gem5/src/arch/mips/isa/decoder.isa

2166 lines
111 KiB
Text
Raw Normal View History

// -*- mode:c++ -*-
// Copyright (c) 2007 MIPS Technologies, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Korey Sewell
// Brett Miller
// Jaidev Patwardhan
////////////////////////////////////////////////////////////////////
//
// The actual MIPS32 ISA decoder
// -----------------------------
// The following instructions are specified in the MIPS32 ISA
// Specification. Decoding closely follows the style specified
// in the MIPS32 ISA specification document starting with Table
// A-2 (document available @ http://www.mips.com)
//
decode OPCODE_HI default Unknown::unknown() {
//Table A-2
0x0: decode OPCODE_LO {
0x0: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
0x1: decode MOVCI {
format BasicOp {
0: movf({{ Rd = (getCondCode(FCSR, CC) == 0) ? Rd : Rs; }});
1: movt({{ Rd = (getCondCode(FCSR, CC) == 1) ? Rd : Rs; }});
}
}
format BasicOp {
//Table A-3 Note: "Specific encodings of the rd, rs, and
//rt fields are used to distinguish SLL, SSNOP, and EHB
//functions
0x0: decode RS {
0x0: decode RT_RD {
0x0: decode SA default Nop::nop() {
0x1: ssnop({{;}});
0x3: ehb({{;}});
}
default: sll({{ Rd = Rt.uw << SA; }});
}
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x2: decode RS_SRL {
0x0:decode SRL {
0: srl({{ Rd = Rt.uw >> SA; }});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
//Hardcoded assuming 32-bit ISA, probably need parameter here
1: rotr({{ Rd = (Rt.uw << (32 - SA)) | (Rt.uw >> SA);}});
}
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x3: decode RS {
0x0: sra({{
uint32_t temp = Rt >> SA;
if ( (Rt & 0x80000000) > 0 ) {
uint32_t mask = 0x80000000;
for(int i=0; i < SA; i++) {
temp |= mask;
mask = mask >> 1;
}
}
Rd = temp;
}});
}
0x4: sllv({{ Rd = Rt.uw << Rs<4:0>; }});
0x6: decode SRLV {
0: srlv({{ Rd = Rt.uw >> Rs<4:0>; }});
//Hardcoded assuming 32-bit ISA, probably need parameter here
1: rotrv({{ Rd = (Rt.uw << (32 - Rs<4:0>)) | (Rt.uw >> Rs<4:0>);}});
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x7: srav({{
int shift_amt = Rs<4:0>;
uint32_t temp = Rt >> shift_amt;
if ( (Rt & 0x80000000) > 0 ) {
uint32_t mask = 0x80000000;
for(int i=0; i < shift_amt; i++) {
temp |= mask;
mask = mask >> 1;
}
}
Rd = temp;
}});
}
}
0x1: decode FUNCTION_LO {
//Table A-3 Note: "Specific encodings of the hint field are
//used to distinguish JR from JR.HB and JALR from JALR.HB"
format Jump {
0x0: decode HINT {
0x1: jr_hb({{
Config1Reg config1 = Config1;
if (config1.ca == 0) {
NNPC = Rs;
} else {
panic("MIPS16e not supported\n");
}
}}, IsReturn, ClearHazards);
default: jr({{
Config1Reg config1 = Config1;
if (config1.ca == 0) {
NNPC = Rs;
} else {
panic("MIPS16e not supported\n");
}
}}, IsReturn);
}
0x1: decode HINT {
0x1: jalr_hb({{ Rd = NNPC; NNPC = Rs; }}, IsCall
, ClearHazards);
default: jalr({{ Rd = NNPC; NNPC = Rs; }}, IsCall);
}
}
format BasicOp {
0x2: movz({{ Rd = (Rt == 0) ? Rs : Rd; }});
0x3: movn({{ Rd = (Rt != 0) ? Rs : Rd; }});
#if FULL_SYSTEM
0x4: syscall({{
fault = new SystemCallFault();
}});
#else
0x4: syscall({{ xc->syscall(R2); }},
IsSerializeAfter, IsNonSpeculative);
#endif
0x7: sync({{ ; }}, IsMemBarrier);
0x5: break({{fault = new BreakpointFault();}});
}
}
0x2: decode FUNCTION_LO {
0x0: HiLoRsSelOp::mfhi({{ Rd = HI_RS_SEL; }}, IntMultOp, IsIprAccess);
0x1: HiLoRdSelOp::mthi({{ HI_RD_SEL = Rs; }});
0x2: HiLoRsSelOp::mflo({{ Rd = LO_RS_SEL; }}, IntMultOp, IsIprAccess);
0x3: HiLoRdSelOp::mtlo({{ LO_RD_SEL = Rs; }});
}
0x3: decode FUNCTION_LO {
format HiLoRdSelValOp {
0x0: mult({{ val = Rs.sd * Rt.sd; }}, IntMultOp);
0x1: multu({{ val = Rs.ud * Rt.ud; }}, IntMultOp);
}
format HiLoOp {
0x2: div({{ if (Rt.sd != 0) {
HI0 = Rs.sd % Rt.sd;
LO0 = Rs.sd / Rt.sd;
}
}}, IntDivOp);
0x3: divu({{ if (Rt.ud != 0) {
HI0 = Rs.ud % Rt.ud;
LO0 = Rs.ud / Rt.ud;
}
}}, IntDivOp);
}
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x4: decode HINT {
0x0: decode FUNCTION_LO {
format IntOp {
0x0: add({{ /* More complicated since an ADD can cause an arithmetic overflow exception */
int64_t Src1 = Rs.sw;
int64_t Src2 = Rt.sw;
int64_t temp_result;
#if FULL_SYSTEM
if(((Src1 >> 31) & 1) == 1)
Src1 |= 0x100000000LL;
#endif
temp_result = Src1 + Src2;
#if FULL_SYSTEM
if(((temp_result >> 31) & 1) == ((temp_result >> 32) & 1)){
#endif
Rd.sw = temp_result;
#if FULL_SYSTEM
} else{
fault = new ArithmeticFault();
}
#endif
}});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x1: addu({{ Rd.sw = Rs.sw + Rt.sw;}});
0x2: sub({{
/* More complicated since an SUB can cause an arithmetic overflow exception */
int64_t Src1 = Rs.sw;
int64_t Src2 = Rt.sw;
int64_t temp_result = Src1 - Src2;
#if FULL_SYSTEM
if(((temp_result >> 31) & 1) == ((temp_result>>32) & 1)){
#endif
Rd.sw = temp_result;
#if FULL_SYSTEM
} else{
fault = new ArithmeticFault();
}
#endif
}});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x3: subu({{ Rd.sw = Rs.sw - Rt.sw;}});
0x4: and({{ Rd = Rs & Rt;}});
0x5: or({{ Rd = Rs | Rt;}});
0x6: xor({{ Rd = Rs ^ Rt;}});
0x7: nor({{ Rd = ~(Rs | Rt);}});
}
}
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x5: decode HINT {
0x0: decode FUNCTION_LO {
format IntOp{
0x2: slt({{ Rd.sw = ( Rs.sw < Rt.sw ) ? 1 : 0}});
0x3: sltu({{ Rd.uw = ( Rs.uw < Rt.uw ) ? 1 : 0}});
}
}
}
0x6: decode FUNCTION_LO {
format Trap {
0x0: tge({{ cond = (Rs.sw >= Rt.sw); }});
0x1: tgeu({{ cond = (Rs.uw >= Rt.uw); }});
0x2: tlt({{ cond = (Rs.sw < Rt.sw); }});
0x3: tltu({{ cond = (Rs.uw < Rt.uw); }});
0x4: teq({{ cond = (Rs.sw == Rt.sw); }});
0x6: tne({{ cond = (Rs.sw != Rt.sw); }});
}
}
}
0x1: decode REGIMM_HI {
0x0: decode REGIMM_LO {
format Branch {
0x0: bltz({{ cond = (Rs.sw < 0); }});
0x1: bgez({{ cond = (Rs.sw >= 0); }});
0x2: bltzl({{ cond = (Rs.sw < 0); }}, Likely);
0x3: bgezl({{ cond = (Rs.sw >= 0); }}, Likely);
}
}
0x1: decode REGIMM_LO {
format TrapImm {
0x0: tgei( {{ cond = (Rs.sw >= (int16_t)INTIMM); }});
0x1: tgeiu({{ cond = (Rs.uw >= (uint32_t)((int32_t)((int16_t)INTIMM))); }});
0x2: tlti( {{ cond = (Rs.sw < (int16_t)INTIMM); }});
0x3: tltiu({{ cond = (Rs.uw < (uint32_t)((int32_t)((int16_t)INTIMM))); }});
0x4: teqi( {{ cond = (Rs.sw == (int16_t)INTIMM);}});
0x6: tnei( {{ cond = (Rs.sw != (int16_t)INTIMM);}});
}
}
0x2: decode REGIMM_LO {
format Branch {
0x0: bltzal({{ cond = (Rs.sw < 0); }}, Link);
0x1: decode RS {
0x0: bal ({{ cond = 1; }}, IsCall, Link);
default: bgezal({{ cond = (Rs.sw >= 0); }}, Link);
}
0x2: bltzall({{ cond = (Rs.sw < 0); }}, Link, Likely);
0x3: bgezall({{ cond = (Rs.sw >= 0); }}, Link, Likely);
}
}
0x3: decode REGIMM_LO {
// from Table 5-4 MIPS32 REGIMM Encoding of rt Field (DSP ASE MANUAL)
0x4: DspBranch::bposge32({{ cond = (dspctl<5:0> >= 32); }});
format WarnUnimpl {
0x7: synci();
}
}
}
format Jump {
0x2: j({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2);}});
0x3: jal({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }}, IsCall,
Link);
}
format Branch {
0x4: decode RS_RT {
0x0: b({{ cond = 1; }});
default: beq({{ cond = (Rs.sw == Rt.sw); }});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}
