ruby: message buffer, timer table: significant changes

This patch changes MessageBuffer and TimerTable, two structures used for
buffering messages by components in ruby.  These structures would no longer
maintain pointers to clock objects.  Functions in these structures have been
changed to take as input current time in Tick.  Similarly, these structures
will not operate on Cycle valued latencies for different operations.  The
corresponding functions would need to be provided with these latencies by
components invoking the relevant functions.  These latencies should also be
in Ticks.

I felt the need for these changes while trying to speed up ruby.  The ultimate
aim is to eliminate Consumer class and replace it with an EventManager object in
the MessageBuffer and TimerTable classes.  This object would be used for
scheduling events.  The event itself would contain information on the object and
function to be invoked.

In hindsight, it seems I should have done this while I was moving away from use
of a single global clock in the memory system.  That change led to introduction
of clock objects that replaced the global clock object.  It never crossed my
mind that having clock object pointers is not a good design.  And now I really
don't like the fact that we have separate consumer, receiver and sender
pointers in message buffers.
This commit is contained in:
Nilay Vaish 2015-09-16 11:59:56 -05:00
parent 78a1245b41
commit cd9e445813
46 changed files with 382 additions and 418 deletions

View file

@ -135,6 +135,8 @@ machine(L0Cache, "MESI Directory L0 Cache")
TBETable TBEs, template="<L0Cache_TBE>", constructor="m_number_of_TBEs";
Tick clockEdge();
Cycles ticksToCycles(Tick t);
void set_cache_entry(AbstractCacheEntry a);
void unset_cache_entry();
void set_tbe(TBE a);
@ -255,7 +257,7 @@ machine(L0Cache, "MESI Directory L0 Cache")
// Messages for this L0 cache from the L1 cache
in_port(messgeBuffer_in, CoherenceMsg, bufferFromL1, rank = 1) {
if (messgeBuffer_in.isReady()) {
if (messgeBuffer_in.isReady(clockEdge())) {
peek(messgeBuffer_in, CoherenceMsg, block_on="addr") {
assert(in_msg.Dest == machineID);
@ -289,7 +291,7 @@ machine(L0Cache, "MESI Directory L0 Cache")
// Mandatory Queue betweens Node's CPU and it's L0 caches
in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...", rank = 0) {
if (mandatoryQueue_in.isReady()) {
if (mandatoryQueue_in.isReady(clockEdge())) {
peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {
// Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
@ -513,17 +515,19 @@ machine(L0Cache, "MESI Directory L0 Cache")
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue();
mandatoryQueue_in.dequeue(clockEdge());
}
action(l_popRequestQueue, "l",
desc="Pop incoming request queue and profile the delay within this virtual network") {
profileMsgDelay(2, messgeBuffer_in.dequeue());
Tick delay := messgeBuffer_in.dequeue(clockEdge());
profileMsgDelay(2, ticksToCycles(delay));
}
action(o_popIncomingResponseQueue, "o",
desc="Pop Incoming Response queue and profile the delay within this virtual network") {
profileMsgDelay(1, messgeBuffer_in.dequeue());
Tick delay := messgeBuffer_in.dequeue(clockEdge());
profileMsgDelay(1, ticksToCycles(delay));
}
action(s_deallocateTBE, "s", desc="Deallocate TBE") {

View file

@ -151,6 +151,8 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
int l2_select_low_bit, default="RubySystem::getBlockSizeBits()";
Tick clockEdge();
Cycles ticksToCycles(Tick t);
void set_cache_entry(AbstractCacheEntry a);
void unset_cache_entry();
void set_tbe(TBE a);
@ -266,7 +268,7 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
// Response From the L2 Cache to this L1 cache
in_port(responseNetwork_in, ResponseMsg, responseFromL2, rank = 3) {
if (responseNetwork_in.isReady()) {
if (responseNetwork_in.isReady(clockEdge())) {
peek(responseNetwork_in, ResponseMsg) {
assert(in_msg.Destination.isElement(machineID));
@ -303,7 +305,7 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
// Request to this L1 cache from the shared L2
in_port(requestNetwork_in, RequestMsg, requestFromL2, rank = 2) {
if(requestNetwork_in.isReady()) {
if(requestNetwork_in.isReady(clockEdge())) {
peek(requestNetwork_in, RequestMsg) {
assert(in_msg.Destination.isElement(machineID));
Entry cache_entry := getCacheEntry(in_msg.addr);
@ -340,7 +342,7 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
// Requests to this L1 cache from the L0 cache.
in_port(messageBufferFromL0_in, CoherenceMsg, bufferFromL0, rank = 0) {
if (messageBufferFromL0_in.isReady()) {
if (messageBufferFromL0_in.isReady(clockEdge())) {
peek(messageBufferFromL0_in, CoherenceMsg) {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
@ -634,17 +636,19 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
}
action(k_popL0RequestQueue, "k", desc="Pop mandatory queue.") {
messageBufferFromL0_in.dequeue();
messageBufferFromL0_in.dequeue(clockEdge());
}
action(l_popL2RequestQueue, "l",
desc="Pop incoming request queue and profile the delay within this virtual network") {
profileMsgDelay(2, requestNetwork_in.dequeue());
Tick delay := requestNetwork_in.dequeue(clockEdge());
profileMsgDelay(2, ticksToCycles(delay));
}
action(o_popL2ResponseQueue, "o",
desc="Pop Incoming Response queue and profile the delay within this virtual network") {
profileMsgDelay(1, responseNetwork_in.dequeue());
Tick delay := responseNetwork_in.dequeue(clockEdge());
profileMsgDelay(1, ticksToCycles(delay));
}
action(s_deallocateTBE, "s", desc="Deallocate TBE") {

