFF);
if (PTEntry == NULL) {
fatal("Invalid PTE Entry received on "
"a TLBR instruction\n");
}
/* Setup PageMask */
// If 1KB pages are not enabled, a read of PageMask
// must return 0b00 in bits 12, 11
PageMask = (PTEntry->Mask << 11);
/* Setup EntryHi */
EntryHi = ((PTEntry->VPN << 11) | (PTEntry->asid));
/* Setup Entry Lo0 */
EntryLo0 = ((PTEntry->PFN0 << 6) |
(PTEntry->C0 << 3) |
(PTEntry->D0 << 2) |
(PTEntry->V0 << 1) |
PTEntry->G);
/* Setup Entry Lo1 */
EntryLo1 = ((PTEntry->PFN1 << 6) |
(PTEntry->C1 << 3) |
(PTEntry->D1 << 2) |
(PTEntry->V1 << 1) |
PTEntry->G);
}}); // Need to hook up to TLB
0x02: tlbwi({{
//Create PTE
MipsISA::PTE newEntry;
//Write PTE
newEntry.Mask = (Addr)(PageMask >> 11);
newEntry.VPN = (Addr)(EntryHi >> 11);
/* PageGrain _ ESP Config3 _ SP */
if (bits(PageGrain, 28) == 0 || bits(Config3, 4) ==0) {
// If 1KB pages are *NOT* enabled, lowest bits of
// the mask are 0b11 for TLB writes
newEntry.Mask |= 0x3;
// Reset bits 0 and 1 if 1KB pages are not enabled
newEntry.VPN &= 0xFFFFFFFC;
}
newEntry.asid = (uint8_t)(EntryHi & 0xFF);
newEntry.PFN0 = (Addr)(EntryLo0 >> 6);
newEntry.PFN1 = (Addr)(EntryLo1 >> 6);
newEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
newEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
newEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
newEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
newEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
newEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
newEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
/* Now, compute the AddrShiftAmount and OffsetMask -
TLB optimizations */
/* Addr Shift Amount for 1KB or larger pages */
if ((newEntry.Mask & 0xFFFF) == 3) {
newEntry.AddrShiftAmount = 12;
} else if ((newEntry.Mask & 0xFFFF) == 0x0000) {
newEntry.AddrShiftAmount = 10;
} else if ((newEntry.Mask & 0xFFFC) == 0x000C) {
newEntry.AddrShiftAmount = 14;
} else if ((newEntry.Mask & 0xFFF0) == 0x0030) {
newEntry.AddrShiftAmount = 16;
} else if ((newEntry.Mask & 0xFFC0) == 0x00C0) {
newEntry.AddrShiftAmount = 18;
} else if ((newEntry.Mask & 0xFF00) == 0x0300) {
newEntry.AddrShiftAmount = 20;
} else if ((newEntry.Mask & 0xFC00) == 0x0C00) {
newEntry.AddrShiftAmount = 22;
} else if ((newEntry.Mask & 0xF000) == 0x3000) {
newEntry.AddrShiftAmount = 24;
} else if ((newEntry.Mask & 0xC000) == 0xC000) {
newEntry.AddrShiftAmount = 26;
} else if ((newEntry.Mask & 0x30000) == 0x30000) {
newEntry.AddrShiftAmount = 28;
} else {
fatal("Invalid Mask Pattern Detected!\n");
}
newEntry.OffsetMask =
(1 << newEntry.AddrShiftAmount) - 1;
MipsISA::TLB *Ptr = xc->tcBase()->getITBPtr();
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
int SP = 0;
if (bits(config3, config3.sp) == 1 &&
bits(pageGrain, pageGrain.esp) == 1) {
SP = 1;
}
Ptr->insertAt(newEntry, Index & 0x7FFFFFFF, SP);
}});
0x06: tlbwr({{
//Create PTE
MipsISA::PTE newEntry;
//Write PTE
newEntry.Mask = (Addr)(PageMask >> 11);
newEntry.VPN = (Addr)(EntryHi >> 11);
/* PageGrain _ ESP Config3 _ SP */
if (bits(PageGrain, 28) == 0 ||
bits(Config3, 4) == 0) {
// If 1KB pages are *NOT* enabled, lowest bits of
// the mask are 0b11 for TLB writes
newEntry.Mask |= 0x3;
// Reset bits 0 and 1 if 1KB pages are not enabled
newEntry.VPN &= 0xFFFFFFFC;
}
newEntry.asid = (uint8_t)(EntryHi & 0xFF);
newEntry.PFN0 = (Addr)(EntryLo0 >> 6);
newEntry.PFN1 = (Addr)(EntryLo1 >> 6);
newEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
newEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
newEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
newEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
newEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
newEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
newEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
/* Now, compute the AddrShiftAmount and OffsetMask -
TLB optimizations */
/* Addr Shift Amount for 1KB or larger pages */
if ((newEntry.Mask & 0xFFFF) == 3){
newEntry.AddrShiftAmount = 12;
} else if ((newEntry.Mask & 0xFFFF) == 0x0000) {
newEntry.AddrShiftAmount = 10;
} else if ((newEntry.Mask & 0xFFFC) == 0x000C) {
newEntry.AddrShiftAmount = 14;
} else if ((newEntry.Mask & 0xFFF0) == 0x0030) {
newEntry.AddrShiftAmount = 16;
} else if ((newEntry.Mask & 0xFFC0) == 0x00C0) {
newEntry.AddrShiftAmount = 18;
} else if ((newEntry.Mask & 0xFF00) == 0x0300) {
newEntry.AddrShiftAmount = 20;
} else if ((newEntry.Mask & 0xFC00) == 0x0C00) {
newEntry.AddrShiftAmount = 22;
} else if ((newEntry.Mask & 0xF000) == 0x3000) {
