gem5/src/arch/mips/isa/decoder.isa
Brandon Potter a5802c823f syscall_emul: [patch 13/22] add system call retry capability
This changeset adds functionality that allows system calls to retry without
affecting thread context state such as the program counter or register values
for the associated thread context (when system calls return with a retry
fault).

This functionality is needed to solve problems with blocking system calls
in multi-process or multi-threaded simulations where information is passed
between processes/threads. Blocking system calls can cause deadlock because
the simulator itself is single threaded. There is only a single thread
servicing the event queue which can cause deadlock if the thread hits a
blocking system call instruction.

To illustrate the problem, consider two processes using the producer/consumer
sharing model. The processes can use file descriptors and the read and write
calls to pass information to one another. If the consumer calls the blocking
read system call before the producer has produced anything, the call will
block the event queue (while executing the system call instruction) and
deadlock the simulation.

The solution implemented in this changeset is to recognize that the system
calls will block and then generate a special retry fault. The fault will
be sent back up through the function call chain until it is exposed to the
cpu model's pipeline where the fault becomes visible. The fault will trigger
the cpu model to replay the instruction at a future tick where the call has
a chance to succeed without actually going into a blocking state.

In subsequent patches, we recognize that a syscall will block by calling a
non-blocking poll (from inside the system call implementation) and checking
for events. When events show up during the poll, it signifies that the call
would not have blocked and the syscall is allowed to proceed (calling an
underlying host system call if necessary). If no events are returned from the
poll, we generate the fault and try the instruction for the thread context
at a distant tick. Note that retrying every tick is not efficient.

As an aside, the simulator has some multi-threading support for the event
queue, but it is not used by default and needs work. Even if the event queue
was completely multi-threaded, meaning that there is a hardware thread on
the host servicing a single simulator thread contexts with a 1:1 mapping
between them, it's still possible to run into deadlock due to the event queue
barriers on quantum boundaries. The solution of replaying at a later tick
is the simplest solution and solves the problem generally.
2015-07-20 09:15:21 -05:00

2522 lines
120 KiB
C++

// -*- mode:c++ -*-
// Copyright (c) 2007 MIPS Technologies, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Korey Sewell
// Brett Miller
// Jaidev Patwardhan
////////////////////////////////////////////////////////////////////
//
// The actual MIPS32 ISA decoder
// -----------------------------
// The following instructions are specified in the MIPS32 ISA
// Specification. Decoding closely follows the style specified
// in the MIPS32 ISA specification document starting with Table
// A-2 (document available @ http://www.mips.com)
//
decode OPCODE_HI default Unknown::unknown() {
//Table A-2
0x0: decode OPCODE_LO {
0x0: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
0x1: decode MOVCI {
format BasicOp {
0: movf({{
Rd = (getCondCode(FCSR, CC) == 0) ? Rd : Rs;
}});
1: movt({{
Rd = (getCondCode(FCSR, CC) == 1) ? Rd : Rs;
}});
}
}
format BasicOp {
//Table A-3 Note: "Specific encodings of the rd, rs, and
//rt fields are used to distinguish SLL, SSNOP, and EHB
//functions
0x0: decode RS {
0x0: decode RT_RD {
0x0: decode SA default Nop::nop() {
0x1: ssnop({{;}});
0x3: ehb({{;}});
}
default: sll({{ Rd = Rt_uw << SA; }});
}
}
0x2: decode RS_SRL {
0x0:decode SRL {
0: srl({{ Rd = Rt_uw >> SA; }});
//Hardcoded assuming 32-bit ISA,
//probably need parameter here
1: rotr({{
Rd = (Rt_uw << (32 - SA)) | (Rt_uw >> SA);
}});
}
}
0x3: decode RS {
0x0: sra({{
uint32_t temp = Rt >> SA;
if ( (Rt & 0x80000000) > 0 ) {
uint32_t mask = 0x80000000;
for(int i=0; i < SA; i++) {
temp |= mask;
mask = mask >> 1;
}
}
Rd = temp;
}});
}
0x4: sllv({{ Rd = Rt_uw << Rs<4:0>; }});
0x6: decode SRLV {
0: srlv({{ Rd = Rt_uw >> Rs<4:0>; }});
//Hardcoded assuming 32-bit ISA,
//probably need parameter here
1: rotrv({{
Rd = (Rt_uw << (32 - Rs<4:0>)) |
(Rt_uw >> Rs<4:0>);
}});
}
0x7: srav({{
int shift_amt = Rs<4:0>;
uint32_t temp = Rt >> shift_amt;
if ((Rt & 0x80000000) > 0) {
uint32_t mask = 0x80000000;
for (int i = 0; i < shift_amt; i++) {
temp |= mask;
mask = mask >> 1;
}
}
Rd = temp;
}});
}
}
0x1: decode FUNCTION_LO {
//Table A-3 Note: "Specific encodings of the hint field are
//used to distinguish JR from JR.HB and JALR from JALR.HB"
format Jump {
0x0: decode HINT {
0x1: jr_hb({{
Config1Reg config1 = Config1;
if (config1.ca == 0) {
NNPC = Rs;
} else {
panic("MIPS16e not supported\n");
}
}}, IsReturn, ClearHazards);
default: jr({{
Config1Reg config1 = Config1;
if (config1.ca == 0) {
NNPC = Rs;
} else {
panic("MIPS16e not supported\n");
}
}}, IsReturn);
}
0x1: decode HINT {
0x1: jalr_hb({{
Rd = NNPC;
NNPC = Rs;
}}, IsCall, ClearHazards);
default: jalr({{
Rd = NNPC;
NNPC = Rs;
}}, IsCall);
}
}
format BasicOp {
0x2: movz({{ Rd = (Rt == 0) ? Rs : Rd; }});
0x3: movn({{ Rd = (Rt != 0) ? Rs : Rd; }});
0x4: decode FullSystemInt {
0: syscall_se({{ xc->syscall(R2, &fault); }},
IsSerializeAfter, IsNonSpeculative);
default: syscall({{ fault = std::make_shared<SystemCallFault>(); }});
}
0x7: sync({{ ; }}, IsMemBarrier);
0x5: break({{fault = std::make_shared<BreakpointFault>();}});
}
}
0x2: decode FUNCTION_LO {
0x0: HiLoRsSelOp::mfhi({{ Rd = HI_RS_SEL; }},
IntMultOp, IsIprAccess);
0x1: HiLoRdSelOp::mthi({{ HI_RD_SEL = Rs; }});
0x2: HiLoRsSelOp::mflo({{ Rd = LO_RS_SEL; }},
IntMultOp, IsIprAccess);
0x3: HiLoRdSelOp::mtlo({{ LO_RD_SEL = Rs; }});
}
0x3: decode FUNCTION_LO {
format HiLoRdSelValOp {
0x0: mult({{ val = Rs_sd * Rt_sd; }}, IntMultOp);
0x1: multu({{ val = Rs_ud * Rt_ud; }}, IntMultOp);
}
format HiLoOp {
0x2: div({{
if (Rt_sd != 0) {
HI0 = Rs_sd % Rt_sd;
LO0 = Rs_sd / Rt_sd;
}
}}, IntDivOp);
0x3: divu({{
if (Rt_ud != 0) {
HI0 = Rs_ud % Rt_ud;
LO0 = Rs_ud / Rt_ud;
}
}}, IntDivOp);
}
}
0x4: decode HINT {
0x0: decode FUNCTION_LO {
format IntOp {
0x0: add({{
IntReg result;
Rd = result = Rs + Rt;
if (FullSystem &&
findOverflow(32, result, Rs, Rt)) {
fault = std::make_shared<IntegerOverflowFault>();
}
}});
0x1: addu({{ Rd_sw = Rs_sw + Rt_sw;}});
0x2: sub({{
IntReg result;
Rd = result = Rs - Rt;
if (FullSystem &&
findOverflow(32, result, Rs, ~Rt)) {
fault = std::make_shared<IntegerOverflowFault>();
}
}});
0x3: subu({{ Rd_sw = Rs_sw - Rt_sw; }});
0x4: and({{ Rd = Rs & Rt; }});
0x5: or({{ Rd = Rs | Rt; }});
0x6: xor({{ Rd = Rs ^ Rt; }});
0x7: nor({{ Rd = ~(Rs | Rt); }});
}
}
}
0x5: decode HINT {
0x0: decode FUNCTION_LO {
format IntOp{
0x2: slt({{ Rd_sw = (Rs_sw < Rt_sw) ? 1 : 0 }});
0x3: sltu({{ Rd_uw = (Rs_uw < Rt_uw) ? 1 : 0 }});
}
}
}
0x6: decode FUNCTION_LO {
format Trap {
0x0: tge({{ cond = (Rs_sw >= Rt_sw); }});
0x1: tgeu({{ cond = (Rs_uw >= Rt_uw); }});
0x2: tlt({{ cond = (Rs_sw < Rt_sw); }});
0x3: tltu({{ cond = (Rs_uw < Rt_uw); }});
0x4: teq({{ cond = (Rs_sw == Rt_sw); }});
0x6: tne({{ cond = (Rs_sw != Rt_sw); }});
}
}
}
0x1: decode REGIMM_HI {
0x0: decode REGIMM_LO {
format Branch {
0x0: bltz({{ cond = (Rs_sw < 0); }});
0x1: bgez({{ cond = (Rs_sw >= 0); }});
0x2: bltzl({{ cond = (Rs_sw < 0); }}, Likely);
0x3: bgezl({{ cond = (Rs_sw >= 0); }}, Likely);
}
}
0x1: decode REGIMM_LO {
format TrapImm {