0x5: bne({{ cond = (Rs.sw != Rt.sw); }});
0x6: blez({{ cond = (Rs.sw <= 0); }});
0x7: bgtz({{ cond = (Rs.sw > 0); }});
}
}
0x1: decode OPCODE_LO {
format IntImmOp {
0x0: addi({{
int64_t Src1 = Rs.sw;
int64_t Src2 = imm;
int64_t temp_result;
#if FULL_SYSTEM
if(((Src1 >> 31) & 1) == 1)
Src1 |= 0x100000000LL;
#endif
temp_result = Src1 + Src2;
#if FULL_SYSTEM
if(((temp_result >> 31) & 1) == ((temp_result >> 32) & 1)){
#endif
Rt.sw = temp_result;
#if FULL_SYSTEM
} else{
fault = new ArithmeticFault();
}
#endif
}});
0x1: addiu({{ Rt.sw = Rs.sw + imm;}});
0x2: slti({{ Rt.sw = ( Rs.sw < imm) ? 1 : 0 }});
//Edited to include MIPS AVP Pass/Fail instructions and
//default to the sltiu instruction
0x3: decode RS_RT_INTIMM {
0xabc1: BasicOp::fail({{ exitSimLoop("AVP/SRVP Test Failed"); }});
0xabc2: BasicOp::pass({{ exitSimLoop("AVP/SRVP Test Passed"); }});
default: sltiu({{ Rt.uw = ( Rs.uw < (uint32_t)sextImm ) ? 1 : 0 }});
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x4: andi({{ Rt.sw = Rs.sw & zextImm;}});
0x5: ori({{ Rt.sw = Rs.sw | zextImm;}});
0x6: xori({{ Rt.sw = Rs.sw ^ zextImm;}});
0x7: decode RS {
0x0: lui({{ Rt = imm << 16}});
}
}
}
0x2: decode OPCODE_LO {
//Table A-11 MIPS32 COP0 Encoding of rs Field
0x0: decode RS_MSB {
0x0: decode RS {
format CP0Control {
0x0: mfc0({{
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
Rt = CP0_RD_SEL;
/* Hack for PageMask */
if (RD == 5) {
// PageMask
if(config3.sp == 0 || pageGrain.esp == 0)
Rt &= 0xFFFFE7FF;
}
}});
0x4: mtc0({{
CP0_RD_SEL = Rt;
CauseReg cause = Cause;
IntCtlReg intCtl = IntCtl;
if (RD == 11) {
// Compare
if (cause.ti == 1) {
cause.ti = 0;
int offset = 10; // corresponding to cause.ip0
offset += intCtl.ipti - 2;
replaceBits(cause, offset, offset, 0);
}
}
Cause = cause;
}});
}
format CP0Unimpl {
0x1: dmfc0();
0x5: dmtc0();
default: unknown();
}
format MT_MFTR { // Decode MIPS MT MFTR instruction into sub-instructions
0x8: decode MT_U {
0x0: mftc0({{
data = xc->readRegOtherThread((RT << 3 | SEL) +
Ctrl_Base_DepTag);
}});
0x1: decode SEL {
0x0: mftgpr({{ data = xc->readRegOtherThread(RT); }});
0x1: decode RT {
0x0: mftlo_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_LO0); }});
0x1: mfthi_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_HI0); }});
0x2: mftacx_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_ACX0); }});
0x4: mftlo_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_LO1); }});
0x5: mfthi_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_HI1); }});
0x6: mftacx_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_ACX1); }});
0x8: mftlo_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_LO2); }});
0x9: mfthi_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_HI2); }});
0x10: mftacx_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_ACX2); }});
0x12: mftlo_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_LO3); }});
0x13: mfthi_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_HI3); }});
0x14: mftacx_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_ACX3); }});
0x16: mftdsp({{ data = xc->readRegOtherThread(INTREG_DSP_CONTROL); }});
default: CP0Unimpl::unknown();
}
0x2: decode MT_H {
0x0: mftc1({{ data = xc->readRegOtherThread(RT +
FP_Base_DepTag);
}});
0x1: mfthc1({{ data = xc->readRegOtherThread(RT +
FP_Base_DepTag);
}});
}
0x3: cftc1({{ uint32_t fcsr_val = xc->readRegOtherThread(FLOATREG_FCSR +
FP_Base_DepTag);
switch (RT)
{
case 0:
data = xc->readRegOtherThread(FLOATREG_FIR +
Ctrl_Base_DepTag);
break;
case 25:
data = (fcsr_val & 0xFE000000 >> 24)
| (fcsr_val & 0x00800000 >> 23);
break;
case 26:
data = fcsr_val & 0x0003F07C;
break;
case 28:
data = (fcsr_val & 0x00000F80)
| (fcsr_val & 0x01000000 >> 21)
| (fcsr_val & 0x00000003);
break;
case 31:
data = fcsr_val;
break;
default:
fatal("FP Control Value (%d) Not Valid");
}
}});
default: CP0Unimpl::unknown();
}
}
}
format MT_MTTR { // Decode MIPS MT MTTR instruction into sub-instructions
0xC: decode MT_U {
0x0: mttc0({{ xc->setRegOtherThread((RD << 3 | SEL) + Ctrl_Base_DepTag,
Rt);
}});
0x1: decode SEL {
0x0: mttgpr({{ xc->setRegOtherThread(RD, Rt); }});
0x1: decode RT {
0x0: mttlo_dsp0({{ xc->setRegOtherThread(INTREG_DSP_LO0, Rt);
}});
0x1: mtthi_dsp0({{ xc->setRegOtherThread(INTREG_DSP_HI0,
Rt);
}});
0x2: mttacx_dsp0({{ xc->setRegOtherThread(INTREG_DSP_ACX0,
Rt);
}});
0x4: mttlo_dsp1({{ xc->setRegOtherThread(INTREG_DSP_LO1,
Rt);
}});
0x5: mtthi_dsp1({{ xc->setRegOtherThread(INTREG_DSP_HI1,
Rt);
}});
0x6: mttacx_dsp1({{ xc->setRegOtherThread(INTREG_DSP_ACX1,
Rt);
}});
0x8: mttlo_dsp2({{ xc->setRegOtherThread(INTREG_DSP_LO2,
Rt);
}});
0x9: mtthi_dsp2({{ xc->setRegOtherThread(INTREG_DSP_HI2,
Rt);
}});
0x10: mttacx_dsp2({{ xc->setRegOtherThread(INTREG_DSP_ACX2,
Rt);
}});
0x12: mttlo_dsp3({{ xc->setRegOtherThread(INTREG_DSP_LO3,
Rt);
}});
0x13: mtthi_dsp3({{ xc->setRegOtherThread(INTREG_DSP_HI3,
Rt);
}});
0x14: mttacx_dsp3({{ xc->setRegOtherThread(INTREG_DSP_ACX3, Rt);
}});
0x16: mttdsp({{ xc->setRegOtherThread(INTREG_DSP_CONTROL, Rt); }});
default: CP0Unimpl::unknown();
}
0x2: mttc1({{ uint64_t data = xc->readRegOtherThread(RD +
FP_Base_DepTag);
data = insertBits(data, top_bit, bottom_bit, Rt);
xc->setRegOtherThread(RD + FP_Base_DepTag, data);
}});
0x3: cttc1({{ uint32_t data;
switch (RD)
{
case 25:
data = 0 | (Rt.uw<7:1> << 25) // move 31...25
| (FCSR & 0x01000000) // bit 24
| (FCSR & 0x004FFFFF);// bit 22...0
break;
case 26:
data = 0 | (FCSR & 0xFFFC0000) // move 31...18
| Rt.uw<17:12> << 12 // bit 17...12
| (FCSR & 0x00000F80) << 7// bit 11...7
| Rt.uw<6:2> << 2 // bit 6...2
| (FCSR & 0x00000002); // bit 1...0
break;
case 28:
data = 0 | (FCSR & 0xFE000000) // move 31...25
| Rt.uw<2:2> << 24 // bit 24
| (FCSR & 0x00FFF000) << 23// bit 23...12
| Rt.uw<11:7> << 7 // bit 24
| (FCSR & 0x000007E)
| Rt.uw<1:0>;// bit 22...0
break;
case 31:
data = Rt.uw;
break;
default:
panic("FP Control Value (%d) Not Available. Ignoring Access to"
"Floating Control Status Register", FS);
}
xc->setRegOtherThread(FLOATREG_FCSR + FP_Base_DepTag, data);
}});
default: CP0Unimpl::unknown();
}
}
}
0xB: decode RD {
format MT_Control {
0x0: decode POS {
0x0: decode SEL {
0x1: decode SC {
0x0: dvpe({{
MVPControlReg mvpControl = MVPControl;
VPEConf0Reg vpeConf0 = VPEConf0;
Rt = MVPControl;
if (vpeConf0.mvp == 1)
mvpControl.evp = 0;
MVPControl = mvpControl;
}});
0x1: evpe({{
MVPControlReg mvpControl = MVPControl;
VPEConf0Reg vpeConf0 = VPEConf0;
Rt = MVPControl;
if (vpeConf0.mvp == 1)
mvpControl.evp = 1;
MVPControl = mvpControl;
}});
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
0x1: decode POS {
0xF: decode SEL {
0x1: decode SC {
0x0: dmt({{
VPEControlReg vpeControl = VPEControl;
Rt = vpeControl;
vpeControl.te = 0;
VPEControl = vpeControl;
}});
0x1: emt({{
VPEControlReg vpeControl = VPEControl;
Rt = vpeControl;
vpeControl.te = 1;
VPEControl = vpeControl;
}});
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
default:CP0Unimpl::unknown();
}
}
0xC: decode POS {
0x0: decode SC {
0x0: CP0Control::di({{
StatusReg status = Status;
ConfigReg config = Config;
// Rev 2.0 or beyond?