newEntry.AddrShiftAmount = 24;
} else if ((newEntry.Mask & 0xC000) == 0xC000) {
newEntry.AddrShiftAmount = 26;
} else if ((newEntry.Mask & 0x30000) == 0x30000) {
newEntry.AddrShiftAmount = 28;
} else {
fatal("Invalid Mask Pattern Detected!\n");
}
newEntry.OffsetMask =
(1 << newEntry.AddrShiftAmount) - 1;
MipsISA::TLB *Ptr = xc->tcBase()->getITBPtr();
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
int SP = 0;
if (bits(config3, config3.sp) == 1 &&
bits(pageGrain, pageGrain.esp) == 1) {
SP = 1;
}
Ptr->insertAt(newEntry, Random, SP);
}});
0x08: tlbp({{
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
EntryHiReg entryHi = EntryHi;
int tlbIndex;
Addr vpn;
if (pageGrain.esp == 1 && config3.sp ==1) {
vpn = EntryHi >> 11;
} else {
// Mask off lower 2 bits
vpn = ((EntryHi >> 11) & 0xFFFFFFFC);
}
tlbIndex = xc->tcBase()->getITBPtr()->
probeEntry(vpn, entryHi.asid);
// Check TLB for entry matching EntryHi
if (tlbIndex != -1) {
Index = tlbIndex;
} else {
// else, set Index = 1 << 31
Index = (1 << 31);
}
}});
}
format CP0Unimpl {
0x20: wait();
}
default: CP0Unimpl::unknown();
}
}
//Table A-13 MIPS32 COP1 Encoding of rs Field
0x1: decode RS_MSB {
0x0: decode RS_HI {
0x0: decode RS_LO {
format CP1Control {
0x0: mfc1 ({{ Rt_uw = Fs_uw; }});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x2: cfc1({{
switch (FS) {
case 0:
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
Rt = FIR;
break;
case 25:
Rt = (FCSR & 0xFE000000) >> 24 |
(FCSR & 0x00800000) >> 23;
break;
case 26:
Rt = (FCSR & 0x0003F07C);
break;
case 28:
Rt = (FCSR & 0x00000F80) |
(FCSR & 0x01000000) >> 21 |
(FCSR & 0x00000003);
break;
case 31:
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
Rt = FCSR;
break;
default:
warn("FP Control Value (%d) Not Valid");
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}
}});
0x3: mfhc1({{ Rt_uw = Fs_ud<63:32>; }});
0x4: mtc1({{ Fs_uw = Rt_uw; }});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x6: ctc1({{
switch (FS) {
case 25:
FCSR = (Rt_uw<7:1> << 25) | // move 31-25
(FCSR & 0x01000000) | // bit 24
(FCSR & 0x004FFFFF); // bit 22-0
break;
case 26:
FCSR = (FCSR & 0xFFFC0000) | // move 31-18
Rt_uw<17:12> << 12 | // bit 17-12
(FCSR & 0x00000F80) << 7 | // bit 11-7
Rt_uw<6:2> << 2 | // bit 6-2
(FCSR & 0x00000002); // bit 1-0
break;
case 28:
FCSR = (FCSR & 0xFE000000) | // move 31-25
Rt_uw<2:2> << 24 | // bit 24
(FCSR & 0x00FFF000) << 23 | // bit 23-12
Rt_uw<11:7> << 7 | // bit 24
(FCSR & 0x000007E) |
Rt_uw<1:0>; // bit 22-0
break;
case 31:
FCSR = Rt_uw;
break;
default:
panic("FP Control Value (%d) "
"Not Available. Ignoring Access "
"to Floating Control Status "
"Register", FS);
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}});
0x7: mthc1({{
uint64_t fs_hi = Rt_uw;
uint64_t fs_lo = Fs_ud & 0x0FFFFFFFF;
Fs_ud = (fs_hi << 32) | fs_lo;
}});
}
format CP1Unimpl {
0x1: dmfc1();
0x5: dmtc1();
}
}
0x1: decode RS_LO {
0x0: decode ND {
format Branch {
0x0: decode TF {
0x0: bc1f({{
cond = getCondCode(FCSR, BRANCH_CC) == 0;
}});
0x1: bc1t({{
cond = getCondCode(FCSR, BRANCH_CC) == 1;
}});
}
0x1: decode TF {
0x0: bc1fl({{
cond = getCondCode(FCSR, BRANCH_CC) == 0;
}}, Likely);
0x1: bc1tl({{
cond = getCondCode(FCSR, BRANCH_CC) == 1;
}}, Likely);
}
}
}
format CP1Unimpl {
0x1: bc1any2();
0x2: bc1any4();
default: unknown();
}
}
}
0x1: decode RS_HI {
0x2: decode RS_LO {
//Table A-14 MIPS32 COP1 Encoding of Function Field When
//rs=S (( single-precision floating point))
0x0: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format FloatOp {
0x0: add_s({{ Fd_sf = Fs_sf + Ft_sf; }});
0x1: sub_s({{ Fd_sf = Fs_sf - Ft_sf; }});
0x2: mul_s({{ Fd_sf = Fs_sf * Ft_sf; }});
0x3: div_s({{ Fd_sf = Fs_sf / Ft_sf; }});
0x4: sqrt_s({{ Fd_sf = sqrt(Fs_sf); }});
0x5: abs_s({{ Fd_sf = fabs(Fs_sf); }});
0x7: neg_s({{ Fd_sf = -Fs_sf; }});
}
0x6: BasicOp::mov_s({{ Fd_sf = Fs_sf; }});
}
0x1: decode FUNCTION_LO {
format FloatConvertOp {
0x0: round_l_s({{ val = Fs_sf; }},
ToLong, Round);
0x1: trunc_l_s({{ val = Fs_sf; }},
ToLong, Trunc);
0x2: ceil_l_s({{ val = Fs_sf;}},
ToLong, Ceil);
0x3: floor_l_s({{ val = Fs_sf; }},
ToLong, Floor);
0x4: round_w_s({{ val = Fs_sf; }},
ToWord, Round);
0x5: trunc_w_s({{ val = Fs_sf; }},
ToWord, Trunc);
0x6: ceil_w_s({{ val = Fs_sf; }},
ToWord, Ceil);
0x7: floor_w_s({{ val = Fs_sf; }},
ToWord, Floor);
}
}
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format BasicOp {
0x0: movf_s({{
Fd = (getCondCode(FCSR,CC) == 0) ?
Fs : Fd;
}});
0x1: movt_s({{
Fd = (getCondCode(FCSR,CC) == 1) ?