0x0: tgei( {{ cond = (Rs_sw >= (int16_t)INTIMM); }});
0x1: tgeiu({{
cond = (Rs_uw >= (uint32_t)(int32_t)(int16_t)INTIMM);
}});
0x2: tlti( {{ cond = (Rs_sw < (int16_t)INTIMM); }});
0x3: tltiu({{
cond = (Rs_uw < (uint32_t)(int32_t)(int16_t)INTIMM);
}});
0x4: teqi( {{ cond = (Rs_sw == (int16_t)INTIMM); }});
0x6: tnei( {{ cond = (Rs_sw != (int16_t)INTIMM); }});
}
}
0x2: decode REGIMM_LO {
format Branch {
0x0: bltzal({{ cond = (Rs_sw < 0); }}, Link);
0x1: decode RS {
0x0: bal ({{ cond = 1; }}, IsCall, Link);
default: bgezal({{ cond = (Rs_sw >= 0); }}, Link);
}
0x2: bltzall({{ cond = (Rs_sw < 0); }}, Link, Likely);
0x3: bgezall({{ cond = (Rs_sw >= 0); }}, Link, Likely);
}
}
0x3: decode REGIMM_LO {
// from Table 5-4 MIPS32 REGIMM Encoding of rt Field
// (DSP ASE MANUAL)
0x4: DspBranch::bposge32({{ cond = (dspctl<5:0> >= 32); }});
format WarnUnimpl {
0x7: synci();
}
}
}
format Jump {
0x2: j({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }});
0x3: jal({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }},
IsCall, Link);
}
format Branch {
0x4: decode RS_RT {
0x0: b({{ cond = 1; }});
default: beq({{ cond = (Rs_sw == Rt_sw); }});
}
0x5: bne({{ cond = (Rs_sw != Rt_sw); }});
0x6: blez({{ cond = (Rs_sw <= 0); }});
0x7: bgtz({{ cond = (Rs_sw > 0); }});
}
}
0x1: decode OPCODE_LO {
format IntImmOp {
0x0: addi({{
IntReg result;
Rt = result = Rs + imm;
if (FullSystem &&
findOverflow(32, result, Rs, imm)) {
fault = std::make_shared<IntegerOverflowFault>();
}
}});
0x1: addiu({{ Rt_sw = Rs_sw + imm; }});
0x2: slti({{ Rt_sw = (Rs_sw < imm) ? 1 : 0 }});
0x3: sltiu({{ Rt_uw = (Rs_uw < (uint32_t)sextImm) ? 1 : 0;}});
0x4: andi({{ Rt_sw = Rs_sw & zextImm; }});
0x5: ori({{ Rt_sw = Rs_sw | zextImm; }});
0x6: xori({{ Rt_sw = Rs_sw ^ zextImm; }});
0x7: decode RS {
0x0: lui({{ Rt = imm << 16; }});
}
}
}
0x2: decode OPCODE_LO {
//Table A-11 MIPS32 COP0 Encoding of rs Field
0x0: decode RS_MSB {
0x0: decode RS {
format CP0Control {
0x0: mfc0({{
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
Rt = CP0_RD_SEL;
/* Hack for PageMask */
if (RD == 5) {
// PageMask
if (config3.sp == 0 || pageGrain.esp == 0)
Rt &= 0xFFFFE7FF;
}
}});
0x4: mtc0({{
CP0_RD_SEL = Rt;
CauseReg cause = Cause;
IntCtlReg intCtl = IntCtl;
if (RD == 11) {
// Compare
if (cause.ti == 1) {
cause.ti = 0;
int offset = 10; // corresponding to cause.ip0
offset += intCtl.ipti - 2;
replaceBits(cause, offset, offset, 0);
}
}
Cause = cause;
}});
}
format CP0Unimpl {
0x1: dmfc0();
0x5: dmtc0();
default: unknown();
}
format MT_MFTR {
// Decode MIPS MT MFTR instruction into sub-instructions
0x8: decode MT_U {
0x0: mftc0({{
data = xc->readRegOtherThread((RT << 3 | SEL) +
Misc_Reg_Base);
}});
0x1: decode SEL {
0x0: mftgpr({{
data = xc->readRegOtherThread(RT);
}});
0x1: decode RT {
0x0: mftlo_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_LO0); }});
0x1: mfthi_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_HI0); }});
0x2: mftacx_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_ACX0); }});
0x4: mftlo_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_LO1); }});
0x5: mfthi_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_HI1); }});
0x6: mftacx_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_ACX1); }});
0x8: mftlo_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_LO2); }});
0x9: mfthi_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_HI2); }});
0x10: mftacx_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_ACX2); }});
0x12: mftlo_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_LO3); }});
0x13: mfthi_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_HI3); }});
0x14: mftacx_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_ACX3); }});
0x16: mftdsp({{ data = xc->readRegOtherThread(INTREG_DSP_CONTROL); }});
default: CP0Unimpl::unknown();
}
0x2: decode MT_H {
0x0: mftc1({{ data = xc->readRegOtherThread(RT +
FP_Reg_Base);
}});
0x1: mfthc1({{ data = xc->readRegOtherThread(RT +
FP_Reg_Base);
}});
}
0x3: cftc1({{
uint32_t fcsr_val = xc->readRegOtherThread(FLOATREG_FCSR +
FP_Reg_Base);
switch (RT) {
case 0:
data = xc->readRegOtherThread(FLOATREG_FIR +
Misc_Reg_Base);
break;
case 25:
data = (fcsr_val & 0xFE000000 >> 24) |
(fcsr_val & 0x00800000 >> 23);
break;
case 26:
data = fcsr_val & 0x0003F07C;
break;
case 28:
data = (fcsr_val & 0x00000F80) |
(fcsr_val & 0x01000000 >> 21) |
(fcsr_val & 0x00000003);
break;
case 31:
data = fcsr_val;
break;
default:
fatal("FP Control Value (%d) Not Valid");
}
}});
default: CP0Unimpl::unknown();
}
}
}
format MT_MTTR {
// Decode MIPS MT MTTR instruction into sub-instructions
0xC: decode MT_U {
0x0: mttc0({{ xc->setRegOtherThread((RD << 3 | SEL) + Misc_Reg_Base,
Rt);
}});
0x1: decode SEL {
0x0: mttgpr({{ xc->setRegOtherThread(RD, Rt); }});
0x1: decode RT {
0x0: mttlo_dsp0({{ xc->setRegOtherThread(INTREG_DSP_LO0, Rt);
}});
0x1: mtthi_dsp0({{ xc->setRegOtherThread(INTREG_DSP_HI0,
Rt);
}});
0x2: mttacx_dsp0({{ xc->setRegOtherThread(INTREG_DSP_ACX0,
Rt);
}});
0x4: mttlo_dsp1({{ xc->setRegOtherThread(INTREG_DSP_LO1,
Rt);
}});
0x5: mtthi_dsp1({{ xc->setRegOtherThread(INTREG_DSP_HI1,
Rt);
}});
0x6: mttacx_dsp1({{ xc->setRegOtherThread(INTREG_DSP_ACX1,
Rt);
}});
0x8: mttlo_dsp2({{ xc->setRegOtherThread(INTREG_DSP_LO2,
Rt);
}});
0x9: mtthi_dsp2({{ xc->setRegOtherThread(INTREG_DSP_HI2,
Rt);
}});
0x10: mttacx_dsp2({{ xc->setRegOtherThread(INTREG_DSP_ACX2,
Rt);
}});
0x12: mttlo_dsp3({{ xc->setRegOtherThread(INTREG_DSP_LO3,
Rt);
}});
0x13: mtthi_dsp3({{ xc->setRegOtherThread(INTREG_DSP_HI3,
Rt);
}});
0x14: mttacx_dsp3({{ xc->setRegOtherThread(INTREG_DSP_ACX3, Rt);
}});
0x16: mttdsp({{ xc->setRegOtherThread(INTREG_DSP_CONTROL, Rt); }});
default: CP0Unimpl::unknown();
}
0x2: mttc1({{
uint64_t data = xc->readRegOtherThread(RD +
FP_Reg_Base);
data = insertBits(data, MT_H ? 63 : 31,
MT_H ? 32 : 0, Rt);
xc->setRegOtherThread(RD + FP_Reg_Base,
data);
}});
0x3: cttc1({{
uint32_t data;
switch (RD) {
case 25:
data = (Rt_uw<7:1> << 25) | // move 31-25
(FCSR & 0x01000000) | // bit 24
(FCSR & 0x004FFFFF); // bit 22-0
break;
case 26:
data = (FCSR & 0xFFFC0000) | // move 31-18
Rt_uw<17:12> << 12 | // bit 17-12
(FCSR & 0x00000F80) << 7 | // bit 11-7
Rt_uw<6:2> << 2 | // bit 6-2
(FCSR & 0x00000002); // bit 1...0
break;
case 28:
data = (FCSR & 0xFE000000) | // move 31-25
Rt_uw<2:2> << 24 | // bit 24
(FCSR & 0x00FFF000) << 23 | // bit 23-12
Rt_uw<11:7> << 7 | // bit 24
(FCSR & 0x000007E) |
Rt_uw<1:0>; // bit 22-0
break;
case 31:
data = Rt_uw;
break;
default:
panic("FP Control Value (%d) "
"Not Available. Ignoring "
"Access to Floating Control "
"S""tatus Register", FS);
}
xc->setRegOtherThread(FLOATREG_FCSR + FP_Reg_Base, data);
}});
default: CP0Unimpl::unknown();
}
}
}
0xB: decode RD {
format MT_Control {
0x0: decode POS {
0x0: decode SEL {
0x1: decode SC {
0x0: dvpe({{
MVPControlReg mvpControl = MVPControl;
VPEConf0Reg vpeConf0 = VPEConf0;
Rt = MVPControl;
if (vpeConf0.mvp == 1)
mvpControl.evp = 0;
MVPControl = mvpControl;
}});
0x1: evpe({{
MVPControlReg mvpControl = MVPControl;
VPEConf0Reg vpeConf0 = VPEConf0;
Rt = MVPControl;
if (vpeConf0.mvp == 1)
mvpControl.evp = 1;
MVPControl = mvpControl;
}});
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
0x1: decode POS {
0xF: decode SEL {
0x1: decode SC {
0x0: dmt({{
VPEControlReg vpeControl = VPEControl;
Rt = vpeControl;
vpeControl.te = 0;
VPEControl = vpeControl;
}});
0x1: emt({{
VPEControlReg vpeControl = VPEControl;
Rt = vpeControl;
vpeControl.te = 1;
VPEControl = vpeControl;
}});
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
}
0xC: decode POS {
0x0: decode SC {
0x0: CP0Control::di({{
StatusReg status = Status;
ConfigReg config = Config;
// Rev 2.0 or beyond?
