Commit graph

350 commits

Author SHA1 Message Date
Brad Beckmann
173a786921 ruby: more flexible ruby tester support
This patch allows the ruby random tester to use ruby ports that may only
support instr or data requests.  This patch is similar to a previous changeset
(8932:1b2c17565ac8) that was unfortunately broken by subsequent changesets.
This current patch implements the support in a more straight-forward way.
Since retries are now tested when running the ruby random tester, this patch
splits up the retry and drain check behavior so that RubyPort children, such
as the GPUCoalescer, can perform those operations correctly without having to
duplicate code.  Finally, the patch also includes better DPRINTFs for
debugging the tester.
2015-07-20 09:15:18 -05:00
Andreas Hansson
2cb5467e85 misc: Appease clang static analyzer
A few minor fixes to issues identified by the clang static analyzer.
2015-11-06 03:26:16 -05:00
Nilay Vaish
4453537ead ruby: profiler: provide the number of vnets through ruby system
The aim is to ultimately do away with the static function
Network::getNumberOfVirtualNetworks().
2015-10-14 00:29:43 -05:00
Andreas Hansson
2ac04c11ac misc: Add explicit overrides and fix other clang >= 3.5 issues
This patch adds explicit overrides as this is now required when using
"-Wall" with clang >= 3.5, the latter now part of the most recent
XCode. The patch consequently removes "virtual" for those methods
where "override" is added. The latter should be enough of an
indication.

As part of this patch, a few minor issues that clang >= 3.5 complains
about are also resolved (unused methods and variables).
2015-10-12 04:08:01 -04:00
Andreas Hansson
22c04190c6 misc: Remove redundant compiler-specific defines
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
2015-10-12 04:07:59 -04:00
Joel Hestness
b80024ee7d ruby: RubyPort delete snoop requests
In RubyPort::ruby_eviction_callback, prior changes fixed a memory leak caused
by instantiating separate packets for each port that the eviction was forwarded
to. That change, however, left the instantiated request to also leak. Allocate
it on the stack to avoid the leak.
2015-09-29 09:28:25 -05:00
Nilay Vaish
96c999fe88 ruby: print addresses in hex
Changeset 4872dbdea907 replaced Address by Addr, but did not make changes to
print statements.  So the addresses which were being printed in hex earlier
along with their line address, were now being printed in decimals.  This patch
adds a function printAddress(Addr) that can be used to print the address in hex
along with the lines address.  This function has been put to use in some of the
places.  At other places, change has been made to print just the address in
hex.
2015-09-18 13:27:47 -05:00
Nilay Vaish
cd9e445813 ruby: message buffer, timer table: significant changes
This patch changes MessageBuffer and TimerTable, two structures used for
buffering messages by components in ruby.  These structures would no longer
maintain pointers to clock objects.  Functions in these structures have been
changed to take as input current time in Tick.  Similarly, these structures
will not operate on Cycle valued latencies for different operations.  The
corresponding functions would need to be provided with these latencies by
components invoking the relevant functions.  These latencies should also be
in Ticks.

I felt the need for these changes while trying to speed up ruby.  The ultimate
aim is to eliminate Consumer class and replace it with an EventManager object in
the MessageBuffer and TimerTable classes.  This object would be used for
scheduling events.  The event itself would contain information on the object and
function to be invoked.

In hindsight, it seems I should have done this while I was moving away from use
of a single global clock in the memory system.  That change led to introduction
of clock objects that replaced the global clock object.  It never crossed my
mind that having clock object pointers is not a good design.  And now I really
don't like the fact that we have separate consumer, receiver and sender
pointers in message buffers.
2015-09-16 11:59:56 -05:00
Nilay Vaish
78a1245b41 ruby: remove unused function removeRequest() 2015-09-16 11:59:55 -05:00
Nilay Vaish
4b19e06644 ruby: sequencer: remove commented out function printProgress() 2015-09-16 11:59:55 -05:00
David Hashe
b6b972da99 ruby: rename System.{hh,cc} to RubySystem.{hh,cc}
The eventual aim of this change is to pass RubySystem pointers through to
objects generated from the SLICC protocol code.

Because some of these objects need to dereference their RubySystem pointers,
they need access to the System.hh header file.

In src/mem/ruby/SConscript, the MakeInclude function creates single-line header
files in the build directory that do nothing except include the corresponding
header file from the source tree.

However, SLICC also generates a list of header files from its symbol table, and
writes it to mem/protocol/Types.hh in the build directory. This code assumes
that the header file name is the same as the class name.

The end result of this is the many of the generated slicc files try to include
RubySystem.hh, when the file they really need is System.hh. The path of least
resistence is just to rename System.hh to RubySystem.hh.