Fs : Fd;
}});
}
}
format BasicOp {
0x2: movz_s({{ Fd = (Rt == 0) ? Fs : Fd; }});
0x3: movn_s({{ Fd = (Rt != 0) ? Fs : Fd; }});
}
format FloatOp {
0x5: recip_s({{ Fd = 1 / Fs; }});
0x6: rsqrt_s({{ Fd = 1 / sqrt(Fs); }});
}
format CP1Unimpl {
default: unknown();
}
}
0x3: CP1Unimpl::unknown();
0x4: decode FUNCTION_LO {
format FloatConvertOp {
0x1: cvt_d_s({{ val = Fs_sf; }}, ToDouble);
0x4: cvt_w_s({{ val = Fs_sf; }}, ToWord);
0x5: cvt_l_s({{ val = Fs_sf; }}, ToLong);
}
0x6: FloatOp::cvt_ps_s({{
Fd_ud = (uint64_t) Fs_uw << 32 |
(uint64_t) Ft_uw;
}});
format CP1Unimpl {
default: unknown();
}
}
0x5: CP1Unimpl::unknown();
0x6: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_f_s({{ cond = 0; }},
SinglePrecision, UnorderedFalse);
0x1: c_un_s({{ cond = 0; }},
SinglePrecision, UnorderedTrue);
0x2: c_eq_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedFalse);
0x3: c_ueq_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedTrue);
0x4: c_olt_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedFalse);
0x5: c_ult_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedTrue);
0x6: c_ole_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedFalse);
0x7: c_ule_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_sf_s({{ cond = 0; }}, SinglePrecision,
UnorderedFalse, QnanException);
0x1: c_ngle_s({{ cond = 0; }}, SinglePrecision,
UnorderedTrue, QnanException);
0x2: c_seq_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedFalse, QnanException);
0x3: c_ngl_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedTrue, QnanException);
0x4: c_lt_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedFalse, QnanException);
0x5: c_nge_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedTrue, QnanException);
0x6: c_le_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedFalse, QnanException);
0x7: c_ngt_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedTrue, QnanException);
}
}
}
//Table A-15 MIPS32 COP1 Encoding of Function Field When
//rs=D
0x1: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format FloatOp {
0x0: add_d({{ Fd_df = Fs_df + Ft_df; }});
0x1: sub_d({{ Fd_df = Fs_df - Ft_df; }});
0x2: mul_d({{ Fd_df = Fs_df * Ft_df; }});
0x3: div_d({{ Fd_df = Fs_df / Ft_df; }});
0x4: sqrt_d({{ Fd_df = sqrt(Fs_df); }});
0x5: abs_d({{ Fd_df = fabs(Fs_df); }});
0x7: neg_d({{ Fd_df = -1 * Fs_df; }});
}
0x6: BasicOp::mov_d({{ Fd_df = Fs_df; }});
}
0x1: decode FUNCTION_LO {
format FloatConvertOp {
0x0: round_l_d({{ val = Fs_df; }},
ToLong, Round);
0x1: trunc_l_d({{ val = Fs_df; }},
ToLong, Trunc);
0x2: ceil_l_d({{ val = Fs_df; }},
ToLong, Ceil);
0x3: floor_l_d({{ val = Fs_df; }},
ToLong, Floor);
0x4: round_w_d({{ val = Fs_df; }},
ToWord, Round);
0x5: trunc_w_d({{ val = Fs_df; }},
ToWord, Trunc);
0x6: ceil_w_d({{ val = Fs_df; }},
ToWord, Ceil);
0x7: floor_w_d({{ val = Fs_df; }},
ToWord, Floor);
}
}
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format BasicOp {
0x0: movf_d({{
Fd_df = (getCondCode(FCSR,CC) == 0) ?
Fs_df : Fd_df;
}});
0x1: movt_d({{
Fd_df = (getCondCode(FCSR,CC) == 1) ?
Fs_df : Fd_df;
}});
}
}
format BasicOp {
0x2: movz_d({{
Fd_df = (Rt == 0) ? Fs_df : Fd_df;
}});
0x3: movn_d({{
Fd_df = (Rt != 0) ? Fs_df : Fd_df;
}});
}
format FloatOp {
0x5: recip_d({{ Fd_df = 1 / Fs_df; }});
0x6: rsqrt_d({{ Fd_df = 1 / sqrt(Fs_df); }});
}
format CP1Unimpl {
default: unknown();
}
}
0x4: decode FUNCTION_LO {
format FloatConvertOp {
0x0: cvt_s_d({{ val = Fs_df; }}, ToSingle);
0x4: cvt_w_d({{ val = Fs_df; }}, ToWord);
0x5: cvt_l_d({{ val = Fs_df; }}, ToLong);
}
default: CP1Unimpl::unknown();
}
0x6: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_f_d({{ cond = 0; }},
DoublePrecision, UnorderedFalse);
0x1: c_un_d({{ cond = 0; }},
DoublePrecision, UnorderedTrue);
0x2: c_eq_d({{ cond = (Fs_df == Ft_df); }},
UnorderedFalse);
0x3: c_ueq_d({{ cond = (Fs_df == Ft_df); }},
UnorderedTrue);
0x4: c_olt_d({{ cond = (Fs_df < Ft_df); }},
UnorderedFalse);
0x5: c_ult_d({{ cond = (Fs_df < Ft_df); }},
UnorderedTrue);
0x6: c_ole_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedFalse);
0x7: c_ule_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_sf_d({{ cond = 0; }}, DoublePrecision,
UnorderedFalse, QnanException);
0x1: c_ngle_d({{ cond = 0; }}, DoublePrecision,
UnorderedTrue, QnanException);
0x2: c_seq_d({{ cond = (Fs_df == Ft_df); }},
UnorderedFalse, QnanException);
0x3: c_ngl_d({{ cond = (Fs_df == Ft_df); }},
UnorderedTrue, QnanException);
0x4: c_lt_d({{ cond = (Fs_df < Ft_df); }},
UnorderedFalse, QnanException);
0x5: c_nge_d({{ cond = (Fs_df < Ft_df); }},
UnorderedTrue, QnanException);
0x6: c_le_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedFalse, QnanException);
0x7: c_ngt_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedTrue, QnanException);
}
}
default: CP1Unimpl::unknown();
}
0x2: CP1Unimpl::unknown();
0x3: CP1Unimpl::unknown();
0x7: CP1Unimpl::unknown();
//Table A-16 MIPS32 COP1 Encoding of Function
//Field When rs=W
0x4: decode FUNCTION {
format FloatConvertOp {
0x20: cvt_s_w({{ val = Fs_sw; }}, ToSingle);
0x21: cvt_d_w({{ val = Fs_sw; }}, ToDouble);
0x26: CP1Unimpl::cvt_ps_w();
}
default: CP1Unimpl::unknown();
}
//Table A-16 MIPS32 COP1 Encoding of Function Field
//When rs=L1
//Note: "1. Format type L is legal only if 64-bit
//floating point operations are enabled."