if (config.ar >= 1) {
Rt = status;
status.ie = 0;
} else {
// Enable this else branch once we
// actually set values for Config on init
fault = new ReservedInstructionFault();
}
Status = status;
}});
0x1: CP0Control::ei({{
StatusReg status = Status;
ConfigReg config = Config;
if (config.ar >= 1) {
Rt = status;
status.ie = 1;
} else {
fault = new ReservedInstructionFault();
}
}});
default:CP0Unimpl::unknown();
}
}
default: CP0Unimpl::unknown();
}
format CP0Control {
0xA: rdpgpr({{
ConfigReg config = Config;
if (config.ar >= 1) {
// Rev 2 of the architecture
panic("Shadow Sets Not Fully Implemented.\n");
} else {
fault = new ReservedInstructionFault();
}
}});
0xE: wrpgpr({{
ConfigReg config = Config;
if (config.ar >= 1) {
// Rev 2 of the architecture
panic("Shadow Sets Not Fully Implemented.\n");
} else {
fault = new ReservedInstructionFault();
}
}});
}
}
//Table A-12 MIPS32 COP0 Encoding of Function Field When rs=CO
0x1: decode FUNCTION {
format CP0Control {
0x18: eret({{
StatusReg status = Status;
ConfigReg config = Config;
SRSCtlReg srsCtl = SRSCtl;
DPRINTF(MipsPRA,"Restoring PC - %x\n",EPC);
if (status.erl == 1) {
status.erl = 0;
NPC = ErrorEPC;
// Need to adjust NNPC, otherwise things break
NNPC = ErrorEPC + sizeof(MachInst);
} else {
NPC = EPC;
// Need to adjust NNPC, otherwise things break
NNPC = EPC + sizeof(MachInst);
status.exl = 0;
if (config.ar >=1 &&
srsCtl.hss > 0 &&
status.bev == 0) {
srsCtl.css = srsCtl.pss;
//xc->setShadowSet(srsCtl.pss);
}
}
LLFlag = 0;
Status = status;
SRSCtl = srsCtl;
}},IsReturn,IsSerializing,IsERET);
0x1F: deret({{
DebugReg debug = Debug;
if (debug.dm == 1) {
debug.dm = 1;
debug.iexi = 0;
NPC = DEPC;
} else {
// Undefined;
}
Debug = debug;
}}, IsReturn, IsSerializing, IsERET);
}
format CP0TLB {
0x01: tlbr({{
MipsISA::PTE *PTEntry = xc->tcBase()->getITBPtr()->getEntry(Index & 0x7FFFFFFF);
if(PTEntry == NULL)
{
fatal("Invalid PTE Entry received on a TLBR instruction\n");
}
/* Setup PageMask */
PageMask = (PTEntry->Mask << 11); // If 1KB pages are not enabled, a read of PageMask must return 0b00 in bits 12, 11
/* Setup EntryHi */
EntryHi = ((PTEntry->VPN << 11) | (PTEntry->asid));
/* Setup Entry Lo0 */
EntryLo0 = ((PTEntry->PFN0 << 6) | (PTEntry->C0 << 3) | (PTEntry->D0 << 2) | (PTEntry->V0 << 1) | PTEntry->G);
/* Setup Entry Lo1 */
EntryLo1 = ((PTEntry->PFN1 << 6) | (PTEntry->C1 << 3) | (PTEntry->D1 << 2) | (PTEntry->V1 << 1) | PTEntry->G);
}}); // Need to hook up to TLB
0x02: tlbwi({{
//Create PTE
MipsISA::PTE NewEntry;
//Write PTE
NewEntry.Mask = (Addr)(PageMask >> 11);
NewEntry.VPN = (Addr)(EntryHi >> 11);
/* PageGrain _ ESP Config3 _ SP */
if(((PageGrain>>28) & 1) == 0 || ((Config3>>4)&1) ==0) {
// If 1KB pages are *NOT* enabled, lowest bits of the
// mask are 0b11 for TLB writes
NewEntry.Mask |= 0x3;
// Reset bits 0 and 1 if 1KB pages are not enabled
NewEntry.VPN &= 0xFFFFFFFC;
}
NewEntry.asid = (uint8_t)(EntryHi & 0xFF);
NewEntry.PFN0 = (Addr)(EntryLo0 >> 6);
NewEntry.PFN1 = (Addr)(EntryLo1 >> 6);
NewEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
NewEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
NewEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
NewEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
NewEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
NewEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
NewEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
/* Now, compute the AddrShiftAmount and OffsetMask - TLB
optimizations */
/* Addr Shift Amount for 1KB or larger pages */
if ((NewEntry.Mask & 0xFFFF) == 3) {
NewEntry.AddrShiftAmount = 12;
} else if ((NewEntry.Mask & 0xFFFF) == 0x0000) {
NewEntry.AddrShiftAmount = 10;
} else if ((NewEntry.Mask & 0xFFFC) == 0x000C) {
NewEntry.AddrShiftAmount = 14;
} else if ((NewEntry.Mask & 0xFFF0) == 0x0030) {
NewEntry.AddrShiftAmount = 16;
} else if ((NewEntry.Mask & 0xFFC0) == 0x00C0) {
NewEntry.AddrShiftAmount = 18;
} else if ((NewEntry.Mask & 0xFF00) == 0x0300) {
NewEntry.AddrShiftAmount = 20;
} else if ((NewEntry.Mask & 0xFC00) == 0x0C00) {
NewEntry.AddrShiftAmount = 22;
} else if ((NewEntry.Mask & 0xF000) == 0x3000) {
NewEntry.AddrShiftAmount = 24;
} else if ((NewEntry.Mask & 0xC000) == 0xC000) {
NewEntry.AddrShiftAmount = 26;
} else if ((NewEntry.Mask & 0x30000) == 0x30000) {
NewEntry.AddrShiftAmount = 28;
} else {
fatal("Invalid Mask Pattern Detected!\n");
}
NewEntry.OffsetMask = ((1<<NewEntry.AddrShiftAmount)-1);
MipsISA::TLB *Ptr = xc->tcBase()->getITBPtr();
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
int SP = 0;
if (bits(config3, config3.sp) == 1 &&
bits(pageGrain, pageGrain.esp) == 1) {
SP = 1;
}
IndexReg index = Index;
Ptr->insertAt(NewEntry, Index & 0x7FFFFFFF, SP);
}});
0x06: tlbwr({{
//Create PTE
MipsISA::PTE NewEntry;
//Write PTE
NewEntry.Mask = (Addr)(PageMask >> 11);
NewEntry.VPN = (Addr)(EntryHi >> 11);
/* PageGrain _ ESP Config3 _ SP */
if (((PageGrain >> 28) & 1) == 0 ||
(( Config3 >> 4) & 1) ==0) {
// If 1KB pages are *NOT* enabled, lowest bits of
// the mask are 0b11 for TLB writes
NewEntry.Mask |= 0x3;
// Reset bits 0 and 1 if 1KB pages are not enabled
NewEntry.VPN &= 0xFFFFFFFC;
}
NewEntry.asid = (uint8_t)(EntryHi & 0xFF);
NewEntry.PFN0 = (Addr)(EntryLo0 >> 6);
NewEntry.PFN1 = (Addr)(EntryLo1 >> 6);
NewEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
NewEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
NewEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
NewEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
NewEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
NewEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
NewEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
/* Now, compute the AddrShiftAmount and OffsetMask -
TLB optimizations */
/* Addr Shift Amount for 1KB or larger pages */
if ((NewEntry.Mask & 0xFFFF) == 3){
NewEntry.AddrShiftAmount = 12;
} else if ((NewEntry.Mask & 0xFFFF) == 0x0000) {
NewEntry.AddrShiftAmount = 10;
} else if ((NewEntry.Mask & 0xFFFC) == 0x000C) {
NewEntry.AddrShiftAmount = 14;
} else if ((NewEntry.Mask & 0xFFF0) == 0x0030) {
NewEntry.AddrShiftAmount = 16;
} else if ((NewEntry.Mask & 0xFFC0) == 0x00C0) {
NewEntry.AddrShiftAmount = 18;
} else if ((NewEntry.Mask & 0xFF00) == 0x0300) {
NewEntry.AddrShiftAmount = 20;
} else if ((NewEntry.Mask & 0xFC00) == 0x0C00) {
NewEntry.AddrShiftAmount = 22;
} else if ((NewEntry.Mask & 0xF000) == 0x3000) {
NewEntry.AddrShiftAmount = 24;
} else if ((NewEntry.Mask & 0xC000) == 0xC000) {
NewEntry.AddrShiftAmount = 26;
} else if ((NewEntry.Mask & 0x30000) == 0x30000) {
NewEntry.AddrShiftAmount = 28;
} else {
fatal("Invalid Mask Pattern Detected!\n");
}
NewEntry.OffsetMask = ((1 << NewEntry.AddrShiftAmount) - 1);
MipsISA::TLB *Ptr = xc->tcBase()->getITBPtr();
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
int SP = 0;
if (bits(config3, config3.sp) == 1 &&
bits(pageGrain, pageGrain.esp) == 1) {
SP = 1;
}
IndexReg index = Index;
Ptr->insertAt(NewEntry, Random, SP);
}});
0x08: tlbp({{
Config3Reg config3 = Config3;
PageGrainReg pageGrain = PageGrain;
EntryHiReg entryHi = EntryHi;
int TLB_Index;
Addr VPN;
if (pageGrain.esp == 1 && config3.sp ==1) {
VPN = EntryHi >> 11;
} else {
// Mask off lower 2 bits
VPN = ((EntryHi >> 11) & 0xFFFFFFFC);
}
TLB_Index = xc->tcBase()->getITBPtr()->
probeEntry(VPN, entryHi.asid);