--HG--
rename : src/mem/ruby/system/System.cc => src/mem/ruby/system/RubySystem.cc
rename : src/mem/ruby/system/System.hh => src/mem/ruby/system/RubySystem.hh
2015-09-16 12:03:03 -04:00
Nilay Vaish
740984b30b ruby: call setMRU from L1 controllers, not from sequencer
Currently the sequencer calls the function setMRU that updates the replacement
policy structures with the first level caches.  While functionally this is
correct, the problem is that this requires calling findTagInSet() which is an
expensive function.  This patch removes the calls to setMRU from the sequencer.
All controllers should now update the replacement policy on their own.

The set and the way index for a given cache entry can be found within the
AbstractCacheEntry structure. Use these indicies to update the replacement
policy structures.
2015-09-05 09:35:39 -05:00
Nilay Vaish
fe47f0a72f ruby: remove random seed
We no longer use the C library based random number generator: random().
Instead we use the C++ library provided rng.  So setting the random seed for
the RubySystem class has no effect.  Hence the variable and the corresponding
option are being dropped.
2015-09-01 15:50:33 -05:00
Nilay Vaish
4727fc26f8 ruby: eliminate type uint64 and int64
These types are being replaced with uint64_t and int64_t.
2015-08-29 10:19:23 -05:00
Andreas Sandberg
e9d6bf5e35 ruby: Use the const serialize interface in RubySystem
The new serialization code (kudos to Tim Jones) moves all of the state
mangling in RubySystem to memWriteback. This makes it possible to use
the new const serialization interface.

This changeset moves the cache recorder cleanup from the checkpoint()
method to drainResume() to make checkpointing truly constant and
updates the checkpointing code to use the new interface.
2015-08-28 10:58:44 +01:00
Nilay Vaish
fc3d34a488 ruby: handle llsc accesses through CacheEntry, not CacheMemory
The sequencer takes care of llsc accesses by calling upon functions
from the CacheMemory.  This is unnecessary once the required CacheEntry object
is available.  Thus some of the calls to findTagInSet() are avoided.
2015-08-27 12:51:40 -05:00
Nilay Vaish
2f44dada68 ruby: reverts to changeset: bf82f1f7b040 2015-08-19 10:02:01 -05:00
Nilay Vaish
d0cf41300b ruby: profiler: provide the number of vnets through ruby system
The aim is to ultimately do away with the static function
Network::getNumberOfVirtualNetworks().
2015-08-14 19:28:44 -05:00
Nilay Vaish
d660b3145b ruby: remove random seed
We no longer use the C library based random number generator: random().
Instead we use the C++ library provided rng.  So setting the random seed for
the RubySystem class has no effect.  Hence the variable and the corresponding
option are being dropped.
2015-08-14 19:28:44 -05:00
Nilay Vaish
514f18cdda ruby: cache recorder: move check on block size to RubySystem. 2015-08-14 19:28:44 -05:00
Nilay Vaish
5060e572ca ruby: call setMRU from L1 controllers, not from sequencer
Currently the sequencer calls the function setMRU that updates the replacement
policy structures with the first level caches.  While functionally this is
correct, the problem is that this requires calling findTagInSet() which is an
expensive function.  This patch removes the calls to setMRU from the sequencer.
All controllers should now update the replacement policy on their own.

The set and the way index for a given cache entry can be found within the
AbstractCacheEntry structure. Use these indicies to update the replacement
policy structures.
2015-08-14 19:28:43 -05:00
Nilay Vaish
a6f3f38f2c ruby: eliminate type uint64 and int64
These types are being replaced with uint64_t and int64_t.
2015-08-14 19:28:43 -05:00
Nilay Vaish
1a3e8a3370 ruby: handle llsc accesses through CacheEntry, not CacheMemory
The sequencer takes care of llsc accesses by calling upon functions
from the CacheMemory.  This is unnecessary once the required CacheEntry object
is available.  Thus some of the calls to findTagInSet() are avoided.
2015-08-14 19:28:42 -05:00
Nilay Vaish
91a84c5b3c ruby: replace Address by Addr
This patch eliminates the type Address defined by the ruby memory system.
This memory system would now use the type Addr that is in use by the
rest of the system.
2015-08-14 12:04:51 -05:00
Joel Hestness
9567c839fe ruby: Remove the RubyCache/CacheMemory latency
The RubyCache (CacheMemory) latency parameter is only used for top-level caches
instantiated for Ruby coherence protocols. However, the top-level cache hit
latency is assessed by the Sequencer as accesses flow through to the cache
hierarchy. Further, protocol state machines should be enforcing these cache hit
latencies, but RubyCaches do not expose their latency to any existng state
machines through the SLICC/C++ interface. Thus, the RubyCache latency parameter
is superfluous for all caches. This is confusing for users.