0x5: decode FUNCTION {
format FloatConvertOp {
0x20: cvt_s_l({{ val = Fs_sd; }}, ToSingle);
0x21: cvt_d_l({{ val = Fs_sd; }}, ToDouble);
0x26: CP1Unimpl::cvt_ps_l();
}
default: CP1Unimpl::unknown();
}
//Table A-17 MIPS64 COP1 Encoding of Function Field
//When rs=PS1
//Note: "1. Format type PS is legal only if 64-bit
//floating point operations are enabled. "
0x6: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format Float64Op {
0x0: add_ps({{
Fd1_sf = Fs1_sf + Ft2_sf;
Fd2_sf = Fs2_sf + Ft2_sf;
}});
0x1: sub_ps({{
Fd1_sf = Fs1_sf - Ft2_sf;
Fd2_sf = Fs2_sf - Ft2_sf;
}});
0x2: mul_ps({{
Fd1_sf = Fs1_sf * Ft2_sf;
Fd2_sf = Fs2_sf * Ft2_sf;
}});
0x5: abs_ps({{
Fd1_sf = fabs(Fs1_sf);
Fd2_sf = fabs(Fs2_sf);
}});
0x6: mov_ps({{
Fd1_sf = Fs1_sf;
Fd2_sf = Fs2_sf;
}});
0x7: neg_ps({{
Fd1_sf = -(Fs1_sf);
Fd2_sf = -(Fs2_sf);
}});
default: CP1Unimpl::unknown();
}
}
0x1: CP1Unimpl::unknown();
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format Float64Op {
0x0: movf_ps({{
Fd1 = (getCondCode(FCSR, CC) == 0) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC+1) == 0) ?
Fs2 : Fd2;
}});
0x1: movt_ps({{
Fd2 = (getCondCode(FCSR, CC) == 1) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC+1) == 1) ?
Fs2 : Fd2;
}});
}
}
format Float64Op {
0x2: movz_ps({{
Fd1 = (getCondCode(FCSR, CC) == 0) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC) == 0) ?
Fs2 : Fd2;
}});
0x3: movn_ps({{
Fd1 = (getCondCode(FCSR, CC) == 1) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC) == 1) ?
Fs2 : Fd2;
}});
}
default: CP1Unimpl::unknown();
}
0x3: CP1Unimpl::unknown();
0x4: decode FUNCTION_LO {
0x0: FloatOp::cvt_s_pu({{ Fd_sf = Fs2_sf; }});
default: CP1Unimpl::unknown();
}
0x5: decode FUNCTION_LO {
0x0: FloatOp::cvt_s_pl({{ Fd_sf = Fs1_sf; }});
format Float64Op {
0x4: pll({{
Fd_ud = (uint64_t)Fs1_uw << 32 | Ft1_uw;
}});
0x5: plu({{
Fd_ud = (uint64_t)Fs1_uw << 32 | Ft2_uw;
}});
0x6: pul({{
Fd_ud = (uint64_t)Fs2_uw << 32 | Ft1_uw;
}});
0x7: puu({{
Fd_ud = (uint64_t)Fs2_uw << 32 | Ft2_uw;
}});
}
default: CP1Unimpl::unknown();
}
0x6: decode FUNCTION_LO {
format FloatPSCompareOp {
0x0: c_f_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedFalse);
0x1: c_un_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedTrue);
0x2: c_eq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedFalse);
0x3: c_ueq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedTrue);
0x4: c_olt_ps({{ cond1 = (Fs1_sf < Ft1_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedFalse);
0x5: c_ult_ps({{ cond1 = (Fs_sf < Ft_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedTrue);
0x6: c_ole_ps({{ cond1 = (Fs_sf <= Ft_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedFalse);
0x7: c_ule_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatPSCompareOp {
0x0: c_sf_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedFalse, QnanException);
0x1: c_ngle_ps({{ cond1 = 0; }},
{{ cond2 = 0; }},
UnorderedTrue, QnanException);
0x2: c_seq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedFalse, QnanException);
0x3: c_ngl_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedTrue, QnanException);
0x4: c_lt_ps({{ cond1 = (Fs1_sf < Ft1_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedFalse, QnanException);
0x5: c_nge_ps({{ cond1 = (Fs1_sf < Ft1_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedTrue, QnanException);
0x6: c_le_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedFalse, QnanException);
0x7: c_ngt_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedTrue, QnanException);
}
}
}
}
default: CP1Unimpl::unknown();
}
}
//Table A-19 MIPS32 COP2 Encoding of rs Field
0x2: decode RS_MSB {
format CP2Unimpl {
0x0: decode RS_HI {
0x0: decode RS_LO {
0x0: mfc2();
0x2: cfc2();
0x3: mfhc2();
0x4: mtc2();
0x6: ctc2();
0x7: mftc2();
default: unknown();
}
0x1: decode ND {
0x0: decode TF {
0x0: bc2f();
0x1: bc2t();
default: unknown();
}
0x1: decode TF {
0x0: bc2fl();
0x1: bc2tl();
default: unknown();
}
default: unknown();
}
default: unknown();
}
default: unknown();
}
}
//Table A-20 MIPS64 COP1X Encoding of Function Field 1
//Note: "COP1X instructions are legal only if 64-bit floating point
//operations are enabled."