// Check TLB for entry matching EntryHi
if (TLB_Index != -1) {
Index = TLB_Index;
} else {
// else, set Index = 1 << 31
Index = (1 << 31);
}
}});
}
format CP0Unimpl {
0x20: wait();
}
default: CP0Unimpl::unknown();
}
}
//Table A-13 MIPS32 COP1 Encoding of rs Field
0x1: decode RS_MSB {
0x0: decode RS_HI {
0x0: decode RS_LO {
format CP1Control {
0x0: mfc1 ({{ Rt.uw = Fs.uw; }});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x2: cfc1({{
switch (FS)
{
case 0:
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
Rt = FIR;
break;
case 25:
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
Rt = 0 | (FCSR & 0xFE000000) >> 24 | (FCSR & 0x00800000) >> 23;
break;
case 26:
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
Rt = 0 | (FCSR & 0x0003F07C);
break;
case 28:
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
Rt = 0 | (FCSR & 0x00000F80) | (FCSR & 0x01000000) >> 21 | (FCSR & 0x00000003);
break;
case 31:
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
Rt = FCSR;
break;
default:
warn("FP Control Value (%d) Not Valid");
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}
// warn("FCSR: %x, FS: %d, FIR: %x, Rt: %x\n",FCSR, FS, FIR, Rt);
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}});
0x3: mfhc1({{ Rt.uw = Fs.ud<63:32>;}});
0x4: mtc1 ({{ Fs.uw = Rt.uw; }});
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
0x6: ctc1({{
switch (FS)
{
case 25:
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
FCSR = 0 | (Rt.uw<7:1> << 25) // move 31...25
| (FCSR & 0x01000000) // bit 24
| (FCSR & 0x004FFFFF);// bit 22...0
break;
case 26:
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
FCSR = 0 | (FCSR & 0xFFFC0000) // move 31...18
| Rt.uw<17:12> << 12 // bit 17...12
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
| (FCSR & 0x00000F80) << 7// bit 11...7
| Rt.uw<6:2> << 2 // bit 6...2
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
| (FCSR & 0x00000002); // bit 1...0
break;
case 28:
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
FCSR = 0 | (FCSR & 0xFE000000) // move 31...25
| Rt.uw<2:2> << 24 // bit 24
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
| (FCSR & 0x00FFF000) << 23// bit 23...12
| Rt.uw<11:7> << 7 // bit 24
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
| (FCSR & 0x000007E)
| Rt.uw<1:0>;// bit 22...0
break;
case 31:
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
FCSR = Rt.uw;
break;
default:
panic("FP Control Value (%d) Not Available. Ignoring Access to"
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
"Floating Control Status Register", FS);
}
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
}});
0x7: mthc1({{
uint64_t fs_hi = Rt.uw;
uint64_t fs_lo = Fs.ud & 0x0FFFFFFFF;
Fs.ud = (fs_hi << 32) | fs_lo;
}});
}
format CP1Unimpl {
0x1: dmfc1();
0x5: dmtc1();
}
}
0x1:
decode RS_LO {
0x0:
decode ND {
format Branch {
0x0: decode TF {
0x0: bc1f({{ cond = getCondCode(FCSR, BRANCH_CC) == 0;
}});
0x1: bc1t({{ cond = getCondCode(FCSR, BRANCH_CC) == 1;
}});
}
0x1: decode TF {
0x0: bc1fl({{ cond = getCondCode(FCSR, BRANCH_CC) == 0;
}}, Likely);
0x1: bc1tl({{ cond = getCondCode(FCSR, BRANCH_CC) == 1;
}}, Likely);
}
}
}
format CP1Unimpl {
0x1: bc1any2();
0x2: bc1any4();
default: unknown();
}
}
}
0x1: decode RS_HI {
0x2: decode RS_LO {
//Table A-14 MIPS32 COP1 Encoding of Function Field When rs=S
//(( single-precision floating point))
0x0: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format FloatOp {
0x0: add_s({{ Fd.sf = Fs.sf + Ft.sf;}});
0x1: sub_s({{ Fd.sf = Fs.sf - Ft.sf;}});
0x2: mul_s({{ Fd.sf = Fs.sf * Ft.sf;}});
0x3: div_s({{ Fd.sf = Fs.sf / Ft.sf;}});
0x4: sqrt_s({{ Fd.sf = sqrt(Fs.sf);}});
0x5: abs_s({{ Fd.sf = fabs(Fs.sf);}});
0x7: neg_s({{ Fd.sf = -Fs.sf;}});
}
0x6: BasicOp::mov_s({{ Fd.sf = Fs.sf;}});
}
0x1: decode FUNCTION_LO {
format FloatConvertOp {
0x0: round_l_s({{ val = Fs.sf; }}, ToLong,
Round);
0x1: trunc_l_s({{ val = Fs.sf; }}, ToLong,
Trunc);
0x2: ceil_l_s({{ val = Fs.sf; }}, ToLong,
Ceil);
0x3: floor_l_s({{ val = Fs.sf; }}, ToLong,
Floor);
0x4: round_w_s({{ val = Fs.sf; }}, ToWord,
Round);
0x5: trunc_w_s({{ val = Fs.sf; }}, ToWord,
Trunc);
0x6: ceil_w_s({{ val = Fs.sf; }}, ToWord,
Ceil);
0x7: floor_w_s({{ val = Fs.sf; }}, ToWord,
Floor);
}
}
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format BasicOp {
0x0: movf_s({{ Fd = (getCondCode(FCSR,CC) == 0) ? Fs : Fd; }});
0x1: movt_s({{ Fd = (getCondCode(FCSR,CC) == 1) ? Fs : Fd; }});
}
}
format BasicOp {
0x2: movz_s({{ Fd = (Rt == 0) ? Fs : Fd; }});
0x3: movn_s({{ Fd = (Rt != 0) ? Fs : Fd; }});
}
format FloatOp {
0x5: recip_s({{ Fd = 1 / Fs; }});
0x6: rsqrt_s({{ Fd = 1 / sqrt(Fs);}});
}
format CP1Unimpl {
default: unknown();
}
}
0x3: CP1Unimpl::unknown();
0x4: decode FUNCTION_LO {
format FloatConvertOp {
0x1: cvt_d_s({{ val = Fs.sf; }}, ToDouble);
0x4: cvt_w_s({{ val = Fs.sf; }}, ToWord);
0x5: cvt_l_s({{ val = Fs.sf; }}, ToLong);
}
0x6: FloatOp::cvt_ps_s({{
Fd.ud = (uint64_t) Fs.uw << 32 |
(uint64_t) Ft.uw;
}});
format CP1Unimpl {
default: unknown();
}
}
0x5: CP1Unimpl::unknown();
0x6: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_f_s({{ cond = 0; }}, SinglePrecision,
UnorderedFalse);
0x1: c_un_s({{ cond = 0; }}, SinglePrecision,
UnorderedTrue);
0x2: c_eq_s({{ cond = (Fs.sf == Ft.sf); }},
UnorderedFalse);
0x3: c_ueq_s({{ cond = (Fs.sf == Ft.sf); }},
UnorderedTrue);
0x4: c_olt_s({{ cond = (Fs.sf < Ft.sf); }},
UnorderedFalse);
0x5: c_ult_s({{ cond = (Fs.sf < Ft.sf); }},
UnorderedTrue);
0x6: c_ole_s({{ cond = (Fs.sf <= Ft.sf); }},
UnorderedFalse);
0x7: c_ule_s({{ cond = (Fs.sf <= Ft.sf); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_sf_s({{ cond = 0; }}, SinglePrecision,
UnorderedFalse, QnanException);
0x1: c_ngle_s({{ cond = 0; }}, SinglePrecision,
UnorderedTrue, QnanException);
0x2: c_seq_s({{ cond = (Fs.sf == Ft.sf);}},
UnorderedFalse, QnanException);
0x3: c_ngl_s({{ cond = (Fs.sf == Ft.sf); }},
UnorderedTrue, QnanException);
0x4: c_lt_s({{ cond = (Fs.sf < Ft.sf); }},
UnorderedFalse, QnanException);
0x5: c_nge_s({{ cond = (Fs.sf < Ft.sf); }},
UnorderedTrue, QnanException);
0x6: c_le_s({{ cond = (Fs.sf <= Ft.sf); }},
UnorderedFalse, QnanException);
0x7: c_ngt_s({{ cond = (Fs.sf <= Ft.sf); }},
UnorderedTrue, QnanException);
}
}
}
//Table A-15 MIPS32 COP1 Encoding of Function Field When rs=D
0x1: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format FloatOp {
0x0: add_d({{ Fd.df = Fs.df + Ft.df; }});
0x1: sub_d({{ Fd.df = Fs.df - Ft.df; }});
0x2: mul_d({{ Fd.df = Fs.df * Ft.df; }});
0x3: div_d({{ Fd.df = Fs.df / Ft.df; }});
0x4: sqrt_d({{ Fd.df = sqrt(Fs.df); }});
0x5: abs_d({{ Fd.df = fabs(Fs.df); }});
0x7: neg_d({{ Fd.df = -1 * Fs.df; }});
}
0x6: BasicOp::mov_d({{ Fd.df = Fs.df; }});
}
0x1: decode FUNCTION_LO {
format FloatConvertOp {
0x0: round_l_d({{ val = Fs.df; }}, ToLong,
Round);
0x1: trunc_l_d({{ val = Fs.df; }}, ToLong,
Trunc);
0x2: ceil_l_d({{ val = Fs.df; }}, ToLong,
Ceil);
0x3: floor_l_d({{ val = Fs.df; }}, ToLong,
Floor);
0x4: round_w_d({{ val = Fs.df; }}, ToWord,
Round);
0x5: trunc_w_d({{ val = Fs.df; }}, ToWord,
Trunc);
0x6: ceil_w_d({{ val = Fs.df; }}, ToWord,
Ceil);
0x7: floor_w_d({{ val = Fs.df; }}, ToWord,
Floor);
}
}
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format BasicOp {
0x0: movf_d({{ Fd.df = (getCondCode(FCSR,CC) == 0) ?
Fs.df : Fd.df;
}});
0x1: movt_d({{ Fd.df = (getCondCode(FCSR,CC) == 1) ?