As a step toward pushing L0/L1 cache hit latency into the top-level cache
controllers, move their latencies out of the RubyCache declarations and over to
their Sequencers. Eventually, these Sequencer parameters should be exposed as
parameters to the top-level cache controllers, which should assess the latency.
NOTE: Assessing these latencies in the cache controllers will require modifying
each to eliminate instantaneous Ruby hit callbacks in transitions that finish
accesses, which is likely a large undertaking.
2015-08-14 00:19:37 -05:00
Andreas Sandberg
53e777d683 base: Declare a type for context IDs
Context IDs used to be declared as ad hoc (usually as int). This
changeset introduces a typedef for ContextIDs and a constant for
invalid context IDs.
2015-08-07 09:59:13 +01:00
Timothy Jones
96091f358b uby: Fix checkpointing and restore
There are 2 problems with the existing checkpoint and restore code in ruby.
The first is that when the event queue is altered by ruby during serialization,
some events that are currently scheduled cannot be found (e.g. the event to
stop simulation that always lives on the queue), causing a panic.
The second is that ruby is sometimes serialized after the memory system,
meaning that the dirty data in its cache is flushed back to memory too late
and so isn't included in the checkpoint.

These are fixed by implementing memory writeback in ruby, using the same
technique of hijacking the event queue, but first descheduling all events that
are currently on it.  They are saved, along with their scheduled time, so that
the event queue can be faithfully reconstructed after writeback has finished.
Events with the AutoDelete flag set will delete themselves when they
are descheduled, causing an error when attempting to schedule them again.
This is fixed by simply not recording them when taking them off the queue.

Writeback is still implemented using flushing, so the cache recorder object,
that is created to generate the trace and manage flushing, is kept
around and used during serialization to write the trace to disk.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2015-08-03 23:08:40 -05:00
David Hashe
3444d5f359 mem: Hit callback delay fix
This patch was created by Bihn Pham during his internship at AMD.

There is no need to delay hit callback response messages by a cycle because
the response latency is already incurred in the Ruby protocol. This ensures
correct timing of memory instructions.
2015-07-20 09:15:18 -05:00
Brad Beckmann
4710eba588 ruby: add useful dprints to sequencer
Added two data block dprints that are useful when tracking down data check
failures in the ruby random tester.
2015-07-20 09:15:18 -05:00
Brandon Potter
582793468d ruby: dma sequencer: removes redundant code 2015-07-24 12:25:22 -07:00
Brandon Potter
bfe7ee96ad ruby: replace global g_abs_controls with per-RubySystem var
This is another step in the process of removing global variables
from Ruby to enable multiple RubySystem instances in a single simulation.

The list of abstract controllers is per-RubySystem and should be
represented that way, rather than as a global.

Since this is the last remaining Ruby global variable, the
src/mem/ruby/Common/Global.* files are also removed.
2015-07-10 16:05:24 -05:00
Brandon Potter
f9a370f172 ruby: replace global g_system_ptr with per-object pointers
This is another step in the process of removing global variables
from Ruby to enable multiple RubySystem instances in a single simulation.

With possibly multiple RubySystem objects, we can no longer use a global
variable to find "the" RubySystem object.  Instead, each Ruby component
has to carry a pointer to the RubySystem object to which it belongs.
2015-07-10 16:05:23 -05:00
Brandon Potter
c38f5098b1 ruby: replace g_ruby_start with per-RubySystem m_start_cycle
This patch begins the process of removing global variables from the Ruby
source with the goal of eventually allowing users to create multiple Ruby
instances in a single simulation.  Currently, users cannot do so because
several global variables and static members are referenced by the RubySystem
object in a way that assumes that there will only ever be a single RubySystem.
These need to be replaced with per-RubySystem equivalents.

This specific patch replaces the global var g_ruby_start, which is used
to calculate throughput statistics for Throttles in simple networks and
links in Garnet networks, with a RubySystem instance var m_start_cycle.
2015-07-10 16:05:23 -05:00
Brandon Potter
9eda4bdc5a ruby: remove extra whitespace and correct misspelled words 2015-07-10 16:05:23 -05:00
Andreas Sandberg
ed38e3432c sim: Refactor and simplify the drain API
The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.

This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.

Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
2015-07-07 09:51:05 +01:00
Andreas Sandberg
f16c0a4a90 sim: Decouple draining from the SimObject hierarchy
Draining is currently done by traversing the SimObject graph and
calling drain()/drainResume() on the SimObjects. This is not ideal
when non-SimObjects (e.g., ports) need draining since this means that
SimObjects owning those objects need to be aware of this.