0x3: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format LoadIndexedMemory {
0x0: lwxc1({{ Fd_uw = Mem_uw; }});
0x1: ldxc1({{ Fd_ud = Mem_ud; }});
0x5: luxc1({{ Fd_ud = Mem_ud; }},
{{ EA = (Rs + Rt) & ~7; }});
}
}
0x1: decode FUNCTION_LO {
format StoreIndexedMemory {
0x0: swxc1({{ Mem_uw = Fs_uw; }});
0x1: sdxc1({{ Mem_ud = Fs_ud; }});
0x5: suxc1({{ Mem_ud = Fs_ud; }},
{{ EA = (Rs + Rt) & ~7; }});
}
0x7: Prefetch::prefx({{ EA = Rs + Rt; }});
}
0x3: decode FUNCTION_LO {
0x6: Float64Op::alnv_ps({{
if (Rs<2:0> == 0) {
Fd_ud = Fs_ud;
} else if (Rs<2:0> == 4) {
if (GuestByteOrder == BigEndianByteOrder)
Fd_ud = Fs_ud<31:0> << 32 | Ft_ud<63:32>;
else
Fd_ud = Ft_ud<31:0> << 32 | Fs_ud<63:32>;
} else {
Fd_ud = Fd_ud;
}
}});
}
format FloatAccOp {
0x4: decode FUNCTION_LO {
0x0: madd_s({{ Fd_sf = (Fs_sf * Ft_sf) + Fr_sf; }});
0x1: madd_d({{ Fd_df = (Fs_df * Ft_df) + Fr_df; }});
0x6: madd_ps({{
Fd1_sf = (Fs1_df * Ft1_df) + Fr1_df;
Fd2_sf = (Fs2_df * Ft2_df) + Fr2_df;
}});
}
0x5: decode FUNCTION_LO {
0x0: msub_s({{ Fd_sf = (Fs_sf * Ft_sf) - Fr_sf; }});
0x1: msub_d({{ Fd_df = (Fs_df * Ft_df) - Fr_df; }});
0x6: msub_ps({{
Fd1_sf = (Fs1_df * Ft1_df) - Fr1_df;
Fd2_sf = (Fs2_df * Ft2_df) - Fr2_df;
}});
}
0x6: decode FUNCTION_LO {
0x0: nmadd_s({{ Fd_sf = (-1 * Fs_sf * Ft_sf) - Fr_sf; }});
0x1: nmadd_d({{ Fd_df = (-1 * Fs_df * Ft_df) - Fr_df; }});
0x6: nmadd_ps({{
Fd1_sf = -((Fs1_df * Ft1_df) + Fr1_df);
Fd2_sf = -((Fs2_df * Ft2_df) + Fr2_df);
}});
}
0x7: decode FUNCTION_LO {
0x0: nmsub_s({{ Fd_sf = (-1 * Fs_sf * Ft_sf) + Fr_sf; }});
0x1: nmsub_d({{ Fd_df = (-1 * Fs_df * Ft_df) + Fr_df; }});
0x6: nmsub_ps({{
Fd1_sf = -((Fs1_df * Ft1_df) - Fr1_df);
Fd2_sf = -((Fs2_df * Ft2_df) - Fr2_df);
}});
}
}
}
format Branch {
0x4: beql({{ cond = (Rs_sw == Rt_sw); }}, Likely);
0x5: bnel({{ cond = (Rs_sw != Rt_sw); }}, Likely);
0x6: blezl({{ cond = (Rs_sw <= 0); }}, Likely);
0x7: bgtzl({{ cond = (Rs_sw > 0); }}, Likely);
}
}
0x3: decode OPCODE_LO {
//Table A-5 MIPS32 SPECIAL2 Encoding of Function Field
0x4: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
0x2: IntOp::mul({{
int64_t temp1 = Rs_sd * Rt_sd;
Rd_sw = temp1<31:0>;
}}, IntMultOp);
format HiLoRdSelValOp {
0x0: madd({{
val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) +
(Rs_sd * Rt_sd);
}}, IntMultOp);
0x1: maddu({{
val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) +
(Rs_ud * Rt_ud);
}}, IntMultOp);
0x4: msub({{
val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) -
(Rs_sd * Rt_sd);
}}, IntMultOp);
0x5: msubu({{
val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) -
(Rs_ud * Rt_ud);
}}, IntMultOp);
}
}
0x4: decode FUNCTION_LO {
format BasicOp {
0x0: clz({{
int cnt = 32;
for (int idx = 31; idx >= 0; idx--) {
if (Rs<idx:idx> == 1) {
cnt = 31 - idx;
break;
}
}
Rd_uw = cnt;
}});
0x1: clo({{
int cnt = 32;
for (int idx = 31; idx >= 0; idx--) {
if (Rs<idx:idx> == 0) {
cnt = 31 - idx;
break;
}
}
Rd_uw = cnt;
}});
}
}
0x7: decode FUNCTION_LO {
0x7: FailUnimpl::sdbbp();
}
}
//Table A-6 MIPS32 SPECIAL3 Encoding of Function Field for Release 2
//of the Architecture
0x7: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format BasicOp {
0x0: ext({{ Rt_uw = bits(Rs_uw, MSB+LSB, LSB); }});
0x4: ins({{
Rt_uw = bits(Rt_uw, 31, MSB+1) << (MSB+1) |
bits(Rs_uw, MSB-LSB, 0) << LSB |
bits(Rt_uw, LSB-1, 0);
}});
}
}
0x1: decode FUNCTION_LO {
format MT_Control {
0x0: fork({{
forkThread(xc->tcBase(), fault, RD, Rs, Rt);
}}, UserMode);
0x1: yield({{
Rd_sw = yieldThread(xc->tcBase(), fault, Rs_sw,
YQMask);
}}, UserMode);
}
//Table 5-9 MIPS32 LX Encoding of the op Field (DSP ASE MANUAL)
0x2: decode OP_HI {
0x0: decode OP_LO {
format LoadIndexedMemory {
0x0: lwx({{ Rd_sw = Mem_sw; }});
0x4: lhx({{ Rd_sw = Mem_sh; }});
0x6: lbux({{ Rd_uw = Mem_ub; }});
}
}
}
0x4: DspIntOp::insv({{
int pos = dspctl<5:0>;
int size = dspctl<12:7> - 1;
Rt_uw = insertBits(Rt_uw, pos+size,
pos, Rs_uw<size:0>);
}});
}
0x2: decode FUNCTION_LO {
//Table 5-5 MIPS32 ADDU.QB Encoding of the op Field
//(DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: addu_qb({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x1: subu_qb({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x4: addu_s_qb({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_QB,
SATURATE, UNSIGNED, &dspctl);
}});
0x5: subu_s_qb({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_QB,
SATURATE, UNSIGNED, &dspctl);
}});
0x6: muleu_s_ph_qbl({{
Rd_uw = dspMuleu(Rs_uw, Rt_uw,
MODE_L, &dspctl);
}}, IntMultOp);
0x7: muleu_s_ph_qbr({{
Rd_uw = dspMuleu(Rs_uw, Rt_uw,
MODE_R, &dspctl);
}}, IntMultOp);
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: addu_ph({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x1: subu_ph({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x2: addq_ph({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x3: subq_ph({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x4: addu_s_ph({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH,
SATURATE, UNSIGNED, &dspctl);
}});
0x5: subu_s_ph({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH,
SATURATE, UNSIGNED, &dspctl);
}});
0x6: addq_s_ph({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
0x7: subq_s_ph({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x0: addsc({{
int64_t dresult;
dresult = Rs_ud + Rt_ud;
Rd_sw = dresult<31:0>;
dspctl = insertBits(dspctl, 13, 13,
dresult<32:32>);