if (config.ar >= 1) {
Rt = status;
status.ie = 0;
} else {
// Enable this else branch once we
// actually set values for Config on init
fault = std::make_shared<ReservedInstructionFault>();
}
Status = status;
}});
0x1: CP0Control::ei({{
StatusReg status = Status;
ConfigReg config = Config;
if (config.ar >= 1) {
Rt = status;
status.ie = 1;
} else {
fault = std::make_shared<ReservedInstructionFault>();
}
}});
default:CP0Unimpl::unknown();
}
}
default: CP0Unimpl::unknown();
}
format CP0Control {
0xA: rdpgpr({{
ConfigReg config = Config;
if (config.ar >= 1) {
// Rev 2 of the architecture
panic("Shadow Sets Not Fully Implemented.\n");
} else {
fault = std::make_shared<ReservedInstructionFault>();
}
}});
0xE: wrpgpr({{
ConfigReg config = Config;
if (config.ar >= 1) {
// Rev 2 of the architecture
panic("Shadow Sets Not Fully Implemented.\n");
} else {
fault = std::make_shared<ReservedInstructionFault>();
}
}});
}
}
//Table A-12 MIPS32 COP0 Encoding of Function Field When rs=CO
0x1: decode FUNCTION {
format CP0Control {
0x18: eret({{
StatusReg status = Status;
ConfigReg config = Config;
SRSCtlReg srsCtl = SRSCtl;
DPRINTF(MipsPRA,"Restoring PC - %x\n",EPC);
if (status.erl == 1) {
status.erl = 0;
NPC = ErrorEPC;
// Need to adjust NNPC, otherwise things break
NNPC = ErrorEPC + sizeof(MachInst);
} else {
NPC = EPC;
// Need to adjust NNPC, otherwise things break
NNPC = EPC + sizeof(MachInst);
status.exl = 0;
if (config.ar >=1 &&
srsCtl.hss > 0 &&
status.bev == 0) {
srsCtl.css = srsCtl.pss;
//xc->setShadowSet(srsCtl.pss);
}
}
LLFlag = 0;
Status = status;
SRSCtl = srsCtl;
}}, IsReturn, IsSerializing, IsERET);
0x1F: deret({{
DebugReg debug = Debug;
if (debug.dm == 1) {
debug.dm = 1;
debug.iexi = 0;
NPC = DEPC;
} else {
NPC = NPC;
// Undefined;
}
Debug = debug;
}}, IsReturn, IsSerializing, IsERET);
}
format CP0TLB {
0x01: tlbr({{
MipsISA::PTE *PTEntry =
xc->tcBase()->getITBPtr()->
getEntry(Index & 0x7FFFFFFF);
if (PTEntry == NULL) {
fatal("Invalid PTE Entry received on "
"a TLBR instruction\n");
}
/* Setup PageMask */
// If 1KB pages are not enabled, a read of PageMask
// must return 0b00 in bits 12, 11
PageMask = (PTEntry->Mask << 11);
/* Setup EntryHi */
EntryHi = ((PTEntry->VPN << 11) | (PTEntry->asid));
/* Setup Entry Lo0 */
EntryLo0 = ((PTEntry->PFN0 << 6) |
(PTEntry->C0 << 3) |
(PTEntry->D0 << 2) |
(PTEntry->V0 << 1) |
PTEntry->G);
/* Setup Entry Lo1 */
EntryLo1 = ((PTEntry->PFN1 << 6) |
(PTEntry->C1 << 3) |
(PTEntry->D1 << 2) |
(PTEntry->V1 << 1) |
PTEntry->G);
}}); // Need to hook up to TLB
0x02: tlbwi({{
//Create PTE
MipsISA::PTE newEntry;
//Write PTE
newEntry.Mask = (Addr)(PageMask >> 11);
newEntry.VPN = (Addr)(EntryHi >> 11);
/* PageGrain _ ESP Config3 _ SP */
if (bits(PageGrain, 28) == 0 || bits(Config3, 4) ==0) {
// If 1KB pages are *NOT* enabled, lowest bits of
// the mask are 0b11 for TLB writes
newEntry.Mask |= 0x3;
// Reset bits 0 and 1 if 1KB pages are not enabled
newEntry.VPN &= 0xFFFFFFFC;
}
newEntry.asid = (uint8_t)(EntryHi & 0xFF);
newEntry.PFN0 = (Addr)(EntryLo0 >> 6);
newEntry.PFN1 = (Addr)(EntryLo1 >> 6);
newEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
newEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
newEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
newEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
newEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
newEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
newEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
/* Now, compute the AddrShiftAmount and OffsetMask -
TLB optimizations */
/* Addr Shift Amount for 1KB or larger pages */
if ((newEntry.Mask & 0xFFFF) == 3) {
newEntry.AddrShiftAmount = 12;
} else if ((newEntry.Mask & 0xFFFF) == 0x0000) {
newEntry.AddrShiftAmount = 10;
} else if ((newEntry.Mask & 0xFFFC) == 0x000C) {
newEntry.AddrShiftAmount = 14;
} else if ((newEntry.Mask & 0xFFF0) == 0x0030) {
newEntry.AddrShiftAmount = 16;
} else if ((newEntry.Mask & 0xFFC0) == 0x00C0) {
newEntry.AddrShiftAmount = 18;
} else if ((newEntry.Mask & 0xFF00) == 0x0300) {
newEntry.AddrShiftAmount = 20;
} else if ((newEntry.Mask & 0xFC00) == 0x0C00) {
newEntry.AddrShiftAmount = 22;
} else if ((newEntry.Mask & 0xF000) == 0x3000) {
newEntry.AddrShiftAmount = 24;
} else if ((newEntry.Mask & 0xC000) == 0xC000) {
newEntry.AddrShiftAmount = 26;
} else if ((newEntry.Mask & 0x30000) == 0x30000) {
newEntry.AddrShiftAmount = 28;
} else {
fatal("Invalid Mask Pattern Detected!\n");
}
newEntry.OffsetMask =
(1 << newEntry.AddrShiftAmount) - 1;
MipsISA::TLB *Ptr = xc->tcBase()->getITBPtr();
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
int SP = 0;
if (bits(config3, config3.sp) == 1 &&
bits(pageGrain, pageGrain.esp) == 1) {
SP = 1;
}
Ptr->insertAt(newEntry, Index & 0x7FFFFFFF, SP);
}});
0x06: tlbwr({{
//Create PTE
MipsISA::PTE newEntry;
//Write PTE
newEntry.Mask = (Addr)(PageMask >> 11);
newEntry.VPN = (Addr)(EntryHi >> 11);
/* PageGrain _ ESP Config3 _ SP */
if (bits(PageGrain, 28) == 0 ||
bits(Config3, 4) == 0) {
// If 1KB pages are *NOT* enabled, lowest bits of
// the mask are 0b11 for TLB writes
newEntry.Mask |= 0x3;
// Reset bits 0 and 1 if 1KB pages are not enabled
newEntry.VPN &= 0xFFFFFFFC;
}
newEntry.asid = (uint8_t)(EntryHi & 0xFF);
newEntry.PFN0 = (Addr)(EntryLo0 >> 6);
newEntry.PFN1 = (Addr)(EntryLo1 >> 6);
newEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
newEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
newEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
newEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
newEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
newEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
newEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
/* Now, compute the AddrShiftAmount and OffsetMask -
TLB optimizations */
/* Addr Shift Amount for 1KB or larger pages */
if ((newEntry.Mask & 0xFFFF) == 3){
newEntry.AddrShiftAmount = 12;
} else if ((newEntry.Mask & 0xFFFF) == 0x0000) {
newEntry.AddrShiftAmount = 10;
} else if ((newEntry.Mask & 0xFFFC) == 0x000C) {
newEntry.AddrShiftAmount = 14;
} else if ((newEntry.Mask & 0xFFF0) == 0x0030) {
newEntry.AddrShiftAmount = 16;
} else if ((newEntry.Mask & 0xFFC0) == 0x00C0) {
newEntry.AddrShiftAmount = 18;
} else if ((newEntry.Mask & 0xFF00) == 0x0300) {
newEntry.AddrShiftAmount = 20;
} else if ((newEntry.Mask & 0xFC00) == 0x0C00) {
newEntry.AddrShiftAmount = 22;
} else if ((newEntry.Mask & 0xF000) == 0x3000) {
newEntry.AddrShiftAmount = 24;
} else if ((newEntry.Mask & 0xC000) == 0xC000) {
newEntry.AddrShiftAmount = 26;
} else if ((newEntry.Mask & 0x30000) == 0x30000) {
newEntry.AddrShiftAmount = 28;
} else {
fatal("Invalid Mask Pattern Detected!\n");
}
newEntry.OffsetMask =
(1 << newEntry.AddrShiftAmount) - 1;
MipsISA::TLB *Ptr = xc->tcBase()->getITBPtr();