This changeset moves the responsibility for finding objects that need
draining from SimObjects and the Python-side of the simulator to the
DrainManager. The DrainManager now maintains a set of all objects that
need draining. To reduce the overhead in classes owning non-SimObjects
that need draining, objects inheriting from Drainable now
automatically register with the DrainManager. If such an object is
destroyed, it is automatically unregistered. This means that drain()
and drainResume() should never be called directly on a Drainable
object.

While implementing the new functionality, the DrainManager has now
been made thread safe. In practice, this means that it takes a lock
whenever it manipulates the set of Drainable objects since SimObjects
in different threads may create Drainable objects
dynamically. Similarly, the drain counter is now an atomic_uint, which
ensures that it is manipulated correctly when objects signal that they
are done draining.

A nice side effect of these changes is that it makes the drain state
changes stricter, which the simulation scripts can exploit to avoid
redundant drains.
2015-07-07 09:51:05 +01:00
Andreas Sandberg
e9c3d59aae sim: Make the drain state a global typed enum
The drain state enum is currently a part of the Drainable
interface. The same state machine will be used by the DrainManager to
identify the global state of the simulator. Make the drain state a
global typed enum to better cater for this usage scenario.
2015-07-07 09:51:04 +01:00
Andreas Sandberg
76cd4393c0 sim: Refactor the serialization base class
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

  * Add a set of APIs to serialize into a subsection of the current
    object. Previously, objects that needed this functionality would
    use ad-hoc solutions using nameOut() and section name
    generation. In the new world, an object that implements the
    interface has the methods serializeSection() and
    unserializeSection() that serialize into a named /subsection/ of
    the current object. Calling serialize() serializes an object into
    the current section.

  * Move the name() method from Serializable to SimObject as it is no
    longer needed for serialization. The fully qualified section name
    is generated by the main serialization code on the fly as objects
    serialize sub-objects.

  * Add a scoped ScopedCheckpointSection helper class. Some objects
    need to serialize data structures, that are not deriving from
    Serializable, into subsections. Previously, this was done using
    nameOut() and manual section name generation. To simplify this,
    this changeset introduces a ScopedCheckpointSection() helper
    class. When this class is instantiated, it adds a new /subsection/
    and subsequent serialization calls during the lifetime of this
    helper class happen inside this section (or a subsection in case
    of nested sections).

  * The serialize() call is now const which prevents accidental state
    manipulation during serialization. Objects that rely on modifying
    state can use the serializeOld() call instead. The default
    implementation simply calls serialize(). Note: The old-style calls
    need to be explicitly called using the
    serializeOld()/serializeSectionOld() style APIs. These are used by
    default when serializing SimObjects.

  * Both the input and output checkpoints now use their own named
    types. This hides underlying checkpoint implementation from
    objects that need checkpointing and makes it easier to change the
    underlying checkpoint storage code.
2015-07-07 09:51:03 +01:00
Andreas Hansson
71856cfbbc mem: Split WriteInvalidateReq into write and invalidate
WriteInvalidateReq ensures that a whole-line write does not incur the
cost of first doing a read exclusive, only to later overwrite the
data. This patch splits the existing WriteInvalidateReq into a
WriteLineReq, which is done locally, and an InvalidateReq that is sent
out throughout the memory system. The WriteLineReq re-uses the normal
WriteResp.

The change allows us to better express the difference between the
cache that is performing the write, and the ones that are merely
invalidating. As a consequence, we no longer have to rely on the
isTopLevel flag. Moreover, the actual memory in the system does not
see the intitial write, only the writeback. We were marking the
written line as dirty already, so there is really no need to also push
the write all the way to the memory.

The overall flow of the write-invalidate operation remains the same,
i.e. the operation is only carried out once the response for the
invalidate comes back. This patch adds the InvalidateResp for this
very reason.
2015-07-03 10:14:41 -04:00
Jason Power
2f3c467883 Ruby: Remove assert in RubyPort retry list logic
Remove the assert when adding a port to the RubyPort retry list.
Instead of asserting, just ignore the added port, since it's
already on the list.
Without this patch, Ruby+detailed fails for even the simplest tests
2015-06-25 11:58:28 -05:00
Joel Hestness
0479569f67 ruby: Fix RubySystem warm-up and cool-down scope
The processes of warming up and cooling down Ruby caches are simulation-wide
processes, not just RubySystem instance-specific processes. Thus, the warm-up
and cool-down variables should be globally visible to any Ruby components
participating in either process. Make these variables static members and track
the warm-up and cool-down processes as appropriate.