View file

@ -156,6 +156,8 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
int l2_select_low_bit, default="RubySystem::getBlockSizeBits()";
Tick clockEdge();
Cycles ticksToCycles(Tick t);
void set_cache_entry(AbstractCacheEntry a);
void unset_cache_entry();
void set_tbe(TBE a);
@ -296,7 +298,7 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
// searches of all entries in the queue, not just the head msg. All
// msgs in the structure can be invalidated if a demand miss matches.
in_port(optionalQueue_in, RubyRequest, optionalQueue, desc="...", rank = 3) {
if (optionalQueue_in.isReady()) {
if (optionalQueue_in.isReady(clockEdge())) {
peek(optionalQueue_in, RubyRequest) {
// Instruction Prefetch
if (in_msg.Type == RubyRequestType:IFETCH) {
@ -373,7 +375,7 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
// Response L1 Network - response msg to this L1 cache
in_port(responseL1Network_in, ResponseMsg, responseToL1Cache, rank = 2) {
if (responseL1Network_in.isReady()) {
if (responseL1Network_in.isReady(clockEdge())) {
peek(responseL1Network_in, ResponseMsg, block_on="addr") {
assert(in_msg.Destination.isElement(machineID));
@ -413,7 +415,7 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
// Request InterChip network - request from this L1 cache to the shared L2
in_port(requestL1Network_in, RequestMsg, requestToL1Cache, rank = 1) {
if(requestL1Network_in.isReady()) {
if(requestL1Network_in.isReady(clockEdge())) {
peek(requestL1Network_in, RequestMsg, block_on="addr") {
assert(in_msg.Destination.isElement(machineID));
@ -439,7 +441,7 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
// Mandatory Queue betweens Node's CPU and it's L1 caches
in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...", rank = 0) {
if (mandatoryQueue_in.isReady()) {
if (mandatoryQueue_in.isReady(clockEdge())) {
peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {
// Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
@ -866,17 +868,19 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue();
mandatoryQueue_in.dequeue(clockEdge());
}
action(l_popRequestQueue, "l",
desc="Pop incoming request queue and profile the delay within this virtual network") {
profileMsgDelay(2, requestL1Network_in.dequeue());
Tick delay := requestL1Network_in.dequeue(clockEdge());
profileMsgDelay(2, ticksToCycles(delay));
}
action(o_popIncomingResponseQueue, "o",
desc="Pop Incoming Response queue and profile the delay within this virtual network") {
profileMsgDelay(1, responseL1Network_in.dequeue());
Tick delay := responseL1Network_in.dequeue(clockEdge());
profileMsgDelay(1, ticksToCycles(delay));
}
action(s_deallocateTBE, "s", desc="Deallocate TBE") {
@ -963,7 +967,7 @@ machine(L1Cache, "MESI Directory L1 Cache CMP")
}
action(pq_popPrefetchQueue, "\pq", desc="Pop the prefetch request queue") {
optionalQueue_in.dequeue();
optionalQueue_in.dequeue(clockEdge());
}
action(mp_markPrefetched, "mp", desc="Write data from response queue to cache") {

View file

@ -148,6 +148,10 @@ machine(L2Cache, "MESI Directory L2 Cache CMP")
TBETable TBEs, template="<L2Cache_TBE>", constructor="m_number_of_TBEs";
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
Cycles ticksToCycles(Tick t);
void set_cache_entry(AbstractCacheEntry a);
void unset_cache_entry();
void set_tbe(TBE a);
@ -285,7 +289,7 @@ machine(L2Cache, "MESI Directory L2 Cache CMP")
in_port(L1unblockNetwork_in, ResponseMsg, unblockToL2Cache, rank = 2) {
if(L1unblockNetwork_in.isReady()) {
if(L1unblockNetwork_in.isReady(clockEdge())) {
peek(L1unblockNetwork_in, ResponseMsg) {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
@ -307,7 +311,7 @@ machine(L2Cache, "MESI Directory L2 Cache CMP")
// Response L2 Network - response msg to this particular L2 bank
in_port(responseL2Network_in, ResponseMsg, responseToL2Cache, rank = 1) {
if (responseL2Network_in.isReady()) {
if (responseL2Network_in.isReady(clockEdge())) {
peek(responseL2Network_in, ResponseMsg) {
// test wether it's from a local L1 or an off chip source
assert(in_msg.Destination.isElement(machineID));
@ -348,7 +352,7 @@ machine(L2Cache, "MESI Directory L2 Cache CMP")
// L1 Request
in_port(L1RequestL2Network_in, RequestMsg, L1RequestToL2Cache, rank = 0) {
if(L1RequestL2Network_in.isReady()) {
if(L1RequestL2Network_in.isReady(clockEdge())) {
peek(L1RequestL2Network_in, RequestMsg) {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
@ -604,15 +608,18 @@ machine(L2Cache, "MESI Directory L2 Cache CMP")
}
action(jj_popL1RequestQueue, "\j", desc="Pop incoming L1 request queue") {
profileMsgDelay(0, L1RequestL2Network_in.dequeue());
Tick delay := L1RequestL2Network_in.dequeue(clockEdge());
profileMsgDelay(0, ticksToCycles(delay));
}
action(k_popUnblockQueue, "k", desc="Pop incoming unblock queue") {
profileMsgDelay(0, L1unblockNetwork_in.dequeue());
Tick delay := L1unblockNetwork_in.dequeue(clockEdge());
profileMsgDelay(0, ticksToCycles(delay));
}
action(o_popIncomingResponseQueue, "o", desc="Pop Incoming Response queue") {
profileMsgDelay(1, responseL2Network_in.dequeue());
Tick delay := responseL2Network_in.dequeue(clockEdge());
profileMsgDelay(1, ticksToCycles(delay));
}
action(m_writeDataToCache, "m", desc="Write data from response queue to cache") {
@ -769,7 +776,7 @@ machine(L2Cache, "MESI Directory L2 Cache CMP")
}
action(zn_recycleResponseNetwork, "zn", desc="recycle memory request") {
responseL2Network_in.recycle();
responseL2Network_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(kd_wakeUpDependents, "kd", desc="wake-up dependents") {

View file

@ -98,6 +98,8 @@ machine(Directory, "MESI Two Level directory protocol")
// ** OBJECTS **
TBETable TBEs, template="<Directory_TBE>", constructor="m_number_of_TBEs";
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
void set_tbe(TBE tbe);
void unset_tbe();
void wakeUpBuffers(Addr a);
@ -190,7 +192,7 @@ machine(Directory, "MESI Two Level directory protocol")
// ** IN_PORTS **
in_port(requestNetwork_in, RequestMsg, requestToDir, rank = 0) {
if (requestNetwork_in.isReady()) {
if (requestNetwork_in.isReady(clockEdge())) {
peek(requestNetwork_in, RequestMsg) {
assert(in_msg.Destination.isElement(machineID));
if (isGETRequest(in_msg.Type)) {
@ -210,7 +212,7 @@ machine(Directory, "MESI Two Level directory protocol")
}
in_port(responseNetwork_in, ResponseMsg, responseToDir, rank = 1) {
if (responseNetwork_in.isReady()) {
if (responseNetwork_in.isReady(clockEdge())) {
peek(responseNetwork_in, ResponseMsg) {
assert(in_msg.Destination.isElement(machineID));
if (in_msg.Type == CoherenceResponseType:MEMORY_DATA) {
@ -227,7 +229,7 @@ machine(Directory, "MESI Two Level directory protocol")
// off-chip memory request/response is done
in_port(memQueue_in, MemoryMsg, responseFromMemory, rank = 2) {
if (memQueue_in.isReady()) {
if (memQueue_in.isReady(clockEdge())) {
peek(memQueue_in, MemoryMsg) {
if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
trigger(Event:Memory_Data, in_msg.addr, TBEs[in_msg.addr]);
@ -286,15 +288,15 @@ machine(Directory, "MESI Two Level directory protocol")
}
action(j_popIncomingRequestQueue, "j", desc="Pop incoming request queue") {
requestNetwork_in.dequeue();
requestNetwork_in.dequeue(clockEdge());
}
action(k_popIncomingResponseQueue, "k", desc="Pop incoming request queue") {
responseNetwork_in.dequeue();
responseNetwork_in.dequeue(clockEdge());
}
action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
memQueue_in.dequeue();
memQueue_in.dequeue(clockEdge());
}
action(kd_wakeUpDependents, "kd", desc="wake-up dependents") {
@ -322,7 +324,7 @@ machine(Directory, "MESI Two Level directory protocol")
}
action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") {
requestNetwork_in.dequeue();
requestNetwork_in.dequeue(clockEdge());
}
action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") {
@ -359,7 +361,7 @@ machine(Directory, "MESI Two Level directory protocol")
}
action(zz_recycleDMAQueue, "zz", desc="recycle DMA queue") {
requestNetwork_in.recycle();
requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") {

