Commit graph

154 commits

Author SHA1 Message Date
Nathanael Premillieu
bbdd7cecb9 arm: Fix fplib 128-bit shift operators
Appease clang.
2015-11-22 05:10:18 -05:00
Nilay Vaish
aafa5c3f86 revert 5af8f40d8f2c 2015-07-28 01:58:04 -05:00
Nilay Vaish
608641e23c cpu: implements vector registers
This adds a vector register type.  The type is defined as a std::array of a
fixed number of uint64_ts.  The isa_parser.py has been modified to parse vector
register operands and generate the required code.  Different cpus have vector
register files now.
2015-07-26 10:21:20 -05:00
Andreas Sandberg
5bfa7e3d59 arm: Merge ISA files with pseudo instructions
This changeset moves the pseudo instructions used to signal unknown
instructions and unimplemented instructions to the same source files
as the decoder fault.
2015-02-16 03:32:58 -05:00
Ali Saidi
89b3616d7e arm: always set the IsFirstMicroop flag
While the IsFirstMicroop flag exists it was only occasionally used in the ARM
instructions that gem5 microOps and therefore couldn't be relied on to be correct.
2015-01-25 07:22:56 -05:00
Andreas Sandberg
184fefbb3b arm: Raise an alignment fault if a PC has illegal alignment
We currently don't handle unaligned PCs correctly. There is one check
for unaligned PCs in the TLB when running in aarch64 mode, but this
check does not cover cases where the CPU does not do a TLB lookup when
decoding an instruction (e.g., a branch stays within the same cache
line). Additionally, the Decoder class sometimes throws an assertion
for unaligned PCs which breaks speculation.

This changeset introduces a decoder fault bit field in the ExtMachInst
structure. This field can be used to signal a decoder failure. If set,
the decoder generates an internal gem5fault instruction instead of a
normal instruction. This instruction in turns either panics (fault
type PANIC), returns an PCAlignmentFault (fault type UNALIGNED,
aarch64) or PrefetchAbort (fault type UNALIGNED, aarch32).

The patch causes minor changes to the realview64 regressions, and a
stats bump will follow.
2014-12-23 09:31:17 -05:00
Andreas Hansson
481eb6ae80 arm: Fixes based on UBSan and static analysis
Another churn to clean up undefined behaviour, mostly ARM, but some
parts also touching the generic part of the code base.

Most of the fixes are simply ensuring that proper intialisation. One
of the more subtle changes is the return type of the sign-extension,
which is changed to uint64_t. This is to avoid shifting negative
values (undefined behaviour) in the ISA code.
2014-11-14 03:53:51 -05:00
Andreas Hansson
a2d246b6b8 arch: Use shared_ptr for all Faults
This patch takes quite a large step in transitioning from the ad-hoc
RefCountingPtr to the c++11 shared_ptr by adopting its use for all
Faults. There are no changes in behaviour, and the code modifications
are mostly just replacing "new" with "make_shared".
2014-10-16 05:49:51 -04:00
Andreas Hansson
10f82934be arm: More UBSan cleanups after additional full-system runs
Some incorrect casting to IntRegIndex, and a few uninitialized members
in the i8254xGBe device.
2014-10-01 08:05:51 -04:00
Andreas Hansson
ec41000dad arm: Fixed undefined behaviours identified by gcc
This patch fixes the runtime errors highlighted by the undefined
behaviour sanitizer. In the end there were two issues. First, when
rotating an immediate, we ended up shifting an uint32_t by 32 in some
cases. This case is fixed by checking for a rotation by 0
positions. Second, the Mrc15 and Mcr15 are operating on an IntReg and
a MiscReg, but we used the type RegRegImmOp and passed a MiscRegIndex
as an IntRegIndex. This issue is resolved by introducing a
MiscRegRegImmOp and RegMiscRegImmOp with the appropriate types.

With these fixes there are no runtime errors identified for the full
ARM regressions.
2014-09-27 09:08:37 -04:00
Mitch Hayenga
8f95144e16 arm: Make memory ops work on 64bit/128-bit quantities
Multiple instructions assume only 32-bit load operations are available,
this patch increases load sizes to 64-bit or 128-bit for many load pair and
load multiple instructions.
2014-09-03 07:42:52 -04:00
Mitch Hayenga
bb1e6cf7c4 arm: Fix v8 neon latency issue for loads/stores
Neon memory ops that operate on multiple registers currently have very poor
performance because of interleave/deinterleave micro-ops.

This patch marks the deinterleave/interleave micro-ops as "No_OpClass" such
that they take minumum cycles to execute and are never resource constrained.

