Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:
* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.
* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.
* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).
* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.
* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
Add the ability to build libgem5 without embedded Python or the
ability to configure with Python.
This is a prelude to a patch to allow config.ini files to be loaded
into libgem5 using only C++ which would make embedding gem5 within
other simulation systems easier.
This adds a few registration interfaces to things which cross
between Python and C++. Namely: stats dumping and SimObject resolving
Replace direct call to unserialize() on each SimObject with a pair of
calls for better control over initialization in both ckpt and non-ckpt
cases.
If restoring from a checkpoint, loadState(ckpt) is called on each
SimObject. The default implementation simply calls unserialize() if
there is a corresponding checkpoint section, so we get backward
compatibility for existing objects. However, objects can override
loadState() to get other behaviors, e.g., doing other programmed
initializations after unserialize(), or complaining if no checkpoint
section is found. (Note that the default warning for a missing
checkpoint section is now gone.)
If not restoring from a checkpoint, we call the new initState() method
on each SimObject instead. This provides a hook for state
initializations that are only required when *not* restoring from a
checkpoint.
Given this new framework, do some cleanup of LiveProcess subclasses
and X86System, which were (in some cases) emulating initState()
behavior in startup via a local flag or (in other cases) erroneously
doing initializations in startup() that clobbered state loaded earlier
by unserialize().
Add support for declaring SimObjects to swig so their members can be wrapped.
Make sim_object.i only contain declarations for SimObject.
Create system.i to contain declarations for System.
Update python code to properly call the C++ given the new changes.
--HG--
extra : convert_revision : 82076ee69e8122d56e91b92d6767e356baae420a
creation and initialization now happens in python. Parameter objects
are generated and initialized by python. The .ini file is now solely for
debugging purposes and is not used in construction of the objects in any
way.
--HG--
extra : convert_revision : 7e722873e417cb3d696f2e34c35ff488b7bff4ed
so things are organized in a more sensible manner. Take apart
finalInit and expose the individual functions which are now
called from python. Make checkpointing a bit easier to use.
--HG--
extra : convert_revision : f470ddabbb47103e7b4734ef753c40089f2dcd9d