View file

@ -51,6 +51,7 @@ machine(DMA, "DMA Controller")
}
State cur_state;
Tick clockEdge();
State getState(Addr addr) {
return cur_state;
@ -78,7 +79,7 @@ machine(DMA, "DMA Controller")
out_port(requestToDir_out, RequestMsg, requestToDir, desc="...");
in_port(dmaRequestQueue_in, SequencerMsg, mandatoryQueue, desc="...") {
if (dmaRequestQueue_in.isReady()) {
if (dmaRequestQueue_in.isReady(clockEdge())) {
peek(dmaRequestQueue_in, SequencerMsg) {
if (in_msg.Type == SequencerRequestType:LD ) {
trigger(Event:ReadRequest, in_msg.LineAddress);
@ -92,7 +93,7 @@ machine(DMA, "DMA Controller")
}
in_port(dmaResponseQueue_in, ResponseMsg, responseFromDir, desc="...") {
if (dmaResponseQueue_in.isReady()) {
if (dmaResponseQueue_in.isReady(clockEdge())) {
peek( dmaResponseQueue_in, ResponseMsg) {
if (in_msg.Type == CoherenceResponseType:ACK) {
trigger(Event:Ack, makeLineAddress(in_msg.addr));
@ -142,11 +143,11 @@ machine(DMA, "DMA Controller")
}
action(p_popRequestQueue, "p", desc="Pop request queue") {
dmaRequestQueue_in.dequeue();
dmaRequestQueue_in.dequeue(clockEdge());
}
action(p_popResponseQueue, "\p", desc="Pop request queue") {
dmaResponseQueue_in.dequeue();
dmaResponseQueue_in.dequeue(clockEdge());
}
transition(READY, ReadRequest, BUSY_RD) {

View file

@ -103,6 +103,8 @@ machine(L1Cache, "MI Example L1 Cache")
TBETable TBEs, template="<L1Cache_TBE>", constructor="m_number_of_TBEs";
// PROTOTYPES
Tick clockEdge();
Cycles ticksToCycles(Tick t);
void set_cache_entry(AbstractCacheEntry a);
void unset_cache_entry();
void set_tbe(TBE b);
@ -200,7 +202,7 @@ machine(L1Cache, "MI Example L1 Cache")
out_port(responseNetwork_out, ResponseMsg, responseFromCache);
in_port(forwardRequestNetwork_in, RequestMsg, forwardToCache) {
if (forwardRequestNetwork_in.isReady()) {
if (forwardRequestNetwork_in.isReady(clockEdge())) {
peek(forwardRequestNetwork_in, RequestMsg, block_on="addr") {
Entry cache_entry := getCacheEntry(in_msg.addr);
@ -226,7 +228,7 @@ machine(L1Cache, "MI Example L1 Cache")
}
in_port(responseNetwork_in, ResponseMsg, responseToCache) {
if (responseNetwork_in.isReady()) {
if (responseNetwork_in.isReady(clockEdge())) {
peek(responseNetwork_in, ResponseMsg, block_on="addr") {
Entry cache_entry := getCacheEntry(in_msg.addr);
@ -244,7 +246,7 @@ machine(L1Cache, "MI Example L1 Cache")
// Mandatory Queue
in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...") {
if (mandatoryQueue_in.isReady()) {
if (mandatoryQueue_in.isReady(clockEdge())) {
peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {
Entry cache_entry := getCacheEntry(in_msg.LineAddress);
@ -330,15 +332,17 @@ machine(L1Cache, "MI Example L1 Cache")
}
action(m_popMandatoryQueue, "m", desc="Pop the mandatory request queue") {
mandatoryQueue_in.dequeue();
mandatoryQueue_in.dequeue(clockEdge());
}
action(n_popResponseQueue, "n", desc="Pop the response queue") {
profileMsgDelay(1, responseNetwork_in.dequeue());
Tick delay := responseNetwork_in.dequeue(clockEdge());
profileMsgDelay(1, ticksToCycles(delay));
}
action(o_popForwardedRequestQueue, "o", desc="Pop the forwarded request queue") {
profileMsgDelay(2, forwardRequestNetwork_in.dequeue());
Tick delay := forwardRequestNetwork_in.dequeue(clockEdge());
profileMsgDelay(2, ticksToCycles(delay));
}
action(p_profileMiss, "pi", desc="Profile cache miss") {