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
int SP = 0;
if (bits(config3, config3.sp) == 1 &&
bits(pageGrain, pageGrain.esp) == 1) {
SP = 1;
}
Ptr->insertAt(newEntry, Random, SP);
}});
0x08: tlbp({{
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
EntryHiReg entryHi = EntryHi;
int tlbIndex;
Addr vpn;
if (pageGrain.esp == 1 && config3.sp ==1) {
vpn = EntryHi >> 11;
} else {
// Mask off lower 2 bits
vpn = ((EntryHi >> 11) & 0xFFFFFFFC);
}
tlbIndex = xc->tcBase()->getITBPtr()->
probeEntry(vpn, entryHi.asid);
// Check TLB for entry matching EntryHi
if (tlbIndex != -1) {
Index = tlbIndex;
} else {
// else, set Index = 1 << 31
Index = (1 << 31);
}
}});
}
format CP0Unimpl {
0x20: wait();
}
default: CP0Unimpl::unknown();
}
}
//Table A-13 MIPS32 COP1 Encoding of rs Field
0x1: decode RS_MSB {
0x0: decode RS_HI {
0x0: decode RS_LO {
format CP1Control {
0x0: mfc1 ({{ Rt_uw = Fs_uw; }});
0x2: cfc1({{
switch (FS) {
case 0:
Rt = FIR;
break;
case 25:
Rt = (FCSR & 0xFE000000) >> 24 |
(FCSR & 0x00800000) >> 23;
break;
case 26:
Rt = (FCSR & 0x0003F07C);
break;
case 28:
Rt = (FCSR & 0x00000F80) |
(FCSR & 0x01000000) >> 21 |
(FCSR & 0x00000003);
break;
case 31:
Rt = FCSR;
break;
default:
warn("FP Control Value (%d) Not Valid");
}
}});
0x3: mfhc1({{ Rt_uw = Fs_ud<63:32>; }});
0x4: mtc1({{ Fs_uw = Rt_uw; }});
0x6: ctc1({{
switch (FS) {
case 25:
FCSR = (Rt_uw<7:1> << 25) | // move 31-25
(FCSR & 0x01000000) | // bit 24
(FCSR & 0x004FFFFF); // bit 22-0
break;
case 26:
FCSR = (FCSR & 0xFFFC0000) | // move 31-18
Rt_uw<17:12> << 12 | // bit 17-12
(FCSR & 0x00000F80) << 7 | // bit 11-7
Rt_uw<6:2> << 2 | // bit 6-2
(FCSR & 0x00000002); // bit 1-0
break;
case 28:
FCSR = (FCSR & 0xFE000000) | // move 31-25
Rt_uw<2:2> << 24 | // bit 24
(FCSR & 0x00FFF000) << 23 | // bit 23-12
Rt_uw<11:7> << 7 | // bit 24
(FCSR & 0x000007E) |
Rt_uw<1:0>; // bit 22-0
break;
case 31:
FCSR = Rt_uw;
break;
default:
panic("FP Control Value (%d) "
"Not Available. Ignoring Access "
"to Floating Control Status "
"Register", FS);
}
}});
0x7: mthc1({{
uint64_t fs_hi = Rt_uw;
uint64_t fs_lo = Fs_ud & 0x0FFFFFFFF;
Fs_ud = (fs_hi << 32) | fs_lo;
}});
}
format CP1Unimpl {
0x1: dmfc1();
0x5: dmtc1();
}
}
0x1: decode RS_LO {
0x0: decode ND {
format Branch {
0x0: decode TF {
0x0: bc1f({{
cond = getCondCode(FCSR, BRANCH_CC) == 0;
}});
0x1: bc1t({{
cond = getCondCode(FCSR, BRANCH_CC) == 1;
}});
}
0x1: decode TF {
0x0: bc1fl({{
cond = getCondCode(FCSR, BRANCH_CC) == 0;
}}, Likely);
0x1: bc1tl({{
cond = getCondCode(FCSR, BRANCH_CC) == 1;
}}, Likely);
}
}
}
format CP1Unimpl {
0x1: bc1any2();
0x2: bc1any4();
default: unknown();
}
}
}
0x1: decode RS_HI {
0x2: decode RS_LO {
//Table A-14 MIPS32 COP1 Encoding of Function Field When
//rs=S (( single-precision floating point))
0x0: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format FloatOp {
0x0: add_s({{ Fd_sf = Fs_sf + Ft_sf; }});
0x1: sub_s({{ Fd_sf = Fs_sf - Ft_sf; }});
0x2: mul_s({{ Fd_sf = Fs_sf * Ft_sf; }});
0x3: div_s({{ Fd_sf = Fs_sf / Ft_sf; }});
0x4: sqrt_s({{ Fd_sf = sqrt(Fs_sf); }});
0x5: abs_s({{ Fd_sf = fabs(Fs_sf); }});
0x7: neg_s({{ Fd_sf = -Fs_sf; }});
}
0x6: BasicOp::mov_s({{ Fd_sf = Fs_sf; }});
}
0x1: decode FUNCTION_LO {
format FloatConvertOp {
0x0: round_l_s({{ val = Fs_sf; }},
ToLong, Round);
0x1: trunc_l_s({{ val = Fs_sf; }},
ToLong, Trunc);
0x2: ceil_l_s({{ val = Fs_sf;}},
ToLong, Ceil);
0x3: floor_l_s({{ val = Fs_sf; }},
ToLong, Floor);
0x4: round_w_s({{ val = Fs_sf; }},
ToWord, Round);
0x5: trunc_w_s({{ val = Fs_sf; }},
ToWord, Trunc);
0x6: ceil_w_s({{ val = Fs_sf; }},
ToWord, Ceil);
0x7: floor_w_s({{ val = Fs_sf; }},
ToWord, Floor);
}
}
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format BasicOp {
0x0: movf_s({{
Fd = (getCondCode(FCSR,CC) == 0) ?
Fs : Fd;
}});
0x1: movt_s({{
Fd = (getCondCode(FCSR,CC) == 1) ?
Fs : Fd;
}});
}
}
format BasicOp {
0x2: movz_s({{ Fd = (Rt == 0) ? Fs : Fd; }});
0x3: movn_s({{ Fd = (Rt != 0) ? Fs : Fd; }});
}
format FloatOp {
0x5: recip_s({{ Fd = 1 / Fs; }});
0x6: rsqrt_s({{ Fd = 1 / sqrt(Fs); }});
}
format CP1Unimpl {
default: unknown();
}
}
0x3: CP1Unimpl::unknown();
0x4: decode FUNCTION_LO {
format FloatConvertOp {
0x1: cvt_d_s({{ val = Fs_sf; }}, ToDouble);
0x4: cvt_w_s({{ val = Fs_sf; }}, ToWord);
0x5: cvt_l_s({{ val = Fs_sf; }}, ToLong);
}
0x6: FloatOp::cvt_ps_s({{
Fd_ud = (uint64_t) Fs_uw << 32 |
(uint64_t) Ft_uw;
}});
format CP1Unimpl {
default: unknown();
}
}
0x5: CP1Unimpl::unknown();
0x6: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_f_s({{ cond = 0; }},
SinglePrecision, UnorderedFalse);
0x1: c_un_s({{ cond = 0; }},
SinglePrecision, UnorderedTrue);
0x2: c_eq_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedFalse);
0x3: c_ueq_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedTrue);
0x4: c_olt_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedFalse);
0x5: c_ult_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedTrue);
0x6: c_ole_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedFalse);
0x7: c_ule_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_sf_s({{ cond = 0; }}, SinglePrecision,
UnorderedFalse, QnanException);
0x1: c_ngle_s({{ cond = 0; }}, SinglePrecision,
UnorderedTrue, QnanException);
0x2: c_seq_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedFalse, QnanException);
0x3: c_ngl_s({{ cond = (Fs_sf == Ft_sf); }},
UnorderedTrue, QnanException);
0x4: c_lt_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedFalse, QnanException);
0x5: c_nge_s({{ cond = (Fs_sf < Ft_sf); }},
UnorderedTrue, QnanException);
0x6: c_le_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedFalse, QnanException);
0x7: c_ngt_s({{ cond = (Fs_sf <= Ft_sf); }},
UnorderedTrue, QnanException);
}
}
}
//Table A-15 MIPS32 COP1 Encoding of Function Field When
//rs=D
0x1: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format FloatOp {
0x0: add_d({{ Fd_df = Fs_df + Ft_df; }});
0x1: sub_d({{ Fd_df = Fs_df - Ft_df; }});
0x2: mul_d({{ Fd_df = Fs_df * Ft_df; }});
0x3: div_d({{ Fd_df = Fs_df / Ft_df; }});
0x4: sqrt_d({{ Fd_df = sqrt(Fs_df); }});
0x5: abs_d({{ Fd_df = fabs(Fs_df); }});
0x7: neg_d({{ Fd_df = -1 * Fs_df; }});
}
0x6: BasicOp::mov_d({{ Fd_df = Fs_df; }});
}
0x1: decode FUNCTION_LO {
format FloatConvertOp {
0x0: round_l_d({{ val = Fs_df; }},
ToLong, Round);
0x1: trunc_l_d({{ val = Fs_df; }},
ToLong, Trunc);
0x2: ceil_l_d({{ val = Fs_df; }},
ToLong, Ceil);
0x3: floor_l_d({{ val = Fs_df; }},
ToLong, Floor);
0x4: round_w_d({{ val = Fs_df; }},
ToWord, Round);
0x5: trunc_w_d({{ val = Fs_df; }},
ToWord, Trunc);
0x6: ceil_w_d({{ val = Fs_df; }},
ToWord, Ceil);
0x7: floor_w_d({{ val = Fs_df; }},
ToWord, Floor);
}
}
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format BasicOp {
0x0: movf_d({{
Fd_df = (getCondCode(FCSR,CC) == 0) ?