}});
0x1: addwc({{
int64_t dresult;
dresult = Rs_sd + Rt_sd + dspctl<13:13>;
Rd_sw = dresult<31:0>;
if (dresult<32:32> != dresult<31:31>)
dspctl = insertBits(dspctl, 20, 20, 1);
}});
0x2: modsub({{
Rd_sw = (Rs_sw == 0) ? Rt_sw<23:8> :
Rs_sw - Rt_sw<7:0>;
}});
0x4: raddu_w_qb({{
Rd_uw = Rs_uw<31:24> + Rs_uw<23:16> +
Rs_uw<15:8> + Rs_uw<7:0>;
}});
0x6: addq_s_w({{
Rd_sw = dspAdd(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
0x7: subq_s_w({{
Rd_sw = dspSub(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x4: muleq_s_w_phl({{
Rd_sw = dspMuleq(Rs_sw, Rt_sw,
MODE_L, &dspctl);
}}, IntMultOp);
0x5: muleq_s_w_phr({{
Rd_sw = dspMuleq(Rs_sw, Rt_sw,
MODE_R, &dspctl);
}}, IntMultOp);
0x6: mulq_s_ph({{
Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_PH,
SATURATE, NOROUND, &dspctl);
}}, IntMultOp);
0x7: mulq_rs_ph({{
Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_PH,
SATURATE, ROUND, &dspctl);
}}, IntMultOp);
}
}
}
//Table 5-6 MIPS32 CMPU_EQ_QB Encoding of the op Field
//(DSP ASE MANUAL)
0x1: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: cmpu_eq_qb({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_EQ, &dspctl);
}});
0x1: cmpu_lt_qb({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LT, &dspctl);
}});
0x2: cmpu_le_qb({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LE, &dspctl);
}});
0x3: pick_qb({{
Rd_uw = dspPick(Rs_uw, Rt_uw,
SIMD_FMT_QB, &dspctl);
}});
0x4: cmpgu_eq_qb({{
Rd_uw = dspCmpg(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_EQ );
}});
0x5: cmpgu_lt_qb({{
Rd_uw = dspCmpg(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LT);
}});
0x6: cmpgu_le_qb({{
Rd_uw = dspCmpg(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LE);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: cmp_eq_ph({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_PH,
SIGNED, CMP_EQ, &dspctl);
}});
0x1: cmp_lt_ph({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_PH,
SIGNED, CMP_LT, &dspctl);
}});
0x2: cmp_le_ph({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_PH,
SIGNED, CMP_LE, &dspctl);
}});
0x3: pick_ph({{
Rd_uw = dspPick(Rs_uw, Rt_uw,
SIMD_FMT_PH, &dspctl);
}});
0x4: precrq_qb_ph({{
Rd_uw = Rs_uw<31:24> << 24 |
Rs_uw<15:8> << 16 |
Rt_uw<31:24> << 8 |
Rt_uw<15:8>;
}});
0x5: precr_qb_ph({{
Rd_uw = Rs_uw<23:16> << 24 |
Rs_uw<7:0> << 16 |
Rt_uw<23:16> << 8 |
Rt_uw<7:0>;
}});
0x6: packrl_ph({{
Rd_uw = dspPack(Rs_uw, Rt_uw, SIMD_FMT_PH);
}});
0x7: precrqu_s_qb_ph({{
Rd_uw = dspPrecrqu(Rs_uw, Rt_uw, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x4: precrq_ph_w({{
Rd_uw = Rs_uw<31:16> << 16 | Rt_uw<31:16>;
}});
0x5: precrq_rs_ph_w({{
Rd_uw = dspPrecrq(Rs_uw, Rt_uw,
SIMD_FMT_W, &dspctl);
}});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x0: cmpgdu_eq_qb({{
Rd_uw = dspCmpgd(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_EQ, &dspctl);
}});
0x1: cmpgdu_lt_qb({{
Rd_uw = dspCmpgd(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LT, &dspctl);
}});
0x2: cmpgdu_le_qb({{
Rd_uw = dspCmpgd(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LE, &dspctl);
}});
0x6: precr_sra_ph_w({{
Rt_uw = dspPrecrSra(Rt_uw, Rs_uw, RD,
SIMD_FMT_W, NOROUND);
}});
0x7: precr_sra_r_ph_w({{
Rt_uw = dspPrecrSra(Rt_uw, Rs_uw, RD,
SIMD_FMT_W, ROUND);
}});
}
}
}
//Table 5-7 MIPS32 ABSQ_S.PH Encoding of the op Field
//(DSP ASE MANUAL)
0x2: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x1: absq_s_qb({{
Rd_sw = dspAbs(Rt_sw, SIMD_FMT_QB, &dspctl);
}});
0x2: repl_qb({{
Rd_uw = RS_RT<7:0> << 24 |
RS_RT<7:0> << 16 |
RS_RT<7:0> << 8 |
RS_RT<7:0>;
}});
0x3: replv_qb({{
Rd_sw = Rt_uw<7:0> << 24 |
Rt_uw<7:0> << 16 |
Rt_uw<7:0> << 8 |
Rt_uw<7:0>;
}});
0x4: precequ_ph_qbl({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_L);
}});
0x5: precequ_ph_qbr({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_R);
}});
0x6: precequ_ph_qbla({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_LA);
}});
0x7: precequ_ph_qbra({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_RA);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x1: absq_s_ph({{
Rd_sw = dspAbs(Rt_sw, SIMD_FMT_PH, &dspctl);
}});
0x2: repl_ph({{
Rd_uw = (sext<10>(RS_RT))<15:0> << 16 |
(sext<10>(RS_RT))<15:0>;
}});
0x3: replv_ph({{
Rd_uw = Rt_uw<15:0> << 16 |
Rt_uw<15:0>;
}});
0x4: preceq_w_phl({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_PH, SIGNED,
SIMD_FMT_W, SIGNED, MODE_L);
}});
0x5: preceq_w_phr({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_PH, SIGNED,
SIMD_FMT_W, SIGNED, MODE_R);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x1: absq_s_w({{
Rd_sw = dspAbs(Rt_sw, SIMD_FMT_W, &dspctl);
}});
}
}
0x3: decode OP_LO {
0x3: IntOp::bitrev({{
Rd_uw = bitrev( Rt_uw<15:0> );
}});
format DspIntOp {
0x4: preceu_ph_qbl({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_L);
}});
0x5: preceu_ph_qbr({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_R );
}});
0x6: preceu_ph_qbla({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_LA );
}});
0x7: preceu_ph_qbra({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_RA);
}});
}
}
}
//Table 5-8 MIPS32 SHLL.QB Encoding of the op Field
//(DSP ASE MANUAL)
0x3: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: shll_qb({{
Rd_sw = dspShll(Rt_sw, RS, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x1: shrl_qb({{
Rd_sw = dspShrl(Rt_sw, RS, SIMD_FMT_QB,
UNSIGNED);
}});
0x2: shllv_qb({{
Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x3: shrlv_qb({{
Rd_sw = dspShrl(Rt_sw, Rs_sw, SIMD_FMT_QB,
UNSIGNED);
}});
0x4: shra_qb({{
Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_QB,
NOROUND, SIGNED, &dspctl);
}});
0x5: shra_r_qb({{
Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_QB,
ROUND, SIGNED, &dspctl);
}});
0x6: shrav_qb({{
Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_QB,
NOROUND, SIGNED, &dspctl);
}});
0x7: shrav_r_qb({{
Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_QB,
ROUND, SIGNED, &dspctl);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: shll_ph({{
Rd_uw = dspShll(Rt_uw, RS, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x1: shra_ph({{
Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_PH,
NOROUND, SIGNED, &dspctl);
}});
0x2: shllv_ph({{
Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x3: shrav_ph({{
Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_PH,
NOROUND, SIGNED, &dspctl);
}});
0x4: shll_s_ph({{
Rd_sw = dspShll(Rt_sw, RS, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
0x5: shra_r_ph({{
Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_PH,
ROUND, SIGNED, &dspctl);
}});
0x6: shllv_s_ph({{
Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
0x7: shrav_r_ph({{
Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_PH,
ROUND, SIGNED, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x4: shll_s_w({{
Rd_sw = dspShll(Rt_sw, RS, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
0x5: shra_r_w({{
Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_W,
ROUND, SIGNED, &dspctl);
}});
0x6: shllv_s_w({{
Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
0x7: shrav_r_w({{
Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_W,
ROUND, SIGNED, &dspctl);
}});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x1: shrl_ph({{
Rd_sw = dspShrl(Rt_sw, RS, SIMD_FMT_PH,
UNSIGNED);
}});
0x3: shrlv_ph({{
Rd_sw = dspShrl(Rt_sw, Rs_sw, SIMD_FMT_PH,
UNSIGNED);
}});
}
}
}
}
0x3: decode FUNCTION_LO {
//Table 3.12 MIPS32 ADDUH.QB Encoding of the op Field
//(DSP ASE Rev2 Manual)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: adduh_qb({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_QB,
NOROUND, UNSIGNED);
}});
0x1: subuh_qb({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_QB,
NOROUND, UNSIGNED);
}});
0x2: adduh_r_qb({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_QB,
ROUND, UNSIGNED);
}});
0x3: subuh_r_qb({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_QB,
ROUND, UNSIGNED);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: addqh_ph({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_PH,
NOROUND, SIGNED);
}});
0x1: subqh_ph({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_PH,
NOROUND, SIGNED);
}});
0x2: addqh_r_ph({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_PH,
ROUND, SIGNED);
}});
0x3: subqh_r_ph({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_PH,
ROUND, SIGNED);
}});
0x4: mul_ph({{
Rd_sw = dspMul(Rs_sw, Rt_sw, SIMD_FMT_PH,
NOSATURATE, &dspctl);
}}, IntMultOp);
0x6: mul_s_ph({{
Rd_sw = dspMul(Rs_sw, Rt_sw, SIMD_FMT_PH,
SATURATE, &dspctl);
}}, IntMultOp);
}
}
0x2: decode OP_LO {
format DspIntOp {
0x0: addqh_w({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_W,
NOROUND, SIGNED);
}});
0x1: subqh_w({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_W,
NOROUND, SIGNED);
}});
0x2: addqh_r_w({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_W,
ROUND, SIGNED);
}});
0x3: subqh_r_w({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_W,
ROUND, SIGNED);
}});
0x6: mulq_s_w({{
Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, NOROUND, &dspctl);
}}, IntMultOp);
0x7: mulq_rs_w({{
Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, ROUND, &dspctl);
}}, IntMultOp);
}
}
}
}
//Table A-10 MIPS32 BSHFL Encoding of sa Field
0x4: decode SA {
format BasicOp {
0x02: wsbh({{
Rd_uw = Rt_uw<23:16> << 24 |
Rt_uw<31:24> << 16 |
Rt_uw<7:0> << 8 |
Rt_uw<15:8>;
}});
0x10: seb({{ Rd_sw = Rt_sb; }});
0x18: seh({{ Rd_sw = Rt_sh; }});
}
}
0x6: decode FUNCTION_LO {
//Table 5-10 MIPS32 DPAQ.W.PH Encoding of the op Field
//(DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspHiLoOp {
0x0: dpa_w_ph({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_L);
}}, IntMultOp);
0x1: dps_w_ph({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_L);
}}, IntMultOp);
0x2: mulsa_w_ph({{
dspac = dspMulsa(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH );
}}, IntMultOp);
0x3: dpau_h_qbl({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_L);
}}, IntMultOp);
0x4: dpaq_s_w_ph({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x5: dpsq_s_w_ph({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x6: mulsaq_s_w_ph({{
dspac = dspMulsaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
&dspctl);
}}, IntMultOp);
0x7: dpau_h_qbr({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_R);
}}, IntMultOp);
}
}
0x1: decode OP_LO {
format DspHiLoOp {
0x0: dpax_w_ph({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_X);
}}, IntMultOp);
0x1: dpsx_w_ph({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_X);
}}, IntMultOp);
0x3: dpsu_h_qbl({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_L);
}}, IntMultOp);
0x4: dpaq_sa_l_w({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_W,