View file

@ -108,6 +108,9 @@ machine(Directory, "Directory protocol")
// ** OBJECTS **
TBETable TBEs, template="<Directory_TBE>", constructor="m_number_of_TBEs";
Tick clockEdge();
Cycles ticksToCycles(Tick t);
Tick cyclesToTicks(Cycles c);
void set_tbe(TBE b);
void unset_tbe();
@ -204,7 +207,7 @@ machine(Directory, "Directory protocol")
// ** IN_PORTS **
in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) {
if (dmaRequestQueue_in.isReady()) {
if (dmaRequestQueue_in.isReady(clockEdge())) {
peek(dmaRequestQueue_in, DMARequestMsg) {
TBE tbe := TBEs[in_msg.LineAddress];
if (in_msg.Type == DMARequestType:READ) {
@ -219,7 +222,7 @@ machine(Directory, "Directory protocol")
}
in_port(requestQueue_in, RequestMsg, requestToDir) {
if (requestQueue_in.isReady()) {
if (requestQueue_in.isReady(clockEdge())) {
peek(requestQueue_in, RequestMsg) {
TBE tbe := TBEs[in_msg.addr];
if (in_msg.Type == CoherenceRequestType:GETS) {
@ -242,7 +245,7 @@ machine(Directory, "Directory protocol")
//added by SS
// off-chip memory request/response is done
in_port(memQueue_in, MemoryMsg, responseFromMemory) {
if (memQueue_in.isReady()) {
if (memQueue_in.isReady(clockEdge())) {
peek(memQueue_in, MemoryMsg) {
TBE tbe := TBEs[in_msg.addr];
if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
@ -392,11 +395,11 @@ machine(Directory, "Directory protocol")
}
action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
requestQueue_in.dequeue();
requestQueue_in.dequeue(clockEdge());
}
action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") {
dmaRequestQueue_in.dequeue();
dmaRequestQueue_in.dequeue(clockEdge());
}
action(v_allocateTBE, "v", desc="Allocate TBE") {
@ -432,11 +435,11 @@ machine(Directory, "Directory protocol")
}
action(z_recycleRequestQueue, "z", desc="recycle request queue") {
requestQueue_in.recycle();
requestQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(y_recycleDMARequestQueue, "y", desc="recycle dma request queue") {
dmaRequestQueue_in.recycle();
dmaRequestQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
@ -476,7 +479,7 @@ machine(Directory, "Directory protocol")
}
action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
memQueue_in.dequeue();
memQueue_in.dequeue(clockEdge());
}
// TRANSITIONS

View file

@ -52,6 +52,9 @@ machine(DMA, "DMA Controller")
State cur_state;
Tick clockEdge();
Cycles ticksToCycles(Tick t);
State getState(Addr addr) {
return cur_state;
}
@ -78,7 +81,7 @@ machine(DMA, "DMA Controller")
out_port(requestToDir_out, DMARequestMsg, requestToDir, desc="...");
in_port(dmaRequestQueue_in, SequencerMsg, mandatoryQueue, desc="...") {
if (dmaRequestQueue_in.isReady()) {
if (dmaRequestQueue_in.isReady(clockEdge())) {
peek(dmaRequestQueue_in, SequencerMsg) {
if (in_msg.Type == SequencerRequestType:LD ) {
trigger(Event:ReadRequest, in_msg.LineAddress);
@ -92,7 +95,7 @@ machine(DMA, "DMA Controller")
}
in_port(dmaResponseQueue_in, DMAResponseMsg, responseFromDir, desc="...") {
if (dmaResponseQueue_in.isReady()) {
if (dmaResponseQueue_in.isReady(clockEdge())) {
peek( dmaResponseQueue_in, DMAResponseMsg) {
if (in_msg.Type == DMAResponseType:ACK) {
trigger(Event:Ack, in_msg.LineAddress);
@ -148,11 +151,11 @@ machine(DMA, "DMA Controller")
}
action(p_popRequestQueue, "p", desc="Pop request queue") {
dmaRequestQueue_in.dequeue();
dmaRequestQueue_in.dequeue(clockEdge());
}
action(p_popResponseQueue, "\p", desc="Pop request queue") {
dmaResponseQueue_in.dequeue();
dmaResponseQueue_in.dequeue(clockEdge());
}
transition(READY, ReadRequest, BUSY_RD) {

View file

@ -133,6 +133,8 @@ machine(L1Cache, "Directory protocol")
bool isPresent(Addr);
}
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
void set_tbe(TBE b);
@ -266,16 +268,16 @@ machine(L1Cache, "Directory protocol")
// Use Timer
in_port(useTimerTable_in, Addr, useTimerTable) {
if (useTimerTable_in.isReady()) {
trigger(Event:Use_Timeout, useTimerTable.readyAddress(),
getCacheEntry(useTimerTable.readyAddress()),
TBEs[useTimerTable.readyAddress()]);
if (useTimerTable_in.isReady(clockEdge())) {
Addr readyAddress := useTimerTable.nextAddress();
trigger(Event:Use_Timeout, readyAddress, getCacheEntry(readyAddress),
TBEs.lookup(readyAddress));
}
}
// Trigger Queue
in_port(triggerQueue_in, TriggerMsg, triggerQueue) {
if (triggerQueue_in.isReady()) {
if (triggerQueue_in.isReady(clockEdge())) {
peek(triggerQueue_in, TriggerMsg) {
if (in_msg.Type == TriggerType:ALL_ACKS) {
trigger(Event:All_acks, in_msg.addr,
@ -291,7 +293,7 @@ machine(L1Cache, "Directory protocol")
// Request Network
in_port(requestNetwork_in, RequestMsg, requestToL1Cache) {
if (requestNetwork_in.isReady()) {
if (requestNetwork_in.isReady(clockEdge())) {
peek(requestNetwork_in, RequestMsg, block_on="addr") {
assert(in_msg.Destination.isElement(machineID));
DPRINTF(RubySlicc, "L1 received: %s\n", in_msg.Type);
@ -331,7 +333,7 @@ machine(L1Cache, "Directory protocol")
// Response Network
in_port(responseToL1Cache_in, ResponseMsg, responseToL1Cache) {
if (responseToL1Cache_in.isReady()) {
if (responseToL1Cache_in.isReady(clockEdge())) {
peek(responseToL1Cache_in, ResponseMsg, block_on="addr") {
if (in_msg.Type == CoherenceResponseType:ACK) {
trigger(Event:Ack, in_msg.addr,
@ -352,7 +354,7 @@ machine(L1Cache, "Directory protocol")
// Nothing from the unblock network
// Mandatory Queue betweens Node's CPU and it's L1 caches
in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...") {
if (mandatoryQueue_in.isReady()) {
if (mandatoryQueue_in.isReady(clockEdge())) {
peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {
// Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
@ -684,7 +686,7 @@ machine(L1Cache, "Directory protocol")
}
action(j_popTriggerQueue, "j", desc="Pop trigger queue.") {
triggerQueue_in.dequeue();
triggerQueue_in.dequeue(clockEdge());
}
action(jj_unsetUseTimer, "\jj", desc="Unset use timer.") {
@ -692,11 +694,11 @@ machine(L1Cache, "Directory protocol")
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue();
mandatoryQueue_in.dequeue(clockEdge());
}
action(l_popForwardQueue, "l", desc="Pop forwareded request queue.") {
requestNetwork_in.dequeue();
requestNetwork_in.dequeue(clockEdge());
}
action(m_decrementNumberOfMessages, "m", desc="Decrement the number of messages for which we're waiting") {
@ -715,7 +717,7 @@ machine(L1Cache, "Directory protocol")
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseToL1Cache_in.dequeue();
responseToL1Cache_in.dequeue(clockEdge());
}
action(o_checkForCompletion, "o", desc="Check if we have received all the messages required for completion") {
@ -729,7 +731,8 @@ machine(L1Cache, "Directory protocol")
}
action(o_scheduleUseTimeout, "oo", desc="Schedule a use timeout.") {
useTimerTable.set(address, use_timeout_latency);
useTimerTable.set(address,
clockEdge() + cyclesToTicks(use_timeout_latency));
}
action(ub_dmaUnblockL2Cache, "ub", desc="Send dma ack to l2 cache") {
@ -908,11 +911,11 @@ machine(L1Cache, "Directory protocol")
}
action(z_recycleRequestQueue, "z", desc="Send the head of the mandatory queue to the back of the queue.") {
requestNetwork_in.recycle();
requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(zz_recycleMandatoryQueue, "\z", desc="Send the head of the mandatory queue to the back of the queue.") {
mandatoryQueue_in.recycle();
mandatoryQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
//*****************************************************