Additionaly the micro-ops over-read registers.  Although one form may need
to read up to 20 sources, not all do.  This adds in new forms so false
dependencies are not modeled.  Instructions read their minimum number of
sources.
2014-09-03 07:42:44 -04:00
Curtis Dunham
4a3f11149d arm: use condition code registers for ARM ISA
Analogous to ee049bf (for x86).  Requires a bump of the checkpoint version
and corresponding upgrader code to move the condition code register values
to the new register file.
2014-04-29 16:05:02 -05:00
Curtis Dunham
94daae6864 arm: remove dead code fplib mul64x64 2014-03-11 09:50:02 -05:00
Andrew Bardsley
f7d80348fa arm: Add branch flags onto macroops
Mark branch flags onto macroops to allow branch prediction before
microop decomposition
2014-05-09 18:58:47 -04:00
Curtis Dunham
ecf774bc56 arm: Correctly display disassembly of vldmia/vstmia
The MicroMemOp class generates the disassembly for both integer
and floating point instructions, but it would always print its
first operand as an integer register without considering that the
op may be a floating instruction in which case a float register
should be displayed instead.
2014-04-23 05:18:30 -04:00
Mitch Hayenga
b9a9d99b22 scons: Fixes uninitialized warnings issued by clang
Small fixes to appease recent clang versions.
2014-03-07 15:56:23 -05:00
ARM gem5 Developers
612f8f074f arm: Add support for ARMv8 (AArch64 & AArch32)
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64
kernel you are restricted to AArch64 user-mode binaries. This will be addressed
in a later patch.

Note: Virtualization is only supported in AArch32 mode. This will also be fixed
in a later patch.

Contributors:
Giacomo Gabrielli    (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation)
Thomas Grocutt       (AArch32 Virtualization, AArch64 FP, validation)
Mbou Eyole           (AArch64 NEON, validation)
Ali Saidi            (AArch64 Linux support, code integration, validation)
Edmund Grimley-Evans (AArch64 FP)
William Wang         (AArch64 Linux support)
Rene De Jong         (AArch64 Linux support, performance opt.)
Matt Horsnell        (AArch64 MP, validation)
Matt Evans           (device models, code integration, validation)
Chris Adeniyi-Jones  (AArch64 syscall-emulation)
Prakash Ramrakhyani  (validation)
Dam Sunwoo           (validation)
Chander Sudanthi     (validation)
Stephan Diestelhorst (validation)
Andreas Hansson      (code integration, performance opt.)
Eric Van Hensbergen  (performance opt.)
Gabe Black
2014-01-24 15:29:34 -06:00
Yasuko Eckert
2c293823aa cpu: add a condition-code register class
Add a third register class for condition codes,
in parallel with the integer and FP classes.
No ISAs use the CC class at this point though.
2013-10-15 14:22:44 -04:00
Steve Reinhardt
219c423f1f cpu: rename *_DepTag constants to *_Reg_Base
Make these names more meaningful.

Specifically, made these substitutions:

s/FP_Base_DepTag/FP_Reg_Base/g;
s/Ctrl_Base_DepTag/Misc_Reg_Base/g;
s/Max_DepTag/Max_Reg_Index/g;
2013-10-15 14:22:43 -04:00
Steve Reinhardt
7aa423acad cpu: clean up architectural register classification
Move from a poorly documented scheme where the mapping
of unified architectural register indices to register
classes is hardcoded all over to one where there's an
enum for the register classes and a function that
encapsulates the mapping.
2013-10-15 14:22:42 -04:00
Nathanael Premillieu
3ff091bdf4 arm: set ldr_ret_uop as conditional or unconditional control
This patch adds a missing flag to the ldr_ret_uop microop instruction.
The flag is added when the instruction is used, not directly in the
constructor of the instruction.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>"
2013-04-17 16:07:10 -05:00
Andreas Hansson
c10098f28b scons: Fix up numerous warnings about name shadowing
This patch address the most important name shadowing warnings (as
produced when using gcc/clang with -Wshadow). There are many
locations where constructor parameters and function parameters shadow
local variables, but these are left unchanged.
2013-02-19 05:56:06 -05:00
Ali Saidi
68495a0748 ARM: Fix an issue with clang generating wrong code.
Clang generated executables would enter the if condition when it wasn't
supposted to, resulting in the wrong simulated behavior.
Implementing the operation this way is a bit faster anyway.
2013-02-15 17:40:08 -05:00
Nathanael Premillieu
84fc57bfe6 arm: set movret_uop as conditional or unconditional control
A flag was missing for the movret_uop microop instruction. This patch adds
that flag when the instruction is used, not directly in the constructor of
the instruction.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2012-12-12 09:50:16 -06:00
Ali Saidi
04ca96427c ARM: Predict target of more instructions that modify PC. 2012-09-25 11:49:40 -05:00
Gabe Black
74ca8a3cd0 ISA: Put parser generated files in a "generated" directory.
This is to avoid collision with non-generated files.
2012-04-23 12:00:41 -07:00
Ali Saidi
ed8ed6e761 ARM: Clean up condCodes in IT blocks. 2012-03-21 10:34:06 -05:00
Giacomo Gabrielli
d51478db4e ARM: fix bits-to-fp conversion function declarations.
Add extra declarations to allow the compiler to pick up the right function.
Please note that these declarations have been added as part of the
clang-related changes.
2012-03-01 17:26:30 -06:00
Gabe Black
ea8b347dc5 Merge with head, hopefully the last time for this batch. 2012-01-31 22:40:08 -08:00
Koan-Sin Tan
7d4f187700 clang: Enable compiling gem5 using clang 2.9 and 3.0
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).

clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
2012-01-31 12:05:52 -05:00
Gabe Black
239b33e016 SE/FS: Get rid of FULL_SYSTEM in the ARM ISA. 2011-11-02 01:25:15 -07:00
Gabe Black
49a7ed0397 StaticInst: Merge StaticInst and StaticInstBase.
Having two StaticInst classes, one nominally ISA dependent and the other ISA
dependent, has not been historically useful and makes the StaticInst class
more complicated that it needs to be. This change merges StaticInstBase into
StaticInst.
2011-09-09 02:40:11 -07:00
Nathan Binkert
39a055645f includes: sort all includes 2011-04-15 10:44:06 -07:00
Ali Saidi
6fd271ffb3 ARM: Remove debugging warn that was accidently left in. 2011-04-04 11:42:23 -05:00
Ali Saidi
53ab306acc ARM: Fix subtle bug in LDM.
If the instruction faults mid-op the base register shouldn't be written back.
2011-03-17 19:20:20 -05:00
Ali Saidi
5480ec798a ARM: Identify branches as conditional or unconditional and direct or indirect. 2011-03-17 19:20:20 -05:00
Matt Horsnell
031f396c71 ARM: Fix RFE macrop.
This changes the RFE macroop into 3 microops:

URa = [sp]; URb = [sp+4]; // load CPSR,PC values from stack
sp = sp + offset;         // optionally auto-increment
PC = URa; CPSR = URb;     // write to the PC and CPSR.

Importantly:
- writing to PC is handled in the last micro-op.
- loading occurs prior to state changes.
2011-03-17 19:20:19 -05:00
Matt Horsnell
adbd84ab9f ARM: The ARM decoder should not panic when decoding undefined holes is arch.
This can abort simulations when the fetch unit runs ahead and speculatively
decodes instructions that are off the execution path.
2011-01-18 16:30:05 -06:00
Ali Saidi
a3232b534b ARM: fix mismatched new/delete. 2011-01-18 16:30:01 -06:00
Ali Saidi
08c5673d56 ARM: Use the correct delete operator for RFE 2010-11-15 14:04:03 -06:00
Ali Saidi
f4f5d03ed2 ARM: Make all ARM uops delayed commit. 2010-11-08 13:58:22 -06:00
Gabe Black
6f4bd2c1da ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
2010-10-31 00:07:20 -07:00
Ali Saidi
b331b02669 ARM: Clean up use of TBit and JBit.
Rather tha constantly using ULL(1) << PcXBitShift define those directly.
Additionally, add some helper functions to further clean up the code.
2010-10-01 16:02:45 -05:00
Gene WU
4d8f4db8d1 ARM: Use fewer micro-ops for register update loads if possible.
Allow some loads that update the base register to use just two micro-ops. three
micro-ops are only used if the destination register matches the offset register
or the PC is the destination regsiter. If the PC is updated it needs to be
the last micro-op otherwise O3 will mispredict.
2010-08-25 19:10:42 -05:00
Gabe Black
54a919f225 ARM: Implement CPACR register and return Undefined Instruction when FP access is disabled. 2010-08-25 19:10:42 -05:00
Gabe Black
6368edb281 ARM: Implement all ARM SIMD instructions. 2010-08-25 19:10:42 -05:00
Min Kyu Jeong
e6a0be648e ARM: Improve printing of uop disassembly. 2010-08-23 11:18:42 -05:00
Gabe Black
e50e6a260f ARM: Add a comment to vfp.cc that explains the asm statements. 2010-06-02 12:58:18 -05:00
Gabe Black
fcee2b3f31 ARM: Add comments to the classes in macromem.hh. 2010-06-02 12:58:18 -05:00