SIMD_FMT_L, SATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x5: dpsq_sa_l_w({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_W,
SIMD_FMT_L, SATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x7: dpsu_h_qbr({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_R);
}}, IntMultOp);
}
}
0x2: decode OP_LO {
format DspHiLoOp {
0x0: maq_sa_w_phl({{
dspac = dspMaq(dspac, Rs_uw, Rt_uw,
ACDST, SIMD_FMT_PH,
MODE_L, SATURATE, &dspctl);
}}, IntMultOp);
0x2: maq_sa_w_phr({{
dspac = dspMaq(dspac, Rs_uw, Rt_uw,
ACDST, SIMD_FMT_PH,
MODE_R, SATURATE, &dspctl);
}}, IntMultOp);
0x4: maq_s_w_phl({{
dspac = dspMaq(dspac, Rs_uw, Rt_uw,
ACDST, SIMD_FMT_PH,
MODE_L, NOSATURATE, &dspctl);
}}, IntMultOp);
0x6: maq_s_w_phr({{
dspac = dspMaq(dspac, Rs_uw, Rt_uw,
ACDST, SIMD_FMT_PH,
MODE_R, NOSATURATE, &dspctl);
}}, IntMultOp);
}
}
0x3: decode OP_LO {
format DspHiLoOp {
0x0: dpaqx_s_w_ph({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
0x1: dpsqx_s_w_ph({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
0x2: dpaqx_sa_w_ph({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, SATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
0x3: dpsqx_sa_w_ph({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, SATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
}
}
}
//Table 3.3 MIPS32 APPEND Encoding of the op Field
0x1: decode OP_HI {
0x0: decode OP_LO {
format IntOp {
0x0: append({{
Rt_uw = (Rt_uw << RD) | bits(Rs_uw, RD - 1, 0);
}});
0x1: prepend({{
Rt_uw = (Rt_uw >> RD) |
(bits(Rs_uw, RD - 1, 0) << (32 - RD));
}});
}
}
0x2: decode OP_LO {
format IntOp {
0x0: balign({{
Rt_uw = (Rt_uw << (8 * BP)) |
(Rs_uw >> (8 * (4 - BP)));
}});
}
}
}
}
0x7: decode FUNCTION_LO {
//Table 5-11 MIPS32 EXTR.W Encoding of the op Field
//(DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspHiLoOp {
0x0: extr_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, RS,
NOROUND, NOSATURATE, &dspctl);
}});
0x1: extrv_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, Rs_uw,
NOROUND, NOSATURATE, &dspctl);
}});
0x2: extp({{
Rt_uw = dspExtp(dspac, RS, &dspctl);
}});
0x3: extpv({{
Rt_uw = dspExtp(dspac, Rs_uw, &dspctl);
}});
0x4: extr_r_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, RS,
ROUND, NOSATURATE, &dspctl);
}});
0x5: extrv_r_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, Rs_uw,
ROUND, NOSATURATE, &dspctl);
}});
0x6: extr_rs_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, RS,
ROUND, SATURATE, &dspctl);
}});
0x7: extrv_rs_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, Rs_uw,
ROUND, SATURATE, &dspctl);
}});
}
}
0x1: decode OP_LO {
format DspHiLoOp {
0x2: extpdp({{
Rt_uw = dspExtpd(dspac, RS, &dspctl);
}});
0x3: extpdpv({{
Rt_uw = dspExtpd(dspac, Rs_uw, &dspctl);
}});
0x6: extr_s_h({{
Rt_uw = dspExtr(dspac, SIMD_FMT_PH, RS,
NOROUND, SATURATE, &dspctl);
}});
0x7: extrv_s_h({{
Rt_uw = dspExtr(dspac, SIMD_FMT_PH, Rs_uw,
NOROUND, SATURATE, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x2: rddsp({{
Rd_uw = readDSPControl(&dspctl, RDDSPMASK);
}});
0x3: wrdsp({{
writeDSPControl(&dspctl, Rs_uw, WRDSPMASK);
}});
}
}
0x3: decode OP_LO {
format DspHiLoOp {
0x2: shilo({{
if ((int64_t)sext<6>(HILOSA) < 0) {
dspac = (uint64_t)dspac <<
-sext<6>(HILOSA);
} else {
dspac = (uint64_t)dspac >>
sext<6>(HILOSA);
}
}});
0x3: shilov({{
if ((int64_t)sext<6>(Rs_sw<5:0>) < 0) {
dspac = (uint64_t)dspac <<
-sext<6>(Rs_sw<5:0>);
} else {
dspac = (uint64_t)dspac >>
sext<6>(Rs_sw<5:0>);
}
}});
0x7: mthlip({{
dspac = dspac << 32;
dspac |= Rs_uw;
dspctl = insertBits(dspctl, 5, 0,
dspctl<5:0> + 32);
}});
}
}
}
0x3: decode OP default FailUnimpl::rdhwr() {
0x0: decode FullSystemInt {
0: decode RD {
29: BasicOp::rdhwr_se({{ Rt = TpValue; }});
}
}
}
}
}
}
0x4: decode OPCODE_LO {
format LoadMemory {
0x0: lb({{ Rt_sw = Mem_sb; }});
0x1: lh({{ Rt_sw = Mem_sh; }});
0x3: lw({{ Rt_sw = Mem_sw; }});
0x4: lbu({{ Rt_uw = Mem_ub;}});
0x5: lhu({{ Rt_uw = Mem_uh; }});
}
format LoadUnalignedMemory {
0x2: lwl({{
uint32_t mem_shift = 24 - (8 * byte_offset);
Rt_uw = mem_word << mem_shift | (Rt_uw & mask(mem_shift));
}});
0x6: lwr({{
uint32_t mem_shift = 8 * byte_offset;
Rt_uw = (Rt_uw & (mask(mem_shift) << (32 - mem_shift))) |
(mem_word >> mem_shift);
}});
}
}
0x5: decode OPCODE_LO {
format StoreMemory {
0x0: sb({{ Mem_ub = Rt<7:0>; }});
0x1: sh({{ Mem_uh = Rt<15:0>; }});
0x3: sw({{ Mem_uw = Rt<31:0>; }});
}
format StoreUnalignedMemory {
0x2: swl({{
uint32_t reg_shift = 24 - (8 * byte_offset);
uint32_t mem_shift = 32 - reg_shift;
mem_word = (mem_word & (mask(reg_shift) << mem_shift)) |
(Rt_uw >> reg_shift);
}});
0x6: swr({{
uint32_t reg_shift = 8 * byte_offset;
mem_word = Rt_uw << reg_shift |
(mem_word & (mask(reg_shift)));
}});
}
format CP0Control {
0x7: cache({{
//Addr CacheEA = Rs_uw + OFFSET;
//fault = xc->CacheOp((uint8_t)CACHE_OP,(Addr) CacheEA);
}});
}
}
0x6: decode OPCODE_LO {
format LoadMemory {
0x0: ll({{ Rt_uw = Mem_uw; }}, mem_flags=LLSC);
0x1: lwc1({{ Ft_uw = Mem_uw; }});
0x5: ldc1({{ Ft_ud = Mem_ud; }});
}
0x2: CP2Unimpl::lwc2();
0x6: CP2Unimpl::ldc2();
0x3: Prefetch::pref();
}
0x7: decode OPCODE_LO {
0x0: StoreCond::sc({{ Mem_uw = Rt_uw; }},
{{ uint64_t tmp = write_result;
Rt_uw = (tmp == 0 || tmp == 1) ? tmp : Rt_uw;
}}, mem_flags=LLSC,
inst_flags = IsStoreConditional);
format StoreMemory {
0x1: swc1({{ Mem_uw = Ft_uw; }});
0x5: sdc1({{ Mem_ud = Ft_ud; }});
}
0x2: CP2Unimpl::swc2();
0x6: CP2Unimpl::sdc2();
}
}