Fs_df : Fd_df;
}});
0x1: movt_d({{
Fd_df = (getCondCode(FCSR,CC) == 1) ?
Fs_df : Fd_df;
}});
}
}
format BasicOp {
0x2: movz_d({{
Fd_df = (Rt == 0) ? Fs_df : Fd_df;
}});
0x3: movn_d({{
Fd_df = (Rt != 0) ? Fs_df : Fd_df;
}});
}
format FloatOp {
0x5: recip_d({{ Fd_df = 1 / Fs_df; }});
0x6: rsqrt_d({{ Fd_df = 1 / sqrt(Fs_df); }});
}
format CP1Unimpl {
default: unknown();
}
}
0x4: decode FUNCTION_LO {
format FloatConvertOp {
0x0: cvt_s_d({{ val = Fs_df; }}, ToSingle);
0x4: cvt_w_d({{ val = Fs_df; }}, ToWord);
0x5: cvt_l_d({{ val = Fs_df; }}, ToLong);
}
default: CP1Unimpl::unknown();
}
0x6: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_f_d({{ cond = 0; }},
DoublePrecision, UnorderedFalse);
0x1: c_un_d({{ cond = 0; }},
DoublePrecision, UnorderedTrue);
0x2: c_eq_d({{ cond = (Fs_df == Ft_df); }},
UnorderedFalse);
0x3: c_ueq_d({{ cond = (Fs_df == Ft_df); }},
UnorderedTrue);
0x4: c_olt_d({{ cond = (Fs_df < Ft_df); }},
UnorderedFalse);
0x5: c_ult_d({{ cond = (Fs_df < Ft_df); }},
UnorderedTrue);
0x6: c_ole_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedFalse);
0x7: c_ule_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_sf_d({{ cond = 0; }}, DoublePrecision,
UnorderedFalse, QnanException);
0x1: c_ngle_d({{ cond = 0; }}, DoublePrecision,
UnorderedTrue, QnanException);
0x2: c_seq_d({{ cond = (Fs_df == Ft_df); }},
UnorderedFalse, QnanException);
0x3: c_ngl_d({{ cond = (Fs_df == Ft_df); }},
UnorderedTrue, QnanException);
0x4: c_lt_d({{ cond = (Fs_df < Ft_df); }},
UnorderedFalse, QnanException);
0x5: c_nge_d({{ cond = (Fs_df < Ft_df); }},
UnorderedTrue, QnanException);
0x6: c_le_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedFalse, QnanException);
0x7: c_ngt_d({{ cond = (Fs_df <= Ft_df); }},
UnorderedTrue, QnanException);
}
}
default: CP1Unimpl::unknown();
}
0x2: CP1Unimpl::unknown();
0x3: CP1Unimpl::unknown();
0x7: CP1Unimpl::unknown();
//Table A-16 MIPS32 COP1 Encoding of Function
//Field When rs=W
0x4: decode FUNCTION {
format FloatConvertOp {
0x20: cvt_s_w({{ val = Fs_sw; }}, ToSingle);
0x21: cvt_d_w({{ val = Fs_sw; }}, ToDouble);
0x26: CP1Unimpl::cvt_ps_w();
}
default: CP1Unimpl::unknown();
}
//Table A-16 MIPS32 COP1 Encoding of Function Field
//When rs=L1
//Note: "1. Format type L is legal only if 64-bit
//floating point operations are enabled."
0x5: decode FUNCTION {
format FloatConvertOp {
0x20: cvt_s_l({{ val = Fs_sd; }}, ToSingle);
0x21: cvt_d_l({{ val = Fs_sd; }}, ToDouble);
0x26: CP1Unimpl::cvt_ps_l();
}
default: CP1Unimpl::unknown();
}
//Table A-17 MIPS64 COP1 Encoding of Function Field
//When rs=PS1
//Note: "1. Format type PS is legal only if 64-bit
//floating point operations are enabled. "
0x6: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format Float64Op {
0x0: add_ps({{
Fd1_sf = Fs1_sf + Ft2_sf;
Fd2_sf = Fs2_sf + Ft2_sf;
}});
0x1: sub_ps({{
Fd1_sf = Fs1_sf - Ft2_sf;
Fd2_sf = Fs2_sf - Ft2_sf;
}});
0x2: mul_ps({{
Fd1_sf = Fs1_sf * Ft2_sf;
Fd2_sf = Fs2_sf * Ft2_sf;
}});
0x5: abs_ps({{
Fd1_sf = fabs(Fs1_sf);
Fd2_sf = fabs(Fs2_sf);
}});
0x6: mov_ps({{
Fd1_sf = Fs1_sf;
Fd2_sf = Fs2_sf;
}});
0x7: neg_ps({{
Fd1_sf = -(Fs1_sf);
Fd2_sf = -(Fs2_sf);
}});
default: CP1Unimpl::unknown();
}
}
0x1: CP1Unimpl::unknown();
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format Float64Op {
0x0: movf_ps({{
Fd1 = (getCondCode(FCSR, CC) == 0) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC+1) == 0) ?
Fs2 : Fd2;
}});
0x1: movt_ps({{
Fd2 = (getCondCode(FCSR, CC) == 1) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC+1) == 1) ?
Fs2 : Fd2;
}});
}
}
format Float64Op {
0x2: movz_ps({{
Fd1 = (getCondCode(FCSR, CC) == 0) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC) == 0) ?
Fs2 : Fd2;
}});
0x3: movn_ps({{
Fd1 = (getCondCode(FCSR, CC) == 1) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC) == 1) ?
Fs2 : Fd2;
}});
}
default: CP1Unimpl::unknown();
}
0x3: CP1Unimpl::unknown();
0x4: decode FUNCTION_LO {
0x0: FloatOp::cvt_s_pu({{ Fd_sf = Fs2_sf; }});
default: CP1Unimpl::unknown();
}
0x5: decode FUNCTION_LO {
0x0: FloatOp::cvt_s_pl({{ Fd_sf = Fs1_sf; }});
format Float64Op {
0x4: pll({{
Fd_ud = (uint64_t)Fs1_uw << 32 | Ft1_uw;
}});
0x5: plu({{
Fd_ud = (uint64_t)Fs1_uw << 32 | Ft2_uw;
}});
0x6: pul({{
Fd_ud = (uint64_t)Fs2_uw << 32 | Ft1_uw;
}});
0x7: puu({{
Fd_ud = (uint64_t)Fs2_uw << 32 | Ft2_uw;
}});
}
default: CP1Unimpl::unknown();
}
0x6: decode FUNCTION_LO {
format FloatPSCompareOp {
0x0: c_f_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedFalse);
0x1: c_un_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedTrue);
0x2: c_eq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedFalse);
0x3: c_ueq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedTrue);
0x4: c_olt_ps({{ cond1 = (Fs1_sf < Ft1_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedFalse);
0x5: c_ult_ps({{ cond1 = (Fs_sf < Ft_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedTrue);
0x6: c_ole_ps({{ cond1 = (Fs_sf <= Ft_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedFalse);
0x7: c_ule_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatPSCompareOp {
0x0: c_sf_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedFalse, QnanException);
0x1: c_ngle_ps({{ cond1 = 0; }},
{{ cond2 = 0; }},
UnorderedTrue, QnanException);
0x2: c_seq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedFalse, QnanException);
0x3: c_ngl_ps({{ cond1 = (Fs1_sf == Ft1_sf); }},
{{ cond2 = (Fs2_sf == Ft2_sf); }},
UnorderedTrue, QnanException);
0x4: c_lt_ps({{ cond1 = (Fs1_sf < Ft1_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedFalse, QnanException);
0x5: c_nge_ps({{ cond1 = (Fs1_sf < Ft1_sf); }},
{{ cond2 = (Fs2_sf < Ft2_sf); }},
UnorderedTrue, QnanException);
0x6: c_le_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedFalse, QnanException);
0x7: c_ngt_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }},
{{ cond2 = (Fs2_sf <= Ft2_sf); }},
UnorderedTrue, QnanException);
}
}
}
}
default: CP1Unimpl::unknown();
}
}
//Table A-19 MIPS32 COP2 Encoding of rs Field
0x2: decode RS_MSB {
format CP2Unimpl {
0x0: decode RS_HI {
0x0: decode RS_LO {
0x0: mfc2();
0x2: cfc2();
0x3: mfhc2();
0x4: mtc2();
0x6: ctc2();
0x7: mftc2();
default: unknown();
}
0x1: decode ND {
0x0: decode TF {
0x0: bc2f();
0x1: bc2t();
default: unknown();
}
0x1: decode TF {
0x0: bc2fl();
0x1: bc2tl();
default: unknown();
}
default: unknown();
}
default: unknown();
}
default: unknown();
}
}
//Table A-20 MIPS64 COP1X Encoding of Function Field 1
//Note: "COP1X instructions are legal only if 64-bit floating point
//operations are enabled."