View file

@ -227,6 +227,8 @@ machine(L2Cache, "Token protocol")
TBETable TBEs, template="<L2Cache_TBE>", constructor="m_number_of_TBEs";
PerfectCacheMemory localDirectory, template="<L2Cache_DirEntry>";
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
void set_tbe(TBE b);
@ -577,7 +579,7 @@ machine(L2Cache, "Token protocol")
// Trigger Queue
in_port(triggerQueue_in, TriggerMsg, triggerQueue) {
if (triggerQueue_in.isReady()) {
if (triggerQueue_in.isReady(clockEdge())) {
peek(triggerQueue_in, TriggerMsg) {
if (in_msg.Type == TriggerType:ALL_ACKS) {
trigger(Event:All_Acks, in_msg.addr,
@ -592,7 +594,7 @@ machine(L2Cache, "Token protocol")
// Request Network
in_port(requestNetwork_in, RequestMsg, GlobalRequestToL2Cache) {
if (requestNetwork_in.isReady()) {
if (requestNetwork_in.isReady(clockEdge())) {
peek(requestNetwork_in, RequestMsg) {
if (in_msg.Type == CoherenceRequestType:GETX || in_msg.Type == CoherenceRequestType:DMA_WRITE) {
if (in_msg.Requestor == machineID) {
@ -625,7 +627,7 @@ machine(L2Cache, "Token protocol")
}
in_port(L1requestNetwork_in, RequestMsg, L1RequestToL2Cache) {
if (L1requestNetwork_in.isReady()) {
if (L1requestNetwork_in.isReady(clockEdge())) {
peek(L1requestNetwork_in, RequestMsg) {
assert(in_msg.Destination.isElement(machineID));
if (in_msg.Type == CoherenceRequestType:GETX) {
@ -660,7 +662,7 @@ machine(L2Cache, "Token protocol")
// Response Network
in_port(responseNetwork_in, ResponseMsg, responseToL2Cache) {
if (responseNetwork_in.isReady()) {
if (responseNetwork_in.isReady(clockEdge())) {
peek(responseNetwork_in, ResponseMsg) {
assert(in_msg.Destination.isElement(machineID));
if (in_msg.Type == CoherenceResponseType:ACK) {
@ -1366,7 +1368,7 @@ machine(L2Cache, "Token protocol")
}
action(m_popRequestQueue, "m", desc="Pop request queue.") {
requestNetwork_in.dequeue();
requestNetwork_in.dequeue(clockEdge());
}
action(m_decrementNumberOfMessagesInt, "\m", desc="Decrement the number of messages for which we're waiting") {
@ -1391,15 +1393,15 @@ machine(L2Cache, "Token protocol")
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseNetwork_in.dequeue();
responseNetwork_in.dequeue(clockEdge());
}
action(n_popTriggerQueue, "\n", desc="Pop trigger queue.") {
triggerQueue_in.dequeue();
triggerQueue_in.dequeue(clockEdge());
}
action(o_popL1RequestQueue, "o", desc="Pop L1 request queue.") {
L1requestNetwork_in.dequeue();
L1requestNetwork_in.dequeue(clockEdge());
}
@ -1538,21 +1540,21 @@ machine(L2Cache, "Token protocol")
peek(L1requestNetwork_in, RequestMsg) {
APPEND_TRANSITION_COMMENT(in_msg.Requestor);
}
L1requestNetwork_in.recycle();
L1requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(zz_recycleRequestQueue, "\zz", desc="Send the head of the mandatory queue to the back of the queue.") {
peek(requestNetwork_in, RequestMsg) {
APPEND_TRANSITION_COMMENT(in_msg.Requestor);
}
requestNetwork_in.recycle();
requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(zz_recycleResponseQueue, "\z\z", desc="Send the head of the mandatory queue to the back of the queue.") {
peek(responseNetwork_in, ResponseMsg) {
APPEND_TRANSITION_COMMENT(in_msg.Sender);
}
responseNetwork_in.recycle();
responseNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(da_sendDmaAckUnblock, "da", desc="Send dma ack to global directory") {

View file

@ -119,6 +119,8 @@ machine(Directory, "Directory protocol")
// ** OBJECTS **
TBETable TBEs, template="<Directory_TBE>", constructor="m_number_of_TBEs";
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
void set_tbe(TBE b);
void unset_tbe();
@ -228,7 +230,7 @@ machine(Directory, "Directory protocol")
// ** IN_PORTS **
in_port(unblockNetwork_in, ResponseMsg, responseToDir) {
if (unblockNetwork_in.isReady()) {
if (unblockNetwork_in.isReady(clockEdge())) {
peek(unblockNetwork_in, ResponseMsg) {
if (in_msg.Type == CoherenceResponseType:UNBLOCK) {
if (getDirectoryEntry(in_msg.addr).WaitingUnblocks == 1) {
@ -261,7 +263,7 @@ machine(Directory, "Directory protocol")
}
in_port(requestQueue_in, RequestMsg, requestToDir) {
if (requestQueue_in.isReady()) {
if (requestQueue_in.isReady(clockEdge())) {
peek(requestQueue_in, RequestMsg) {
if (in_msg.Type == CoherenceRequestType:GETS) {
trigger(Event:GETS, in_msg.addr, TBEs[in_msg.addr]);
@ -288,7 +290,7 @@ machine(Directory, "Directory protocol")
// off-chip memory request/response is done
in_port(memQueue_in, MemoryMsg, responseFromMemory) {
if (memQueue_in.isReady()) {
if (memQueue_in.isReady(clockEdge())) {
peek(memQueue_in, MemoryMsg) {
if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
trigger(Event:Memory_Data, in_msg.addr, TBEs[in_msg.addr]);
@ -438,11 +440,11 @@ machine(Directory, "Directory protocol")
}
action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
requestQueue_in.dequeue();
requestQueue_in.dequeue(clockEdge());
}
action(j_popIncomingUnblockQueue, "j", desc="Pop incoming unblock queue") {
unblockNetwork_in.dequeue();
unblockNetwork_in.dequeue(clockEdge());
}
action(m_addUnlockerToSharers, "m", desc="Add the unlocker to the sharer list") {
@ -461,7 +463,7 @@ machine(Directory, "Directory protocol")
}
action(q_popMemQueue, "q", desc="Pop off-chip request queue") {
memQueue_in.dequeue();
memQueue_in.dequeue(clockEdge());
}
action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
@ -501,7 +503,7 @@ machine(Directory, "Directory protocol")
}
action(zz_recycleRequest, "\z", desc="Recycle the request queue") {
requestQueue_in.recycle();
requestQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(a_sendDMAAck, "\a", desc="Send DMA Ack that write completed, along with Inv Ack count") {