Fs.df : Fd.df;
}});
}
}
format BasicOp {
0x2: movz_d({{ Fd.df = (Rt == 0) ? Fs.df : Fd.df; }});
0x3: movn_d({{ Fd.df = (Rt != 0) ? Fs.df : Fd.df; }});
}
format FloatOp {
0x5: recip_d({{ Fd.df = 1 / Fs.df }});
0x6: rsqrt_d({{ Fd.df = 1 / sqrt(Fs.df) }});
}
format CP1Unimpl {
default: unknown();
}
}
0x4: decode FUNCTION_LO {
format FloatConvertOp {
0x0: cvt_s_d({{ val = Fs.df; }}, ToSingle);
0x4: cvt_w_d({{ val = Fs.df; }}, ToWord);
0x5: cvt_l_d({{ val = Fs.df; }}, ToLong);
}
default: CP1Unimpl::unknown();
}
0x6: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_f_d({{ cond = 0; }}, DoublePrecision,
UnorderedFalse);
0x1: c_un_d({{ cond = 0; }}, DoublePrecision,
UnorderedTrue);
0x2: c_eq_d({{ cond = (Fs.df == Ft.df); }},
UnorderedFalse);
0x3: c_ueq_d({{ cond = (Fs.df == Ft.df); }},
UnorderedTrue);
0x4: c_olt_d({{ cond = (Fs.df < Ft.df); }},
UnorderedFalse);
0x5: c_ult_d({{ cond = (Fs.df < Ft.df); }},
UnorderedTrue);
0x6: c_ole_d({{ cond = (Fs.df <= Ft.df); }},
UnorderedFalse);
0x7: c_ule_d({{ cond = (Fs.df <= Ft.df); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatCompareOp {
0x0: c_sf_d({{ cond = 0; }}, DoublePrecision,
UnorderedFalse, QnanException);
0x1: c_ngle_d({{ cond = 0; }}, DoublePrecision,
UnorderedTrue, QnanException);
0x2: c_seq_d({{ cond = (Fs.df == Ft.df); }},
UnorderedFalse, QnanException);
0x3: c_ngl_d({{ cond = (Fs.df == Ft.df); }},
UnorderedTrue, QnanException);
0x4: c_lt_d({{ cond = (Fs.df < Ft.df); }},
UnorderedFalse, QnanException);
0x5: c_nge_d({{ cond = (Fs.df < Ft.df); }},
UnorderedTrue, QnanException);
0x6: c_le_d({{ cond = (Fs.df <= Ft.df); }},
UnorderedFalse, QnanException);
0x7: c_ngt_d({{ cond = (Fs.df <= Ft.df); }},
UnorderedTrue, QnanException);
}
}
default: CP1Unimpl::unknown();
}
0x2: CP1Unimpl::unknown();
0x3: CP1Unimpl::unknown();
0x7: CP1Unimpl::unknown();
//Table A-16 MIPS32 COP1 Encoding of Function Field When rs=W
0x4: decode FUNCTION {
format FloatConvertOp {
0x20: cvt_s_w({{ val = Fs.uw; }}, ToSingle);
0x21: cvt_d_w({{ val = Fs.uw; }}, ToDouble);
0x26: CP1Unimpl::cvt_ps_w();
}
default: CP1Unimpl::unknown();
}
//Table A-16 MIPS32 COP1 Encoding of Function Field When rs=L1
//Note: "1. Format type L is legal only if 64-bit floating point operations
//are enabled."
0x5: decode FUNCTION_HI {
format FloatConvertOp {
0x20: cvt_s_l({{ val = Fs.ud; }}, ToSingle);
0x21: cvt_d_l({{ val = Fs.ud; }}, ToDouble);
0x26: CP1Unimpl::cvt_ps_l();
}
default: CP1Unimpl::unknown();
}
//Table A-17 MIPS64 COP1 Encoding of Function Field When rs=PS1
//Note: "1. Format type PS is legal only if 64-bit floating point operations
//are enabled. "
0x6: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format Float64Op {
0x0: add_ps({{
Fd1.sf = Fs1.sf + Ft2.sf;
Fd2.sf = Fs2.sf + Ft2.sf;
}});
0x1: sub_ps({{
Fd1.sf = Fs1.sf - Ft2.sf;
Fd2.sf = Fs2.sf - Ft2.sf;
}});
0x2: mul_ps({{
Fd1.sf = Fs1.sf * Ft2.sf;
Fd2.sf = Fs2.sf * Ft2.sf;
}});
0x5: abs_ps({{
Fd1.sf = fabs(Fs1.sf);
Fd2.sf = fabs(Fs2.sf);
}});
0x6: mov_ps({{
Fd1.sf = Fs1.sf;
Fd2.sf = Fs2.sf;
}});
0x7: neg_ps({{
Fd1.sf = -(Fs1.sf);
Fd2.sf = -(Fs2.sf);
}});
default: CP1Unimpl::unknown();
}
}
0x1: CP1Unimpl::unknown();
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format Float64Op {
0x0: movf_ps({{
Fd1 = (getCondCode(FCSR, CC) == 0) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC+1) == 0) ?
Fs2 : Fd2;
}});
0x1: movt_ps({{
Fd2 = (getCondCode(FCSR, CC) == 1) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC+1) == 1) ?
Fs2 : Fd2;
}});
}
}
format Float64Op {
0x2: movz_ps({{
Fd1 = (getCondCode(FCSR, CC) == 0) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC) == 0) ?
Fs2 : Fd2;
}});
0x3: movn_ps({{
Fd1 = (getCondCode(FCSR, CC) == 1) ?
Fs1 : Fd1;
Fd2 = (getCondCode(FCSR, CC) == 1) ?
Fs2 : Fd2;
}});
}
default: CP1Unimpl::unknown();
}
0x3: CP1Unimpl::unknown();
0x4: decode FUNCTION_LO {
0x0: FloatOp::cvt_s_pu({{ Fd.sf = Fs2.sf; }});
default: CP1Unimpl::unknown();
}
0x5: decode FUNCTION_LO {
0x0: FloatOp::cvt_s_pl({{ Fd.sf = Fs1.sf; }});
format Float64Op {
0x4: pll({{ Fd.ud = (uint64_t) Fs1.uw << 32 |
Ft1.uw;
}});
0x5: plu({{ Fd.ud = (uint64_t) Fs1.uw << 32 |
Ft2.uw;
}});
0x6: pul({{ Fd.ud = (uint64_t) Fs2.uw << 32 |
Ft1.uw;
}});
0x7: puu({{ Fd.ud = (uint64_t) Fs2.uw << 32 |
Ft2.uw;
}});
}
default: CP1Unimpl::unknown();
}
0x6: decode FUNCTION_LO {
format FloatPSCompareOp {
0x0: c_f_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedFalse);
0x1: c_un_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedTrue);
0x2: c_eq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
{{ cond2 = (Fs2.sf == Ft2.sf); }},
UnorderedFalse);
0x3: c_ueq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
{{ cond2 = (Fs2.sf == Ft2.sf); }},
UnorderedTrue);
0x4: c_olt_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
{{ cond2 = (Fs2.sf < Ft2.sf); }},
UnorderedFalse);
0x5: c_ult_ps({{ cond1 = (Fs.sf < Ft.sf); }},
{{ cond2 = (Fs2.sf < Ft2.sf); }},
UnorderedTrue);
0x6: c_ole_ps({{ cond1 = (Fs.sf <= Ft.sf); }},
{{ cond2 = (Fs2.sf <= Ft2.sf); }},
UnorderedFalse);
0x7: c_ule_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
{{ cond2 = (Fs2.sf <= Ft2.sf); }},
UnorderedTrue);
}
}
0x7: decode FUNCTION_LO {
format FloatPSCompareOp {
0x0: c_sf_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
UnorderedFalse, QnanException);
0x1: c_ngle_ps({{ cond1 = 0; }},
{{ cond2 = 0; }},
UnorderedTrue, QnanException);
0x2: c_seq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
{{ cond2 = (Fs2.sf == Ft2.sf); }},
UnorderedFalse, QnanException);
0x3: c_ngl_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
{{ cond2 = (Fs2.sf == Ft2.sf); }},
UnorderedTrue, QnanException);
0x4: c_lt_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
{{ cond2 = (Fs2.sf < Ft2.sf); }},
UnorderedFalse, QnanException);
0x5: c_nge_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
{{ cond2 = (Fs2.sf < Ft2.sf); }},
UnorderedTrue, QnanException);
0x6: c_le_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
{{ cond2 = (Fs2.sf <= Ft2.sf); }},
UnorderedFalse, QnanException);
0x7: c_ngt_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
{{ cond2 = (Fs2.sf <= Ft2.sf); }},
UnorderedTrue, QnanException);
}
}
}
}
default: CP1Unimpl::unknown();
}
}
//Table A-19 MIPS32 COP2 Encoding of rs Field
0x2: decode RS_MSB {
format CP2Unimpl {
0x0: decode RS_HI {
0x0: decode RS_LO {
0x0: mfc2();
0x2: cfc2();
0x3: mfhc2();
0x4: mtc2();
0x6: ctc2();
0x7: mftc2();
default: unknown();
}
0x1: decode ND {
0x0: decode TF {
0x0: bc2f();
0x1: bc2t();
default: unknown();
}
0x1: decode TF {
0x0: bc2fl();
0x1: bc2tl();
default: unknown();
}
default: unknown();
}
default: unknown();
}
default: unknown();
}
}
//Table A-20 MIPS64 COP1X Encoding of Function Field 1
//Note: "COP1X instructions are legal only if 64-bit floating point
//operations are enabled."