0x3: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format LoadIndexedMemory {
0x0: lwxc1({{ Fd_uw = Mem_uw; }});
0x1: ldxc1({{ Fd_ud = Mem_ud; }});
0x5: luxc1({{ Fd_ud = Mem_ud; }},
{{ EA = (Rs + Rt) & ~7; }});
}
}
0x1: decode FUNCTION_LO {
format StoreIndexedMemory {
0x0: swxc1({{ Mem_uw = Fs_uw; }});
0x1: sdxc1({{ Mem_ud = Fs_ud; }});
0x5: suxc1({{ Mem_ud = Fs_ud; }},
{{ EA = (Rs + Rt) & ~7; }});
}
0x7: Prefetch::prefx({{ EA = Rs + Rt; }});
}
0x3: decode FUNCTION_LO {
0x6: Float64Op::alnv_ps({{
if (Rs<2:0> == 0) {
Fd_ud = Fs_ud;
} else if (Rs<2:0> == 4) {
if (GuestByteOrder == BigEndianByteOrder)
Fd_ud = Fs_ud<31:0> << 32 | Ft_ud<63:32>;
else
Fd_ud = Ft_ud<31:0> << 32 | Fs_ud<63:32>;
} else {
Fd_ud = Fd_ud;
}
}});
}
format FloatAccOp {
0x4: decode FUNCTION_LO {
0x0: madd_s({{ Fd_sf = (Fs_sf * Ft_sf) + Fr_sf; }});
0x1: madd_d({{ Fd_df = (Fs_df * Ft_df) + Fr_df; }});
0x6: madd_ps({{
Fd1_sf = (Fs1_df * Ft1_df) + Fr1_df;
Fd2_sf = (Fs2_df * Ft2_df) + Fr2_df;
}});
}
0x5: decode FUNCTION_LO {
0x0: msub_s({{ Fd_sf = (Fs_sf * Ft_sf) - Fr_sf; }});
0x1: msub_d({{ Fd_df = (Fs_df * Ft_df) - Fr_df; }});
0x6: msub_ps({{
Fd1_sf = (Fs1_df * Ft1_df) - Fr1_df;
Fd2_sf = (Fs2_df * Ft2_df) - Fr2_df;
}});
}
0x6: decode FUNCTION_LO {
0x0: nmadd_s({{ Fd_sf = (-1 * Fs_sf * Ft_sf) - Fr_sf; }});
0x1: nmadd_d({{ Fd_df = (-1 * Fs_df * Ft_df) - Fr_df; }});
0x6: nmadd_ps({{
Fd1_sf = -((Fs1_df * Ft1_df) + Fr1_df);
Fd2_sf = -((Fs2_df * Ft2_df) + Fr2_df);
}});
}
0x7: decode FUNCTION_LO {
0x0: nmsub_s({{ Fd_sf = (-1 * Fs_sf * Ft_sf) + Fr_sf; }});
0x1: nmsub_d({{ Fd_df = (-1 * Fs_df * Ft_df) + Fr_df; }});
0x6: nmsub_ps({{
Fd1_sf = -((Fs1_df * Ft1_df) - Fr1_df);
Fd2_sf = -((Fs2_df * Ft2_df) - Fr2_df);
}});
}
}
}
format Branch {
0x4: beql({{ cond = (Rs_sw == Rt_sw); }}, Likely);
0x5: bnel({{ cond = (Rs_sw != Rt_sw); }}, Likely);
0x6: blezl({{ cond = (Rs_sw <= 0); }}, Likely);
0x7: bgtzl({{ cond = (Rs_sw > 0); }}, Likely);
}
}
0x3: decode OPCODE_LO {
//Table A-5 MIPS32 SPECIAL2 Encoding of Function Field
0x4: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
0x2: IntOp::mul({{
int64_t temp1 = Rs_sd * Rt_sd;
Rd_sw = temp1<31:0>;
}}, IntMultOp);
format HiLoRdSelValOp {
0x0: madd({{
val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) +
(Rs_sd * Rt_sd);
}}, IntMultOp);
0x1: maddu({{
val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) +
(Rs_ud * Rt_ud);
}}, IntMultOp);
0x4: msub({{
val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) -
(Rs_sd * Rt_sd);
}}, IntMultOp);
0x5: msubu({{
val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) -
(Rs_ud * Rt_ud);
}}, IntMultOp);
}
}
0x4: decode FUNCTION_LO {
format BasicOp {
0x0: clz({{
int cnt = 32;
for (int idx = 31; idx >= 0; idx--) {
if (Rs<idx:idx> == 1) {
cnt = 31 - idx;
break;
}
}
Rd_uw = cnt;
}});
0x1: clo({{
int cnt = 32;
for (int idx = 31; idx >= 0; idx--) {
if (Rs<idx:idx> == 0) {
cnt = 31 - idx;
break;
}
}
Rd_uw = cnt;
}});
}
}
0x7: decode FUNCTION_LO {
0x7: FailUnimpl::sdbbp();
}
}
//Table A-6 MIPS32 SPECIAL3 Encoding of Function Field for Release 2
//of the Architecture
0x7: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format BasicOp {
0x0: ext({{ Rt_uw = bits(Rs_uw, MSB+LSB, LSB); }});
0x4: ins({{
Rt_uw = bits(Rt_uw, 31, MSB+1) << (MSB+1) |
bits(Rs_uw, MSB-LSB, 0) << LSB |
bits(Rt_uw, LSB-1, 0);
}});
}
}
0x1: decode FUNCTION_LO {
format MT_Control {
0x0: fork({{
forkThread(xc->tcBase(), fault, RD, Rs, Rt);
}}, UserMode);
0x1: yield({{
Rd_sw = yieldThread(xc->tcBase(), fault, Rs_sw,
YQMask);
}}, UserMode);
}
//Table 5-9 MIPS32 LX Encoding of the op Field (DSP ASE MANUAL)
0x2: decode OP_HI {
0x0: decode OP_LO {
format LoadIndexedMemory {
0x0: lwx({{ Rd_sw = Mem_sw; }});
0x4: lhx({{ Rd_sw = Mem_sh; }});
0x6: lbux({{ Rd_uw = Mem_ub; }});
}
}
}
0x4: DspIntOp::insv({{
int pos = dspctl<5:0>;
int size = dspctl<12:7> - 1;
Rt_uw = insertBits(Rt_uw, pos+size,
pos, Rs_uw<size:0>);
}});
}
0x2: decode FUNCTION_LO {
//Table 5-5 MIPS32 ADDU.QB Encoding of the op Field
//(DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: addu_qb({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x1: subu_qb({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x4: addu_s_qb({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_QB,
SATURATE, UNSIGNED, &dspctl);
}});
0x5: subu_s_qb({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_QB,
SATURATE, UNSIGNED, &dspctl);
}});
0x6: muleu_s_ph_qbl({{
Rd_uw = dspMuleu(Rs_uw, Rt_uw,
MODE_L, &dspctl);
}}, IntMultOp);
0x7: muleu_s_ph_qbr({{
Rd_uw = dspMuleu(Rs_uw, Rt_uw,
MODE_R, &dspctl);
}}, IntMultOp);
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: addu_ph({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x1: subu_ph({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x2: addq_ph({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x3: subq_ph({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x4: addu_s_ph({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH,
SATURATE, UNSIGNED, &dspctl);
}});
0x5: subu_s_ph({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH,
SATURATE, UNSIGNED, &dspctl);
}});
0x6: addq_s_ph({{
Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
0x7: subq_s_ph({{
Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x0: addsc({{
int64_t dresult;
dresult = Rs_ud + Rt_ud;
Rd_sw = dresult<31:0>;
dspctl = insertBits(dspctl, 13, 13,
dresult<32:32>);
}});
0x1: addwc({{
int64_t dresult;
dresult = Rs_sd + Rt_sd + dspctl<13:13>;
Rd_sw = dresult<31:0>;
if (dresult<32:32> != dresult<31:31>)
dspctl = insertBits(dspctl, 20, 20, 1);
}});
0x2: modsub({{
Rd_sw = (Rs_sw == 0) ? Rt_sw<23:8> :
Rs_sw - Rt_sw<7:0>;
}});
0x4: raddu_w_qb({{
Rd_uw = Rs_uw<31:24> + Rs_uw<23:16> +
Rs_uw<15:8> + Rs_uw<7:0>;
}});
0x6: addq_s_w({{
Rd_sw = dspAdd(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
0x7: subq_s_w({{
Rd_sw = dspSub(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x4: muleq_s_w_phl({{
Rd_sw = dspMuleq(Rs_sw, Rt_sw,
MODE_L, &dspctl);
}}, IntMultOp);
0x5: muleq_s_w_phr({{
Rd_sw = dspMuleq(Rs_sw, Rt_sw,
MODE_R, &dspctl);
}}, IntMultOp);
0x6: mulq_s_ph({{
Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_PH,
SATURATE, NOROUND, &dspctl);
}}, IntMultOp);
0x7: mulq_rs_ph({{
Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_PH,
SATURATE, ROUND, &dspctl);
}}, IntMultOp);
}
}
}
//Table 5-6 MIPS32 CMPU_EQ_QB Encoding of the op Field
//(DSP ASE MANUAL)
0x1: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: cmpu_eq_qb({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_EQ, &dspctl);
}});
0x1: cmpu_lt_qb({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LT, &dspctl);
}});
0x2: cmpu_le_qb({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LE, &dspctl);
}});
0x3: pick_qb({{
Rd_uw = dspPick(Rs_uw, Rt_uw,
SIMD_FMT_QB, &dspctl);
}});
0x4: cmpgu_eq_qb({{
Rd_uw = dspCmpg(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_EQ );
}});
0x5: cmpgu_lt_qb({{
Rd_uw = dspCmpg(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LT);
}});
0x6: cmpgu_le_qb({{
Rd_uw = dspCmpg(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LE);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: cmp_eq_ph({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_PH,