View file

@ -74,6 +74,7 @@ machine(DMA, "DMA Controller")
TBETable TBEs, template="<DMA_TBE>", constructor="m_number_of_TBEs";
State cur_state;
Tick clockEdge();
void set_tbe(TBE b);
void unset_tbe();
@ -104,7 +105,7 @@ machine(DMA, "DMA Controller")
out_port(triggerQueue_out, TriggerMsg, triggerQueue, desc="...");
in_port(dmaRequestQueue_in, SequencerMsg, mandatoryQueue, desc="...") {
if (dmaRequestQueue_in.isReady()) {
if (dmaRequestQueue_in.isReady(clockEdge())) {
peek(dmaRequestQueue_in, SequencerMsg) {
if (in_msg.Type == SequencerRequestType:LD ) {
trigger(Event:ReadRequest, in_msg.LineAddress,
@ -120,7 +121,7 @@ machine(DMA, "DMA Controller")
}
in_port(dmaResponseQueue_in, ResponseMsg, responseFromDir, desc="...") {
if (dmaResponseQueue_in.isReady()) {
if (dmaResponseQueue_in.isReady(clockEdge())) {
peek( dmaResponseQueue_in, ResponseMsg) {
if (in_msg.Type == CoherenceResponseType:DMA_ACK) {
trigger(Event:DMA_Ack, makeLineAddress(in_msg.addr),
@ -141,7 +142,7 @@ machine(DMA, "DMA Controller")
// Trigger Queue
in_port(triggerQueue_in, TriggerMsg, triggerQueue) {
if (triggerQueue_in.isReady()) {
if (triggerQueue_in.isReady(clockEdge())) {
peek(triggerQueue_in, TriggerMsg) {
if (in_msg.Type == TriggerType:ALL_ACKS) {
trigger(Event:All_Acks, in_msg.addr, TBEs[in_msg.addr]);
@ -215,15 +216,15 @@ machine(DMA, "DMA Controller")
}
action(p_popRequestQueue, "p", desc="Pop request queue") {
dmaRequestQueue_in.dequeue();
dmaRequestQueue_in.dequeue(clockEdge());
}
action(p_popResponseQueue, "\p", desc="Pop request queue") {
dmaResponseQueue_in.dequeue();
dmaResponseQueue_in.dequeue(clockEdge());
}
action(p_popTriggerQueue, "pp", desc="Pop trigger queue") {
triggerQueue_in.dequeue();
triggerQueue_in.dequeue(clockEdge());
}
action(t_updateTBEData, "t", desc="Update TBE Data") {