0x3: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format LoadIndexedMemory {
0x0: lwxc1({{ Fd.uw = Mem.uw;}});
0x1: ldxc1({{ Fd.ud = Mem.ud;}});
0x5: luxc1({{ Fd.ud = Mem.ud;}},
{{ EA = (Rs + Rt) & ~7; }});
}
}
0x1: decode FUNCTION_LO {
format StoreIndexedMemory {
0x0: swxc1({{ Mem.uw = Fs.uw;}});
0x1: sdxc1({{ Mem.ud = Fs.ud;}});
0x5: suxc1({{ Mem.ud = Fs.ud;}},
{{ EA = (Rs + Rt) & ~7; }});
}
0x7: Prefetch::prefx({{ EA = Rs + Rt; }});
}
0x3: decode FUNCTION_LO {
0x6: Float64Op::alnv_ps({{ if (Rs<2:0> == 0) {
Fd.ud = Fs.ud;
} else if (Rs<2:0> == 4) {
#if BYTE_ORDER == BIG_ENDIAN
Fd.ud = Fs.ud<31:0> << 32 |
Ft.ud<63:32>;
#elif BYTE_ORDER == LITTLE_ENDIAN
Fd.ud = Ft.ud<31:0> << 32 |
Fs.ud<63:32>;
#endif
} else {
Fd.ud = Fd.ud;
}
}});
}
format FloatAccOp {
0x4: decode FUNCTION_LO {
0x0: madd_s({{ Fd.sf = (Fs.sf * Ft.sf) + Fr.sf; }});
0x1: madd_d({{ Fd.df = (Fs.df * Ft.df) + Fr.df; }});
0x6: madd_ps({{
Fd1.sf = (Fs1.df * Ft1.df) + Fr1.df;
Fd2.sf = (Fs2.df * Ft2.df) + Fr2.df;
}});
}
0x5: decode FUNCTION_LO {
0x0: msub_s({{ Fd.sf = (Fs.sf * Ft.sf) - Fr.sf; }});
0x1: msub_d({{ Fd.df = (Fs.df * Ft.df) - Fr.df; }});
0x6: msub_ps({{
Fd1.sf = (Fs1.df * Ft1.df) - Fr1.df;
Fd2.sf = (Fs2.df * Ft2.df) - Fr2.df;
}});
}
0x6: decode FUNCTION_LO {
0x0: nmadd_s({{ Fd.sf = (-1 * Fs.sf * Ft.sf) - Fr.sf; }});
0x1: nmadd_d({{ Fd.df = (-1 * Fs.df * Ft.df) + Fr.df; }});
0x6: nmadd_ps({{
Fd1.sf = -((Fs1.df * Ft1.df) + Fr1.df);
Fd2.sf = -((Fs2.df * Ft2.df) + Fr2.df);
}});
}
0x7: decode FUNCTION_LO {
0x0: nmsub_s({{ Fd.sf = (-1 * Fs.sf * Ft.sf) - Fr.sf; }});
0x1: nmsub_d({{ Fd.df = (-1 * Fs.df * Ft.df) - Fr.df; }});
0x6: nmsub_ps({{
Fd1.sf = -((Fs1.df * Ft1.df) - Fr1.df);
Fd2.sf = -((Fs2.df * Ft2.df) - Fr2.df);
}});
}
}
}
format Branch {
0x4: beql({{ cond = (Rs.sw == Rt.sw); }}, Likely);
0x5: bnel({{ cond = (Rs.sw != Rt.sw); }}, Likely);
0x6: blezl({{ cond = (Rs.sw <= 0); }}, Likely);
0x7: bgtzl({{ cond = (Rs.sw > 0); }}, Likely);
}
}
0x3: decode OPCODE_LO {
//Table A-5 MIPS32 SPECIAL2 Encoding of Function Field
0x4: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
0x2: IntOp::mul({{ int64_t temp1 = Rs.sd * Rt.sd;
Rd.sw = temp1<31:0>;
}}, IntMultOp);
format HiLoRdSelValOp {
0x0: madd({{ val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) + (Rs.sd * Rt.sd); }}, IntMultOp);
0x1: maddu({{ val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) + (Rs.ud * Rt.ud); }}, IntMultOp);
0x4: msub({{ val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) - (Rs.sd * Rt.sd); }}, IntMultOp);
0x5: msubu({{ val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) - (Rs.ud * Rt.ud); }}, IntMultOp);
}
}
0x4: decode FUNCTION_LO {
format BasicOp {
0x0: clz({{ int cnt = 32;
for (int idx = 31; idx >= 0; idx--) {
if( Rs<idx:idx> == 1) {
cnt = 31 - idx;
break;
}
}
Rd.uw = cnt;
}});
0x1: clo({{ int cnt = 32;
for (int idx = 31; idx >= 0; idx--) {
if( Rs<idx:idx> == 0) {
cnt = 31 - idx;
break;
}
}
Rd.uw = cnt;
}});
}
}
0x7: decode FUNCTION_LO {
0x7: FailUnimpl::sdbbp();
}
}
//Table A-6 MIPS32 SPECIAL3 Encoding of Function Field for Release 2
//of the Architecture
0x7: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format BasicOp {
0x0: ext({{ Rt.uw = bits(Rs.uw, MSB+LSB, LSB); }});
0x4: ins({{ Rt.uw = bits(Rt.uw, 31, MSB+1) << (MSB+1) |
bits(Rs.uw, MSB-LSB, 0) << LSB |
bits(Rt.uw, LSB-1, 0);
}});
}
}
0x1: decode FUNCTION_LO {
format MT_Control {
0x0: fork({{ forkThread(xc->tcBase(), fault, RD, Rs, Rt); }},
UserMode);
0x1: yield({{ Rd.sw = yieldThread(xc->tcBase(), fault, Rs.sw, YQMask); }},
UserMode);
}
//Table 5-9 MIPS32 LX Encoding of the op Field (DSP ASE MANUAL)
0x2: decode OP_HI {
0x0: decode OP_LO {
format LoadIndexedMemory {
0x0: lwx({{ Rd.sw = Mem.sw; }});
0x4: lhx({{ Rd.sw = Mem.sh; }});
0x6: lbux({{ Rd.uw = Mem.ub; }});
}
}
}
0x4: DspIntOp::insv({{ int pos = dspctl<5:0>;
int size = dspctl<12:7>-1;
Rt.uw = insertBits( Rt.uw, pos+size, pos, Rs.uw<size:0> ); }});
}
0x2: decode FUNCTION_LO {
//Table 5-5 MIPS32 ADDU.QB Encoding of the op Field (DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: addu_qb({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl ); }});
0x1: subu_qb({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl ); }});
0x4: addu_s_qb({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_QB,
SATURATE, UNSIGNED, &dspctl ); }});
0x5: subu_s_qb({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_QB,
SATURATE, UNSIGNED, &dspctl ); }});
0x6: muleu_s_ph_qbl({{ Rd.uw = dspMuleu( Rs.uw, Rt.uw,
MODE_L, &dspctl ); }}, IntMultOp);
0x7: muleu_s_ph_qbr({{ Rd.uw = dspMuleu( Rs.uw, Rt.uw,
MODE_R, &dspctl ); }}, IntMultOp);
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: addu_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
NOSATURATE, UNSIGNED, &dspctl ); }});
0x1: subu_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
NOSATURATE, UNSIGNED, &dspctl ); }});
0x2: addq_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl ); }});
0x3: subq_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl ); }});
0x4: addu_s_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
SATURATE, UNSIGNED, &dspctl ); }});
0x5: subu_s_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
SATURATE, UNSIGNED, &dspctl ); }});
0x6: addq_s_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl ); }});
0x7: subq_s_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl ); }});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x0: addsc({{ int64_t dresult;
dresult = Rs.ud + Rt.ud;
Rd.sw = dresult<31:0>;
dspctl = insertBits( dspctl, 13, 13,
dresult<32:32> ); }});
0x1: addwc({{ int64_t dresult;
dresult = Rs.sd + Rt.sd + dspctl<13:13>;
Rd.sw = dresult<31:0>;
if( dresult<32:32> != dresult<31:31> )
dspctl = insertBits( dspctl, 20, 20, 1 ); }});
0x2: modsub({{ Rd.sw = (Rs.sw == 0) ? Rt.sw<23:8> : Rs.sw - Rt.sw<7:0>; }});
0x4: raddu_w_qb({{ Rd.uw = Rs.uw<31:24> + Rs.uw<23:16> +
Rs.uw<15:8> + Rs.uw<7:0>; }});
0x6: addq_s_w({{ Rd.sw = dspAdd( Rs.sw, Rt.sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl ); }});
0x7: subq_s_w({{ Rd.sw = dspSub( Rs.sw, Rt.sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl ); }});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x4: muleq_s_w_phl({{ Rd.sw = dspMuleq( Rs.sw, Rt.sw,
MODE_L, &dspctl ); }}, IntMultOp);
0x5: muleq_s_w_phr({{ Rd.sw = dspMuleq( Rs.sw, Rt.sw,
MODE_R, &dspctl ); }}, IntMultOp);
0x6: mulq_s_ph({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_PH,
SATURATE, NOROUND, &dspctl ); }}, IntMultOp);
0x7: mulq_rs_ph({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_PH,
SATURATE, ROUND, &dspctl ); }}, IntMultOp);
}
}
}
//Table 5-6 MIPS32 CMPU_EQ_QB Encoding of the op Field (DSP ASE MANUAL)
0x1: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: cmpu_eq_qb({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_QB,
UNSIGNED, CMP_EQ, &dspctl ); }});
0x1: cmpu_lt_qb({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_QB,
UNSIGNED, CMP_LT, &dspctl ); }});
0x2: cmpu_le_qb({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_QB,
UNSIGNED, CMP_LE, &dspctl ); }});
0x3: pick_qb({{ Rd.uw = dspPick( Rs.uw, Rt.uw,
SIMD_FMT_QB, &dspctl ); }});
0x4: cmpgu_eq_qb({{ Rd.uw = dspCmpg( Rs.uw, Rt.uw, SIMD_FMT_QB,
UNSIGNED, CMP_EQ ); }});
0x5: cmpgu_lt_qb({{ Rd.uw = dspCmpg( Rs.uw, Rt.uw, SIMD_FMT_QB,
UNSIGNED, CMP_LT ); }});
0x6: cmpgu_le_qb({{ Rd.uw = dspCmpg( Rs.uw, Rt.uw, SIMD_FMT_QB,
UNSIGNED, CMP_LE ); }});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: cmp_eq_ph({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_PH,