SIGNED, CMP_EQ, &dspctl);
}});
0x1: cmp_lt_ph({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_PH,
SIGNED, CMP_LT, &dspctl);
}});
0x2: cmp_le_ph({{
dspCmp(Rs_uw, Rt_uw, SIMD_FMT_PH,
SIGNED, CMP_LE, &dspctl);
}});
0x3: pick_ph({{
Rd_uw = dspPick(Rs_uw, Rt_uw,
SIMD_FMT_PH, &dspctl);
}});
0x4: precrq_qb_ph({{
Rd_uw = Rs_uw<31:24> << 24 |
Rs_uw<15:8> << 16 |
Rt_uw<31:24> << 8 |
Rt_uw<15:8>;
}});
0x5: precr_qb_ph({{
Rd_uw = Rs_uw<23:16> << 24 |
Rs_uw<7:0> << 16 |
Rt_uw<23:16> << 8 |
Rt_uw<7:0>;
}});
0x6: packrl_ph({{
Rd_uw = dspPack(Rs_uw, Rt_uw, SIMD_FMT_PH);
}});
0x7: precrqu_s_qb_ph({{
Rd_uw = dspPrecrqu(Rs_uw, Rt_uw, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x4: precrq_ph_w({{
Rd_uw = Rs_uw<31:16> << 16 | Rt_uw<31:16>;
}});
0x5: precrq_rs_ph_w({{
Rd_uw = dspPrecrq(Rs_uw, Rt_uw,
SIMD_FMT_W, &dspctl);
}});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x0: cmpgdu_eq_qb({{
Rd_uw = dspCmpgd(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_EQ, &dspctl);
}});
0x1: cmpgdu_lt_qb({{
Rd_uw = dspCmpgd(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LT, &dspctl);
}});
0x2: cmpgdu_le_qb({{
Rd_uw = dspCmpgd(Rs_uw, Rt_uw, SIMD_FMT_QB,
UNSIGNED, CMP_LE, &dspctl);
}});
0x6: precr_sra_ph_w({{
Rt_uw = dspPrecrSra(Rt_uw, Rs_uw, RD,
SIMD_FMT_W, NOROUND);
}});
0x7: precr_sra_r_ph_w({{
Rt_uw = dspPrecrSra(Rt_uw, Rs_uw, RD,
SIMD_FMT_W, ROUND);
}});
}
}
}
//Table 5-7 MIPS32 ABSQ_S.PH Encoding of the op Field
//(DSP ASE MANUAL)
0x2: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x1: absq_s_qb({{
Rd_sw = dspAbs(Rt_sw, SIMD_FMT_QB, &dspctl);
}});
0x2: repl_qb({{
Rd_uw = RS_RT<7:0> << 24 |
RS_RT<7:0> << 16 |
RS_RT<7:0> << 8 |
RS_RT<7:0>;
}});
0x3: replv_qb({{
Rd_sw = Rt_uw<7:0> << 24 |
Rt_uw<7:0> << 16 |
Rt_uw<7:0> << 8 |
Rt_uw<7:0>;
}});
0x4: precequ_ph_qbl({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_L);
}});
0x5: precequ_ph_qbr({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_R);
}});
0x6: precequ_ph_qbla({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_LA);
}});
0x7: precequ_ph_qbra({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_RA);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x1: absq_s_ph({{
Rd_sw = dspAbs(Rt_sw, SIMD_FMT_PH, &dspctl);
}});
0x2: repl_ph({{
Rd_uw = (sext<10>(RS_RT))<15:0> << 16 |
(sext<10>(RS_RT))<15:0>;
}});
0x3: replv_ph({{
Rd_uw = Rt_uw<15:0> << 16 |
Rt_uw<15:0>;
}});
0x4: preceq_w_phl({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_PH, SIGNED,
SIMD_FMT_W, SIGNED, MODE_L);
}});
0x5: preceq_w_phr({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_PH, SIGNED,
SIMD_FMT_W, SIGNED, MODE_R);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x1: absq_s_w({{
Rd_sw = dspAbs(Rt_sw, SIMD_FMT_W, &dspctl);
}});
}
}
0x3: decode OP_LO {
0x3: IntOp::bitrev({{
Rd_uw = bitrev( Rt_uw<15:0> );
}});
format DspIntOp {
0x4: preceu_ph_qbl({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_L);
}});
0x5: preceu_ph_qbr({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_R );
}});
0x6: preceu_ph_qbla({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_LA );
}});
0x7: preceu_ph_qbra({{
Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB,
UNSIGNED, SIMD_FMT_PH,
UNSIGNED, MODE_RA);
}});
}
}
}
//Table 5-8 MIPS32 SHLL.QB Encoding of the op Field
//(DSP ASE MANUAL)
0x3: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: shll_qb({{
Rd_sw = dspShll(Rt_sw, RS, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x1: shrl_qb({{
Rd_sw = dspShrl(Rt_sw, RS, SIMD_FMT_QB,
UNSIGNED);
}});
0x2: shllv_qb({{
Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl);
}});
0x3: shrlv_qb({{
Rd_sw = dspShrl(Rt_sw, Rs_sw, SIMD_FMT_QB,
UNSIGNED);
}});
0x4: shra_qb({{
Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_QB,
NOROUND, SIGNED, &dspctl);
}});
0x5: shra_r_qb({{
Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_QB,
ROUND, SIGNED, &dspctl);
}});
0x6: shrav_qb({{
Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_QB,
NOROUND, SIGNED, &dspctl);
}});
0x7: shrav_r_qb({{
Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_QB,
ROUND, SIGNED, &dspctl);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: shll_ph({{
Rd_uw = dspShll(Rt_uw, RS, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x1: shra_ph({{
Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_PH,
NOROUND, SIGNED, &dspctl);
}});
0x2: shllv_ph({{
Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl);
}});
0x3: shrav_ph({{
Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_PH,
NOROUND, SIGNED, &dspctl);
}});
0x4: shll_s_ph({{
Rd_sw = dspShll(Rt_sw, RS, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
0x5: shra_r_ph({{
Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_PH,
ROUND, SIGNED, &dspctl);
}});
0x6: shllv_s_ph({{
Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl);
}});
0x7: shrav_r_ph({{
Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_PH,
ROUND, SIGNED, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x4: shll_s_w({{
Rd_sw = dspShll(Rt_sw, RS, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
0x5: shra_r_w({{
Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_W,
ROUND, SIGNED, &dspctl);
}});
0x6: shllv_s_w({{
Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl);
}});
0x7: shrav_r_w({{
Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_W,
ROUND, SIGNED, &dspctl);
}});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x1: shrl_ph({{
Rd_sw = dspShrl(Rt_sw, RS, SIMD_FMT_PH,
UNSIGNED);
}});
0x3: shrlv_ph({{
Rd_sw = dspShrl(Rt_sw, Rs_sw, SIMD_FMT_PH,
UNSIGNED);
}});
}
}
}
}
0x3: decode FUNCTION_LO {
//Table 3.12 MIPS32 ADDUH.QB Encoding of the op Field
//(DSP ASE Rev2 Manual)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: adduh_qb({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_QB,
NOROUND, UNSIGNED);
}});
0x1: subuh_qb({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_QB,
NOROUND, UNSIGNED);
}});
0x2: adduh_r_qb({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_QB,
ROUND, UNSIGNED);
}});
0x3: subuh_r_qb({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_QB,
ROUND, UNSIGNED);
}});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: addqh_ph({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_PH,
NOROUND, SIGNED);
}});
0x1: subqh_ph({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_PH,
NOROUND, SIGNED);
}});
0x2: addqh_r_ph({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_PH,
ROUND, SIGNED);
}});
0x3: subqh_r_ph({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_PH,
ROUND, SIGNED);
}});
0x4: mul_ph({{
Rd_sw = dspMul(Rs_sw, Rt_sw, SIMD_FMT_PH,
NOSATURATE, &dspctl);
}}, IntMultOp);
0x6: mul_s_ph({{
Rd_sw = dspMul(Rs_sw, Rt_sw, SIMD_FMT_PH,
SATURATE, &dspctl);
}}, IntMultOp);
}
}
0x2: decode OP_LO {
format DspIntOp {
0x0: addqh_w({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_W,
NOROUND, SIGNED);
}});
0x1: subqh_w({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_W,
NOROUND, SIGNED);
}});
0x2: addqh_r_w({{
Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_W,
ROUND, SIGNED);
}});
0x3: subqh_r_w({{
Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_W,
ROUND, SIGNED);
}});