View file

@ -184,6 +184,8 @@ machine(L1Cache, "Token protocol")
int countReadStarvingForAddress(Addr);
}
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
void set_tbe(TBE b);
@ -456,25 +458,26 @@ machine(L1Cache, "Token protocol")
// Use Timer
in_port(useTimerTable_in, Addr, useTimerTable, rank=5) {
if (useTimerTable_in.isReady()) {
TBE tbe := L1_TBEs[useTimerTable.readyAddress()];
if (useTimerTable_in.isReady(clockEdge())) {
Addr readyAddress := useTimerTable.nextAddress();
TBE tbe := L1_TBEs.lookup(readyAddress);
if (persistentTable.isLocked(useTimerTable.readyAddress()) &&
(persistentTable.findSmallest(useTimerTable.readyAddress()) != machineID)) {
if (persistentTable.typeOfSmallest(useTimerTable.readyAddress()) == AccessType:Write) {
trigger(Event:Use_TimeoutStarverX, useTimerTable.readyAddress(),
getCacheEntry(useTimerTable.readyAddress()), tbe);
if (persistentTable.isLocked(readyAddress) &&
(persistentTable.findSmallest(readyAddress) != machineID)) {
if (persistentTable.typeOfSmallest(readyAddress) == AccessType:Write) {
trigger(Event:Use_TimeoutStarverX, readyAddress,
getCacheEntry(readyAddress), tbe);
} else {
trigger(Event:Use_TimeoutStarverS, useTimerTable.readyAddress(),
getCacheEntry(useTimerTable.readyAddress()), tbe);
trigger(Event:Use_TimeoutStarverS, readyAddress,
getCacheEntry(readyAddress), tbe);
}
} else {
if (no_mig_atomic && IsAtomic(tbe)) {
trigger(Event:Use_TimeoutNoStarvers_NoMig, useTimerTable.readyAddress(),
getCacheEntry(useTimerTable.readyAddress()), tbe);
trigger(Event:Use_TimeoutNoStarvers_NoMig, readyAddress,
getCacheEntry(readyAddress), tbe);
} else {
trigger(Event:Use_TimeoutNoStarvers, useTimerTable.readyAddress(),
getCacheEntry(useTimerTable.readyAddress()), tbe);
trigger(Event:Use_TimeoutNoStarvers, readyAddress,
getCacheEntry(readyAddress), tbe);
}
}
}
@ -482,16 +485,17 @@ machine(L1Cache, "Token protocol")
// Reissue Timer
in_port(reissueTimerTable_in, Addr, reissueTimerTable, rank=4) {
if (reissueTimerTable_in.isReady()) {
trigger(Event:Request_Timeout, reissueTimerTable.readyAddress(),
getCacheEntry(reissueTimerTable.readyAddress()),
L1_TBEs[reissueTimerTable.readyAddress()]);
Tick current_time := clockEdge();
if (reissueTimerTable_in.isReady(current_time)) {
Addr addr := reissueTimerTable.nextAddress();
trigger(Event:Request_Timeout, addr, getCacheEntry(addr),
L1_TBEs.lookup(addr));
}
}
// Persistent Network
in_port(persistentNetwork_in, PersistentMsg, persistentToL1Cache, rank=3) {
if (persistentNetwork_in.isReady()) {
if (persistentNetwork_in.isReady(clockEdge())) {
peek(persistentNetwork_in, PersistentMsg, block_on="addr") {
assert(in_msg.Destination.isElement(machineID));
@ -541,7 +545,7 @@ machine(L1Cache, "Token protocol")
// Response Network
in_port(responseNetwork_in, ResponseMsg, responseToL1Cache, rank=2) {
if (responseNetwork_in.isReady()) {
if (responseNetwork_in.isReady(clockEdge())) {
peek(responseNetwork_in, ResponseMsg, block_on="addr") {
assert(in_msg.Destination.isElement(machineID));
@ -612,7 +616,7 @@ machine(L1Cache, "Token protocol")
// Request Network
in_port(requestNetwork_in, RequestMsg, requestToL1Cache) {
if (requestNetwork_in.isReady()) {
if (requestNetwork_in.isReady(clockEdge())) {
peek(requestNetwork_in, RequestMsg, block_on="addr") {
assert(in_msg.Destination.isElement(machineID));
@ -659,7 +663,7 @@ machine(L1Cache, "Token protocol")
// Mandatory Queue
in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...", rank=0) {
if (mandatoryQueue_in.isReady()) {
if (mandatoryQueue_in.isReady(clockEdge())) {
peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {
// Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
@ -792,7 +796,8 @@ machine(L1Cache, "Token protocol")
// IssueCount.
// Set a wakeup timer
reissueTimerTable.set(address, reissue_wakeup_latency);
reissueTimerTable.set(
address, clockEdge() + cyclesToTicks(reissue_wakeup_latency));
}
} else {
@ -844,9 +849,11 @@ machine(L1Cache, "Token protocol")
// Set a wakeup timer
if (dynamic_timeout_enabled) {
reissueTimerTable.set(address, (5 * averageLatencyEstimate()) / 4);
reissueTimerTable.set(
address, clockEdge() + cyclesToTicks(averageLatencyEstimate()));
} else {
reissueTimerTable.set(address, fixed_timeout_latency);
reissueTimerTable.set(
address, clockEdge() + cyclesToTicks(fixed_timeout_latency));
}
}
@ -911,7 +918,8 @@ machine(L1Cache, "Token protocol")
// IssueCount.
// Set a wakeup timer
reissueTimerTable.set(address, reissue_wakeup_latency);
reissueTimerTable.set(
address, clockEdge() + cyclesToTicks(reissue_wakeup_latency));
}
} else {
@ -968,9 +976,11 @@ machine(L1Cache, "Token protocol")
// Set a wakeup timer
if (dynamic_timeout_enabled) {
reissueTimerTable.set(address, (5 * averageLatencyEstimate()) / 4);
reissueTimerTable.set(
address, clockEdge() + cyclesToTicks(averageLatencyEstimate()));
} else {
reissueTimerTable.set(address, fixed_timeout_latency);
reissueTimerTable.set(
address, clockEdge() + cyclesToTicks(fixed_timeout_latency));
}
}
}
@ -1376,23 +1386,24 @@ machine(L1Cache, "Token protocol")
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue();
mandatoryQueue_in.dequeue(clockEdge());
}
action(l_popPersistentQueue, "l", desc="Pop persistent queue.") {
persistentNetwork_in.dequeue();
persistentNetwork_in.dequeue(clockEdge());
}
action(m_popRequestQueue, "m", desc="Pop request queue.") {
requestNetwork_in.dequeue();
requestNetwork_in.dequeue(clockEdge());
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseNetwork_in.dequeue();
responseNetwork_in.dequeue(clockEdge());
}
action(o_scheduleUseTimeout, "o", desc="Schedule a use timeout.") {
useTimerTable.set(address, use_timeout_latency);
useTimerTable.set(
address, clockEdge() + cyclesToTicks(use_timeout_latency));
}
action(p_informL2AboutTokenLoss, "p", desc="Inform L2 about loss of all tokens") {

View file

@ -149,6 +149,7 @@ machine(L2Cache, "Token protocol")
PersistentTable persistentTable;
PerfectCacheMemory localDirectory, template="<L2Cache_DirEntry>";
Tick clockEdge();
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
@ -326,7 +327,7 @@ machine(L2Cache, "Token protocol")
// Persistent Network
in_port(persistentNetwork_in, PersistentMsg, persistentToL2Cache) {
if (persistentNetwork_in.isReady()) {
if (persistentNetwork_in.isReady(clockEdge())) {
peek(persistentNetwork_in, PersistentMsg) {
assert(in_msg.Destination.isElement(machineID));
@ -366,7 +367,7 @@ machine(L2Cache, "Token protocol")
// Request Network
in_port(requestNetwork_in, RequestMsg, GlobalRequestToL2Cache) {
if (requestNetwork_in.isReady()) {
if (requestNetwork_in.isReady(clockEdge())) {
peek(requestNetwork_in, RequestMsg) {
assert(in_msg.Destination.isElement(machineID));
@ -389,7 +390,7 @@ machine(L2Cache, "Token protocol")
}
in_port(L1requestNetwork_in, RequestMsg, L1RequestToL2Cache) {
if (L1requestNetwork_in.isReady()) {
if (L1requestNetwork_in.isReady(clockEdge())) {
peek(L1requestNetwork_in, RequestMsg) {
assert(in_msg.Destination.isElement(machineID));
Entry cache_entry := getCacheEntry(in_msg.addr);
@ -413,7 +414,7 @@ machine(L2Cache, "Token protocol")
// Response Network
in_port(responseNetwork_in, ResponseMsg, responseToL2Cache) {
if (responseNetwork_in.isReady()) {
if (responseNetwork_in.isReady(clockEdge())) {
peek(responseNetwork_in, ResponseMsg) {
assert(in_msg.Destination.isElement(machineID));
Entry cache_entry := getCacheEntry(in_msg.addr);
@ -870,19 +871,19 @@ machine(L2Cache, "Token protocol")
}
action(l_popPersistentQueue, "l", desc="Pop persistent queue.") {
persistentNetwork_in.dequeue();
persistentNetwork_in.dequeue(clockEdge());
}
action(m_popRequestQueue, "m", desc="Pop request queue.") {
requestNetwork_in.dequeue();
requestNetwork_in.dequeue(clockEdge());
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseNetwork_in.dequeue();
responseNetwork_in.dequeue(clockEdge());
}
action(o_popL1RequestQueue, "o", desc="Pop L1 request queue.") {
L1requestNetwork_in.dequeue();
L1requestNetwork_in.dequeue(clockEdge());
}