This patch also has two side benefits:
1) It removes references to the RubySystem g_system_ptr, which are problematic
for allowing multiple RubySystem instances in a single simulation. Warmup and
cooldown variables being static (global) reduces the need for instance-specific
dereferences through the RubySystem.
2) From the AbstractController, it removes local RubySystem pointers, which are
used inconsistently with other uses of the RubySystem: 11 other uses reference
the RubySystem with the g_system_ptr. Only sequencers have local pointers.
2015-05-19 10:56:51 -05:00
Steve Reinhardt
6677b9122a mem: rename Locked/LOCKED to LockedRMW/LOCKED_RMW
Makes x86-style locked operations even more distinct from
LLSC operations.  Using "locked" by itself should be
obviously ambiguous now.
2015-03-23 16:14:20 -07:00
Andreas Hansson
f26a289295 mem: Split port retry for all different packet classes
This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.

The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.

The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
2015-03-02 04:00:35 -05:00
Jason Power
670f44e05e Ruby: Update backing store option to propagate through to all RubyPorts
Previously, the user would have to manually set access_backing_store=True
on all RubyPorts (Sequencers) in the config files.
Now, instead there is one global option that each RubyPort checks on
initialization.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2015-02-26 09:58:26 -06:00
Andreas Hansson
00536b0efc mem: Always use SenderState for response routing in RubyPort
This patch aligns how the response routing is done in the RubyPort,
using the SenderState for both memory and I/O accesses. Before this
patch, only the I/O used the SenderState, whereas the memory accesses
relied on the src field in the packet. With this patch we shift to
using SenderState in both cases, thus not relying on the src field any
longer.
2015-01-22 05:01:24 -05:00
Andreas Hansson
f49830ce0b mem: Clean up Request initialisation
This patch tidies up how we create and set the fields of a Request. In
essence it tries to use the constructor where possible (as opposed to
setPhys and setVirt), thus avoiding spreading the information across a
number of locations. In fact, setPhys is made private as part of this
patch, and a number of places where we callede setVirt instead uses
the appropriate constructor.
2015-01-22 05:00:53 -05:00
Andreas Hansson
9779ba2e37 mem: Add const getters for write packet data
This patch takes a first step in tightening up how we use the data
pointer in write packets. A const getter is added for the pointer
itself (getConstPtr), and a number of member functions are also made
const accordingly. In a range of places throughout the memory system
the new member is used.

The patch also removes the unused isReadWrite function.
2014-12-02 06:07:36 -05:00
Andreas Hansson
25bfc24999 mem: Remove null-check bypassing in Packet::getPtr
This patch removes the parameter that enables bypassing the null check
in the Packet::getPtr method. A number of call sites assume the value
to be non-null.

The one odd case is the RubyTester, which issues zero-sized
prefetches(!), and despite being reads they had no valid data
pointer. This is now fixed, but the size oddity remains (unless anyone
object or has any good suggestions).

Finally, in the Ruby Sequencer, appropriate checks are made for flush
packets as they have no valid data pointer.
2014-12-02 06:07:34 -05:00
Nilay Vaish
0811f21f67 ruby: provide a backing store
Ruby's functional accesses are not guaranteed to succeed as of now.  While
this is not a problem for the protocols that are currently in the mainline
repo, it seems that coherence protocols for gpus rely on a backing store to
supply the correct data.  The aim of this patch is to make this backing store
configurable i.e. it comes into play only when a particular option:
--access-backing-store is invoked.

The backing store has been there since M5 and GEMS were integrated.  The only
difference is that earlier the system used to maintain the backing store and
ruby's copy was write-only.  Sometime last year, we moved to data being
supplied supplied by ruby in SE mode simulations.  And now we have patches on
the reviewboard, which remove ruby's copy of memory altogether and rely
completely on the system's memory to supply data.  This patch adds back a
SimpleMemory member to RubySystem.  This member is used only if the option:
access-backing-store is set to true.  By default, the memory would not be
accessed.
2014-11-06 05:42:21 -06:00
Nilay Vaish
3022d463fb ruby: interface with classic memory controller
This patch is the final in the series.  The whole series and this patch in
particular were written with the aim of interfacing ruby's directory controller
with the memory controller in the classic memory system.  This is being done
since ruby's memory controller has not being kept up to date with the changes
going on in DRAMs.  Classic's memory controller is more up to date and
supports multiple different types of DRAM.  This also brings classic and
ruby ever more close.  The patch also changes ruby's memory controller to
expose the same interface.
2014-11-06 05:42:21 -06:00