SIGNED, CMP_EQ, &dspctl ); }});
0x1: cmp_lt_ph({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_PH,
SIGNED, CMP_LT, &dspctl ); }});
0x2: cmp_le_ph({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_PH,
SIGNED, CMP_LE, &dspctl ); }});
0x3: pick_ph({{ Rd.uw = dspPick( Rs.uw, Rt.uw,
SIMD_FMT_PH, &dspctl ); }});
0x4: precrq_qb_ph({{ Rd.uw = Rs.uw<31:24> << 24 |
Rs.uw<15:8> << 16 |
Rt.uw<31:24> << 8 |
Rt.uw<15:8>; }});
0x5: precr_qb_ph({{ Rd.uw = Rs.uw<23:16> << 24 |
Rs.uw<7:0> << 16 |
Rt.uw<23:16> << 8 |
Rt.uw<7:0>; }});
0x6: packrl_ph({{ Rd.uw = dspPack( Rs.uw, Rt.uw,
SIMD_FMT_PH ); }});
0x7: precrqu_s_qb_ph({{ Rd.uw = dspPrecrqu( Rs.uw, Rt.uw, &dspctl ); }});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x4: precrq_ph_w({{ Rd.uw = Rs.uw<31:16> << 16 | Rt.uw<31:16>; }});
0x5: precrq_rs_ph_w({{ Rd.uw = dspPrecrq( Rs.uw, Rt.uw, SIMD_FMT_W, &dspctl ); }});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x0: cmpgdu_eq_qb({{ Rd.uw = dspCmpgd( Rs.uw, Rt.uw, SIMD_FMT_QB,
UNSIGNED, CMP_EQ, &dspctl ); }});
0x1: cmpgdu_lt_qb({{ Rd.uw = dspCmpgd( Rs.uw, Rt.uw, SIMD_FMT_QB,
UNSIGNED, CMP_LT, &dspctl ); }});
0x2: cmpgdu_le_qb({{ Rd.uw = dspCmpgd( Rs.uw, Rt.uw, SIMD_FMT_QB,
UNSIGNED, CMP_LE, &dspctl ); }});
0x6: precr_sra_ph_w({{ Rt.uw = dspPrecrSra( Rt.uw, Rs.uw, RD,
SIMD_FMT_W, NOROUND ); }});
0x7: precr_sra_r_ph_w({{ Rt.uw = dspPrecrSra( Rt.uw, Rs.uw, RD,
SIMD_FMT_W, ROUND ); }});
}
}
}
//Table 5-7 MIPS32 ABSQ_S.PH Encoding of the op Field (DSP ASE MANUAL)
0x2: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x1: absq_s_qb({{ Rd.sw = dspAbs( Rt.sw, SIMD_FMT_QB, &dspctl );}});
0x2: repl_qb({{ Rd.uw = RS_RT<7:0> << 24 |
RS_RT<7:0> << 16 |
RS_RT<7:0> << 8 |
RS_RT<7:0>; }});
0x3: replv_qb({{ Rd.sw = Rt.uw<7:0> << 24 |
Rt.uw<7:0> << 16 |
Rt.uw<7:0> << 8 |
Rt.uw<7:0>; }});
0x4: precequ_ph_qbl({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_L ); }});
0x5: precequ_ph_qbr({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_R ); }});
0x6: precequ_ph_qbla({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_LA ); }});
0x7: precequ_ph_qbra({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, SIGNED, MODE_RA ); }});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x1: absq_s_ph({{ Rd.sw = dspAbs( Rt.sw, SIMD_FMT_PH, &dspctl ); }});
0x2: repl_ph({{ Rd.uw = (sext<10>(RS_RT))<15:0> << 16 |
(sext<10>(RS_RT))<15:0>; }});
0x3: replv_ph({{ Rd.uw = Rt.uw<15:0> << 16 |
Rt.uw<15:0>; }});
0x4: preceq_w_phl({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_PH, SIGNED,
SIMD_FMT_W, SIGNED, MODE_L ); }});
0x5: preceq_w_phr({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_PH, SIGNED,
SIMD_FMT_W, SIGNED, MODE_R ); }});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x1: absq_s_w({{ Rd.sw = dspAbs( Rt.sw, SIMD_FMT_W, &dspctl ); }});
}
}
0x3: decode OP_LO {
0x3: IntOp::bitrev({{ Rd.uw = bitrev( Rt.uw<15:0> ); }});
format DspIntOp {
0x4: preceu_ph_qbl({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, UNSIGNED, MODE_L ); }});
0x5: preceu_ph_qbr({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, UNSIGNED, MODE_R ); }});
0x6: preceu_ph_qbla({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, UNSIGNED, MODE_LA ); }});
0x7: preceu_ph_qbra({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
SIMD_FMT_PH, UNSIGNED, MODE_RA ); }});
}
}
}
//Table 5-8 MIPS32 SHLL.QB Encoding of the op Field (DSP ASE MANUAL)
0x3: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: shll_qb({{ Rd.sw = dspShll( Rt.sw, RS, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl ); }});
0x1: shrl_qb({{ Rd.sw = dspShrl( Rt.sw, RS, SIMD_FMT_QB,
UNSIGNED ); }});
0x2: shllv_qb({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_QB,
NOSATURATE, UNSIGNED, &dspctl ); }});
0x3: shrlv_qb({{ Rd.sw = dspShrl( Rt.sw, Rs.sw, SIMD_FMT_QB,
UNSIGNED ); }});
0x4: shra_qb({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_QB,
NOROUND, SIGNED, &dspctl ); }});
0x5: shra_r_qb({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_QB,
ROUND, SIGNED, &dspctl ); }});
0x6: shrav_qb({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_QB,
NOROUND, SIGNED, &dspctl ); }});
0x7: shrav_r_qb({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_QB,
ROUND, SIGNED, &dspctl ); }});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: shll_ph({{ Rd.uw = dspShll( Rt.uw, RS, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl ); }});
0x1: shra_ph({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_PH,
NOROUND, SIGNED, &dspctl ); }});
0x2: shllv_ph({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_PH,
NOSATURATE, SIGNED, &dspctl ); }});
0x3: shrav_ph({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_PH,
NOROUND, SIGNED, &dspctl ); }});
0x4: shll_s_ph({{ Rd.sw = dspShll( Rt.sw, RS, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl ); }});
0x5: shra_r_ph({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_PH,
ROUND, SIGNED, &dspctl ); }});
0x6: shllv_s_ph({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_PH,
SATURATE, SIGNED, &dspctl ); }});
0x7: shrav_r_ph({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_PH,
ROUND, SIGNED, &dspctl ); }});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x4: shll_s_w({{ Rd.sw = dspShll( Rt.sw, RS, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl ); }});
0x5: shra_r_w({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_W,
ROUND, SIGNED, &dspctl ); }});
0x6: shllv_s_w({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_W,
SATURATE, SIGNED, &dspctl ); }});
0x7: shrav_r_w({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_W,
ROUND, SIGNED, &dspctl ); }});
}
}
0x3: decode OP_LO {
format DspIntOp {
0x1: shrl_ph({{ Rd.sw = dspShrl( Rt.sw, RS, SIMD_FMT_PH,
UNSIGNED ); }});
0x3: shrlv_ph({{ Rd.sw = dspShrl( Rt.sw, Rs.sw, SIMD_FMT_PH,
UNSIGNED ); }});
}
}
}
}
0x3: decode FUNCTION_LO {
//Table 3.12 MIPS32 ADDUH.QB Encoding of the op Field (DSP ASE Rev2 Manual)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspIntOp {
0x0: adduh_qb({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_QB,
NOROUND, UNSIGNED ); }});
0x1: subuh_qb({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_QB,
NOROUND, UNSIGNED ); }});
0x2: adduh_r_qb({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_QB,
ROUND, UNSIGNED ); }});
0x3: subuh_r_qb({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_QB,
ROUND, UNSIGNED ); }});
}
}
0x1: decode OP_LO {
format DspIntOp {
0x0: addqh_ph({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_PH,
NOROUND, SIGNED ); }});
0x1: subqh_ph({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_PH,
NOROUND, SIGNED ); }});
0x2: addqh_r_ph({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_PH,
ROUND, SIGNED ); }});
0x3: subqh_r_ph({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_PH,
ROUND, SIGNED ); }});
0x4: mul_ph({{ Rd.sw = dspMul( Rs.sw, Rt.sw, SIMD_FMT_PH,
NOSATURATE, &dspctl ); }}, IntMultOp);
0x6: mul_s_ph({{ Rd.sw = dspMul( Rs.sw, Rt.sw, SIMD_FMT_PH,
SATURATE, &dspctl ); }}, IntMultOp);
}
}
0x2: decode OP_LO {
format DspIntOp {
0x0: addqh_w({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_W,
NOROUND, SIGNED ); }});
0x1: subqh_w({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_W,
NOROUND, SIGNED ); }});
0x2: addqh_r_w({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_W,
ROUND, SIGNED ); }});
0x3: subqh_r_w({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_W,
ROUND, SIGNED ); }});