0x6: mulq_s_w({{
Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, NOROUND, &dspctl);
}}, IntMultOp);
0x7: mulq_rs_w({{
Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_W,
SATURATE, ROUND, &dspctl);
}}, IntMultOp);
}
}
}
}
//Table A-10 MIPS32 BSHFL Encoding of sa Field
0x4: decode SA {
format BasicOp {
0x02: wsbh({{
Rd_uw = Rt_uw<23:16> << 24 |
Rt_uw<31:24> << 16 |
Rt_uw<7:0> << 8 |
Rt_uw<15:8>;
}});
0x10: seb({{ Rd_sw = Rt_sb; }});
0x18: seh({{ Rd_sw = Rt_sh; }});
}
}
0x6: decode FUNCTION_LO {
//Table 5-10 MIPS32 DPAQ.W.PH Encoding of the op Field
//(DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspHiLoOp {
0x0: dpa_w_ph({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_L);
}}, IntMultOp);
0x1: dps_w_ph({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_L);
}}, IntMultOp);
0x2: mulsa_w_ph({{
dspac = dspMulsa(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH );
}}, IntMultOp);
0x3: dpau_h_qbl({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_L);
}}, IntMultOp);
0x4: dpaq_s_w_ph({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x5: dpsq_s_w_ph({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x6: mulsaq_s_w_ph({{
dspac = dspMulsaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
&dspctl);
}}, IntMultOp);
0x7: dpau_h_qbr({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_R);
}}, IntMultOp);
}
}
0x1: decode OP_LO {
format DspHiLoOp {
0x0: dpax_w_ph({{
dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_X);
}}, IntMultOp);
0x1: dpsx_w_ph({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_X);
}}, IntMultOp);
0x3: dpsu_h_qbl({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_L);
}}, IntMultOp);
0x4: dpaq_sa_l_w({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_W,
SIMD_FMT_L, SATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x5: dpsq_sa_l_w({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_W,
SIMD_FMT_L, SATURATE,
MODE_L, &dspctl);
}}, IntMultOp);
0x7: dpsu_h_qbr({{
dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_R);
}}, IntMultOp);
}
}
0x2: decode OP_LO {
format DspHiLoOp {
0x0: maq_sa_w_phl({{
dspac = dspMaq(dspac, Rs_uw, Rt_uw,
ACDST, SIMD_FMT_PH,
MODE_L, SATURATE, &dspctl);
}}, IntMultOp);
0x2: maq_sa_w_phr({{
dspac = dspMaq(dspac, Rs_uw, Rt_uw,
ACDST, SIMD_FMT_PH,
MODE_R, SATURATE, &dspctl);
}}, IntMultOp);
0x4: maq_s_w_phl({{
dspac = dspMaq(dspac, Rs_uw, Rt_uw,
ACDST, SIMD_FMT_PH,
MODE_L, NOSATURATE, &dspctl);
}}, IntMultOp);
0x6: maq_s_w_phr({{
dspac = dspMaq(dspac, Rs_uw, Rt_uw,
ACDST, SIMD_FMT_PH,
MODE_R, NOSATURATE, &dspctl);
}}, IntMultOp);
}
}
0x3: decode OP_LO {
format DspHiLoOp {
0x0: dpaqx_s_w_ph({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
0x1: dpsqx_s_w_ph({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
0x2: dpaqx_sa_w_ph({{
dspac = dspDpaq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, SATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
0x3: dpsqx_sa_w_ph({{
dspac = dspDpsq(dspac, Rs_sw, Rt_sw,
ACDST, SIMD_FMT_PH,
SIMD_FMT_W, SATURATE,
MODE_X, &dspctl);
}}, IntMultOp);
}
}
}
//Table 3.3 MIPS32 APPEND Encoding of the op Field
0x1: decode OP_HI {
0x0: decode OP_LO {
format IntOp {
0x0: append({{
Rt_uw = (Rt_uw << RD) | bits(Rs_uw, RD - 1, 0);
}});
0x1: prepend({{
Rt_uw = (Rt_uw >> RD) |
(bits(Rs_uw, RD - 1, 0) << (32 - RD));
}});
}
}
0x2: decode OP_LO {
format IntOp {
0x0: balign({{
Rt_uw = (Rt_uw << (8 * BP)) |
(Rs_uw >> (8 * (4 - BP)));
}});
}
}
}
}
0x7: decode FUNCTION_LO {
//Table 5-11 MIPS32 EXTR.W Encoding of the op Field
//(DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspHiLoOp {
0x0: extr_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, RS,
NOROUND, NOSATURATE, &dspctl);
}});
0x1: extrv_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, Rs_uw,
NOROUND, NOSATURATE, &dspctl);
}});
0x2: extp({{
Rt_uw = dspExtp(dspac, RS, &dspctl);
}});
0x3: extpv({{
Rt_uw = dspExtp(dspac, Rs_uw, &dspctl);
}});
0x4: extr_r_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, RS,
ROUND, NOSATURATE, &dspctl);
}});
0x5: extrv_r_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, Rs_uw,
ROUND, NOSATURATE, &dspctl);
}});
0x6: extr_rs_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, RS,
ROUND, SATURATE, &dspctl);
}});
0x7: extrv_rs_w({{
Rt_uw = dspExtr(dspac, SIMD_FMT_W, Rs_uw,
ROUND, SATURATE, &dspctl);
}});
}
}
0x1: decode OP_LO {
format DspHiLoOp {
0x2: extpdp({{
Rt_uw = dspExtpd(dspac, RS, &dspctl);
}});
0x3: extpdpv({{
Rt_uw = dspExtpd(dspac, Rs_uw, &dspctl);
}});
0x6: extr_s_h({{
Rt_uw = dspExtr(dspac, SIMD_FMT_PH, RS,
NOROUND, SATURATE, &dspctl);
}});
0x7: extrv_s_h({{
Rt_uw = dspExtr(dspac, SIMD_FMT_PH, Rs_uw,
NOROUND, SATURATE, &dspctl);
}});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x2: rddsp({{
Rd_uw = readDSPControl(&dspctl, RDDSPMASK);
}});
0x3: wrdsp({{
writeDSPControl(&dspctl, Rs_uw, WRDSPMASK);
}});
}
}
0x3: decode OP_LO {
format DspHiLoOp {
0x2: shilo({{
if ((int64_t)sext<6>(HILOSA) < 0) {
dspac = (uint64_t)dspac <<
-sext<6>(HILOSA);
} else {
dspac = (uint64_t)dspac >>
sext<6>(HILOSA);
}
}});
0x3: shilov({{
if ((int64_t)sext<6>(Rs_sw<5:0>) < 0) {
dspac = (uint64_t)dspac <<
-sext<6>(Rs_sw<5:0>);
} else {
dspac = (uint64_t)dspac >>
sext<6>(Rs_sw<5:0>);
}
}});
0x7: mthlip({{
dspac = dspac << 32;
dspac |= Rs_uw;
dspctl = insertBits(dspctl, 5, 0,
dspctl<5:0> + 32);
}});
}
}
}
0x3: decode OP default FailUnimpl::rdhwr() {
0x0: decode FullSystemInt {
0: decode RD {
29: BasicOp::rdhwr_se({{ Rt = TpValue; }});
}
}
}
}
}
}
0x4: decode OPCODE_LO {
format LoadMemory {
0x0: lb({{ Rt_sw = Mem_sb; }});
0x1: lh({{ Rt_sw = Mem_sh; }});
0x3: lw({{ Rt_sw = Mem_sw; }});
0x4: lbu({{ Rt_uw = Mem_ub;}});
0x5: lhu({{ Rt_uw = Mem_uh; }});
}
format LoadUnalignedMemory {
0x2: lwl({{
uint32_t mem_shift = 24 - (8 * byte_offset);
Rt_uw = mem_word << mem_shift | (Rt_uw & mask(mem_shift));
}});
0x6: lwr({{
uint32_t mem_shift = 8 * byte_offset;
Rt_uw = (Rt_uw & (mask(mem_shift) << (32 - mem_shift))) |
(mem_word >> mem_shift);
}});
}
}
0x5: decode OPCODE_LO {
format StoreMemory {
0x0: sb({{ Mem_ub = Rt<7:0>; }});
0x1: sh({{ Mem_uh = Rt<15:0>; }});
0x3: sw({{ Mem_uw = Rt<31:0>; }});
}
format StoreUnalignedMemory {
0x2: swl({{
uint32_t reg_shift = 24 - (8 * byte_offset);
uint32_t mem_shift = 32 - reg_shift;
mem_word = (mem_word & (mask(reg_shift) << mem_shift)) |
(Rt_uw >> reg_shift);
}});
0x6: swr({{
uint32_t reg_shift = 8 * byte_offset;
mem_word = Rt_uw << reg_shift |
(mem_word & (mask(reg_shift)));
}});
}
format CP0Control {
0x7: cache({{
//Addr CacheEA = Rs_uw + OFFSET;
//fault = xc->CacheOp((uint8_t)CACHE_OP,(Addr) CacheEA);
}});
}
}
0x6: decode OPCODE_LO {
format LoadMemory {
0x0: ll({{ Rt_uw = Mem_uw; }}, mem_flags=LLSC);
0x1: lwc1({{ Ft_uw = Mem_uw; }});
0x5: ldc1({{ Ft_ud = Mem_ud; }});
}
0x2: CP2Unimpl::lwc2();
0x6: CP2Unimpl::ldc2();
0x3: Prefetch::pref();
}
0x7: decode OPCODE_LO {
0x0: StoreCond::sc({{ Mem_uw = Rt_uw; }},
{{ uint64_t tmp = write_result;
Rt_uw = (tmp == 0 || tmp == 1) ? tmp : Rt_uw;
}}, mem_flags=LLSC,
inst_flags = IsStoreConditional);
format StoreMemory {
0x1: swc1({{ Mem_uw = Ft_uw; }});
0x5: sdc1({{ Mem_ud = Ft_ud; }});
}
0x2: CP2Unimpl::swc2();
0x6: CP2Unimpl::sdc2();
}
}