0x6: mulq_s_w({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_W,
SATURATE, NOROUND, &dspctl ); }}, IntMultOp);
0x7: mulq_rs_w({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_W,
SATURATE, ROUND, &dspctl ); }}, IntMultOp);
}
}
}
}
//Table A-10 MIPS32 BSHFL Encoding of sa Field
0x4: decode SA {
format BasicOp {
0x02: wsbh({{ Rd.uw = Rt.uw<23:16> << 24 |
Rt.uw<31:24> << 16 |
Rt.uw<7:0> << 8 |
Rt.uw<15:8>;
}});
0x10: seb({{ Rd.sw = Rt.sb; }});
0x18: seh({{ Rd.sw = Rt.sh; }});
}
}
0x6: decode FUNCTION_LO {
//Table 5-10 MIPS32 DPAQ.W.PH Encoding of the op Field (DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspHiLoOp {
0x0: dpa_w_ph({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_L ); }}, IntMultOp);
0x1: dps_w_ph({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_L ); }}, IntMultOp);
0x2: mulsa_w_ph({{ dspac = dspMulsa( dspac, Rs.sw, Rt.sw,
ACDST, SIMD_FMT_PH ); }}, IntMultOp);
0x3: dpau_h_qbl({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_L ); }}, IntMultOp);
0x4: dpaq_s_w_ph({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE, MODE_L, &dspctl ); }}, IntMultOp);
0x5: dpsq_s_w_ph({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE, MODE_L, &dspctl ); }}, IntMultOp);
0x6: mulsaq_s_w_ph({{ dspac = dspMulsaq( dspac, Rs.sw, Rt.sw,
ACDST, SIMD_FMT_PH, &dspctl ); }}, IntMultOp);
0x7: dpau_h_qbr({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_R ); }}, IntMultOp);
}
}
0x1: decode OP_LO {
format DspHiLoOp {
0x0: dpax_w_ph({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_X ); }}, IntMultOp);
0x1: dpsx_w_ph({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
SIMD_FMT_PH, SIGNED, MODE_X ); }}, IntMultOp);
0x3: dpsu_h_qbl({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_L ); }}, IntMultOp);
0x4: dpaq_sa_l_w({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_W,
SIMD_FMT_L, SATURATE, MODE_L, &dspctl ); }}, IntMultOp);
0x5: dpsq_sa_l_w({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_W,
SIMD_FMT_L, SATURATE, MODE_L, &dspctl ); }}, IntMultOp);
0x7: dpsu_h_qbr({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
SIMD_FMT_QB, UNSIGNED, MODE_R ); }}, IntMultOp);
}
}
0x2: decode OP_LO {
format DspHiLoOp {
0x0: maq_sa_w_phl({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
MODE_L, SATURATE, &dspctl ); }}, IntMultOp);
0x2: maq_sa_w_phr({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
MODE_R, SATURATE, &dspctl ); }}, IntMultOp);
0x4: maq_s_w_phl({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
MODE_L, NOSATURATE, &dspctl ); }}, IntMultOp);
0x6: maq_s_w_phr({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
MODE_R, NOSATURATE, &dspctl ); }}, IntMultOp);
}
}
0x3: decode OP_LO {
format DspHiLoOp {
0x0: dpaqx_s_w_ph({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE, MODE_X, &dspctl ); }}, IntMultOp);
0x1: dpsqx_s_w_ph({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
SIMD_FMT_W, NOSATURATE, MODE_X, &dspctl ); }}, IntMultOp);
0x2: dpaqx_sa_w_ph({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
SIMD_FMT_W, SATURATE, MODE_X, &dspctl ); }}, IntMultOp);
0x3: dpsqx_sa_w_ph({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
SIMD_FMT_W, SATURATE, MODE_X, &dspctl ); }}, IntMultOp);
}
}
}
//Table 3.3 MIPS32 APPEND Encoding of the op Field
0x1: decode OP_HI {
0x0: decode OP_LO {
format IntOp {
0x0: append({{ Rt.uw = (Rt.uw << RD) | bits(Rs.uw,RD-1,0); }});
0x1: prepend({{ Rt.uw = (Rt.uw >> RD) | (bits(Rs.uw, RD - 1, 0) << (32 - RD)); }});
}
}
0x2: decode OP_LO {
format IntOp {
0x0: balign({{ Rt.uw = (Rt.uw << (8*BP)) | (Rs.uw >> (8*(4-BP))); }});
}
}
}
}
0x7: decode FUNCTION_LO {
//Table 5-11 MIPS32 EXTR.W Encoding of the op Field (DSP ASE MANUAL)
0x0: decode OP_HI {
0x0: decode OP_LO {
format DspHiLoOp {
0x0: extr_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, RS,
NOROUND, NOSATURATE, &dspctl ); }});
0x1: extrv_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, Rs.uw,
NOROUND, NOSATURATE, &dspctl ); }});
0x2: extp({{ Rt.uw = dspExtp( dspac, RS, &dspctl ); }});
0x3: extpv({{ Rt.uw = dspExtp( dspac, Rs.uw, &dspctl ); }});
0x4: extr_r_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, RS,
ROUND, NOSATURATE, &dspctl ); }});
0x5: extrv_r_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, Rs.uw,
ROUND, NOSATURATE, &dspctl ); }});
0x6: extr_rs_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, RS,
ROUND, SATURATE, &dspctl ); }});
0x7: extrv_rs_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, Rs.uw,
ROUND, SATURATE, &dspctl ); }});
}
}
0x1: decode OP_LO {
format DspHiLoOp {
0x2: extpdp({{ Rt.uw = dspExtpd( dspac, RS, &dspctl ); }});
0x3: extpdpv({{ Rt.uw = dspExtpd( dspac, Rs.uw, &dspctl ); }});
0x6: extr_s_h({{ Rt.uw = dspExtr( dspac, SIMD_FMT_PH, RS,
NOROUND, SATURATE, &dspctl ); }});
0x7: extrv_s_h({{ Rt.uw = dspExtr( dspac, SIMD_FMT_PH, Rs.uw,
NOROUND, SATURATE, &dspctl ); }});
}
}
0x2: decode OP_LO {
format DspIntOp {
0x2: rddsp({{ Rd.uw = readDSPControl( &dspctl, RDDSPMASK ); }});
0x3: wrdsp({{ writeDSPControl( &dspctl, Rs.uw, WRDSPMASK ); }});
}
}
0x3: decode OP_LO {
format DspHiLoOp {
0x2: shilo({{ if( sext<6>(HILOSA) < 0 )
dspac = (uint64_t)dspac << -sext<6>(HILOSA);
else
dspac = (uint64_t)dspac >> sext<6>(HILOSA); }});
0x3: shilov({{ if( sext<6>(Rs.sw<5:0>) < 0 )
dspac = (uint64_t)dspac << -sext<6>(Rs.sw<5:0>);
else
dspac = (uint64_t)dspac >> sext<6>(Rs.sw<5:0>); }});
0x7: mthlip({{ dspac = dspac << 32;
dspac |= Rs.uw;
dspctl = insertBits( dspctl, 5, 0,
dspctl<5:0>+32 ); }});
}
}
}
0x3: decode OP_HI {
0x2: decode OP_LO {
0x3: FailUnimpl::rdhwr();
}
}
}
}
}
0x4: decode OPCODE_LO {
format LoadMemory {
0x0: lb({{ Rt.sw = Mem.sb; }}, mem_flags = NO_ALIGN_FAULT);
0x1: lh({{ Rt.sw = Mem.sh; }}, mem_flags = NO_HALF_WORD_ALIGN_FAULT);
0x3: lw({{ Rt.sw = Mem.sw; }});
0x4: lbu({{ Rt.uw = Mem.ub;}}, mem_flags = NO_ALIGN_FAULT);
0x5: lhu({{ Rt.uw = Mem.uh; }}, mem_flags = NO_HALF_WORD_ALIGN_FAULT);
}
format LoadUnalignedMemory {
0x2: lwl({{ uint32_t mem_shift = 24 - (8 * byte_offset);
Rt.uw = mem_word << mem_shift |
(Rt.uw & mask(mem_shift));
}});
0x6: lwr({{ uint32_t mem_shift = 8 * byte_offset;
Rt.uw = (Rt.uw & (mask(mem_shift) << (32 - mem_shift))) |
(mem_word >> mem_shift);
}});
}
}
0x5: decode OPCODE_LO {
format StoreMemory {
0x0: sb({{ Mem.ub = Rt<7:0>; }}, mem_flags = NO_ALIGN_FAULT);
0x1: sh({{ Mem.uh = Rt<15:0>; }}, mem_flags = NO_HALF_WORD_ALIGN_FAULT);
0x3: sw({{ Mem.uw = Rt<31:0>; }});
}
format StoreUnalignedMemory {
0x2: swl({{ uint32_t reg_shift = 24 - (8 * byte_offset);
uint32_t mem_shift = 32 - reg_shift;
mem_word = (mem_word & (mask(reg_shift) << mem_shift)) |
(Rt.uw >> reg_shift);
}});
0x6: swr({{ uint32_t reg_shift = 8 * byte_offset;
mem_word = Rt.uw << reg_shift |
(mem_word & (mask(reg_shift)));
}});
}
format CP0Control {
0x7: cache({{
//Addr CacheEA = Rs.uw + OFFSET;
//fault = xc->CacheOp((uint8_t)CACHE_OP,(Addr) CacheEA);
}});
}
}
0x6: decode OPCODE_LO {
format LoadMemory {
0x0: ll({{ Rt.uw = Mem.uw; }}, mem_flags=LLSC);
0x1: lwc1({{ Ft.uw = Mem.uw; }});
0x5: ldc1({{ Ft.ud = Mem.ud; }});
}
0x2: CP2Unimpl::lwc2();
0x6: CP2Unimpl::ldc2();
0x3: Prefetch::pref();
}
0x7: decode OPCODE_LO {
0x0: StoreCond::sc({{ Mem.uw = Rt.uw;}},
{{ uint64_t tmp = write_result;
Rt.uw = (tmp == 0 || tmp == 1) ? tmp : Rt.uw;
}}, mem_flags=LLSC, inst_flags = IsStoreConditional);
format StoreMemory {
0x1: swc1({{ Mem.uw = Ft.uw;}});
0x5: sdc1({{ Mem.ud = Ft.ud;}});
}
0x2: CP2Unimpl::swc2();
0x6: CP2Unimpl::sdc2();
}
}