View file

@ -172,6 +172,8 @@ machine(Directory, "Token protocol")
bool starving, default="false";
int l2_select_low_bit, default="RubySystem::getBlockSizeBits()";
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
void set_tbe(TBE b);
void unset_tbe();
@ -276,7 +278,7 @@ machine(Directory, "Token protocol")
// ** IN_PORTS **
// off-chip memory request/response is done
in_port(memQueue_in, MemoryMsg, responseFromMemory) {
if (memQueue_in.isReady()) {
if (memQueue_in.isReady(clockEdge())) {
peek(memQueue_in, MemoryMsg) {
if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
trigger(Event:Memory_Data, in_msg.addr, TBEs[in_msg.addr]);
@ -292,14 +294,15 @@ machine(Directory, "Token protocol")
// Reissue Timer
in_port(reissueTimerTable_in, Addr, reissueTimerTable) {
if (reissueTimerTable_in.isReady()) {
trigger(Event:Request_Timeout, reissueTimerTable.readyAddress(),
TBEs[reissueTimerTable.readyAddress()]);
Tick current_time := clockEdge();
if (reissueTimerTable_in.isReady(current_time)) {
Addr addr := reissueTimerTable.nextAddress();
trigger(Event:Request_Timeout, addr, TBEs.lookup(addr));
}
}
in_port(responseNetwork_in, ResponseMsg, responseToDir) {
if (responseNetwork_in.isReady()) {
if (responseNetwork_in.isReady(clockEdge())) {
peek(responseNetwork_in, ResponseMsg) {
assert(in_msg.Destination.isElement(machineID));
if (getDirectoryEntry(in_msg.addr).Tokens + in_msg.Tokens == max_tokens()) {
@ -338,7 +341,7 @@ machine(Directory, "Token protocol")
}
in_port(persistentNetwork_in, PersistentMsg, persistentToDir) {
if (persistentNetwork_in.isReady()) {
if (persistentNetwork_in.isReady(clockEdge())) {
peek(persistentNetwork_in, PersistentMsg) {
assert(in_msg.Destination.isElement(machineID));
@ -400,7 +403,7 @@ machine(Directory, "Token protocol")
}
in_port(requestNetwork_in, RequestMsg, requestToDir) {
if (requestNetwork_in.isReady()) {
if (requestNetwork_in.isReady(clockEdge())) {
peek(requestNetwork_in, RequestMsg) {
assert(in_msg.Destination.isElement(machineID));
if (in_msg.Type == CoherenceRequestType:GETS) {
@ -415,7 +418,7 @@ machine(Directory, "Token protocol")
}
in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) {
if (dmaRequestQueue_in.isReady()) {
if (dmaRequestQueue_in.isReady(clockEdge())) {
peek(dmaRequestQueue_in, DMARequestMsg) {
if (in_msg.Type == DMARequestType:READ) {
trigger(Event:DMA_READ, in_msg.LineAddress, TBEs[in_msg.LineAddress]);
@ -490,7 +493,7 @@ machine(Directory, "Token protocol")
// IssueCount.
// Set a wakeup timer
reissueTimerTable.set(address, reissue_wakeup_latency);
reissueTimerTable.set(address, cyclesToTicks(reissue_wakeup_latency));
}
}
@ -558,7 +561,7 @@ machine(Directory, "Token protocol")
// IssueCount.
// Set a wakeup timer
reissueTimerTable.set(address, reissue_wakeup_latency);
reissueTimerTable.set(address, cyclesToTicks(reissue_wakeup_latency));
}
}
@ -752,35 +755,35 @@ machine(Directory, "Token protocol")
}
action(j_popIncomingRequestQueue, "j", desc="Pop incoming request queue") {
requestNetwork_in.dequeue();
requestNetwork_in.dequeue(clockEdge());
}
action(z_recycleRequest, "z", desc="Recycle the request queue") {
requestNetwork_in.recycle();
requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(k_popIncomingResponseQueue, "k", desc="Pop incoming response queue") {
responseNetwork_in.dequeue();
responseNetwork_in.dequeue(clockEdge());
}
action(kz_recycleResponse, "kz", desc="Recycle incoming response queue") {
responseNetwork_in.recycle();
responseNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(l_popIncomingPersistentQueue, "l", desc="Pop incoming persistent queue") {
persistentNetwork_in.dequeue();
persistentNetwork_in.dequeue(clockEdge());
}
action(p_popDmaRequestQueue, "pd", desc="pop dma request queue") {
dmaRequestQueue_in.dequeue();
dmaRequestQueue_in.dequeue(clockEdge());
}
action(y_recycleDmaRequestQueue, "y", desc="recycle dma request queue") {
dmaRequestQueue_in.recycle();
dmaRequestQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
memQueue_in.dequeue();
memQueue_in.dequeue(clockEdge());
}
action(r_bounceResponse, "r", desc="Bounce response to starving processor") {
@ -804,7 +807,7 @@ machine(Directory, "Token protocol")
//
if (reissueTimerTable.isSet(address)) {
reissueTimerTable.unset(address);
reissueTimerTable.set(address, fixed_timeout_latency);
reissueTimerTable.set(address, cyclesToTicks(fixed_timeout_latency));
}
}
@ -812,7 +815,7 @@ machine(Directory, "Token protocol")
//
// currently only support a fixed timeout latency
//
reissueTimerTable.set(address, fixed_timeout_latency);
reissueTimerTable.set(address, cyclesToTicks(fixed_timeout_latency));
}
action(ut_unsetReissueTimer, "ut", desc="Unset reissue timer.") {

View file

@ -54,6 +54,8 @@ machine(DMA, "DMA Controller")
State cur_state;
Tick clockEdge();
State getState(Addr addr) {
return cur_state;
}
@ -80,7 +82,7 @@ machine(DMA, "DMA Controller")
out_port(reqToDirectory_out, DMARequestMsg, reqToDirectory, desc="...");
in_port(dmaRequestQueue_in, SequencerMsg, mandatoryQueue, desc="...") {
if (dmaRequestQueue_in.isReady()) {
if (dmaRequestQueue_in.isReady(clockEdge())) {
peek(dmaRequestQueue_in, SequencerMsg) {
if (in_msg.Type == SequencerRequestType:LD ) {
trigger(Event:ReadRequest, in_msg.LineAddress);
@ -94,7 +96,7 @@ machine(DMA, "DMA Controller")
}
in_port(dmaResponseQueue_in, DMAResponseMsg, responseFromDir, desc="...") {
if (dmaResponseQueue_in.isReady()) {
if (dmaResponseQueue_in.isReady(clockEdge())) {
peek( dmaResponseQueue_in, DMAResponseMsg) {
if (in_msg.Type == DMAResponseType:ACK) {
trigger(Event:Ack, in_msg.LineAddress);
@ -150,11 +152,11 @@ machine(DMA, "DMA Controller")
}
action(p_popRequestQueue, "p", desc="Pop request queue") {
dmaRequestQueue_in.dequeue();
dmaRequestQueue_in.dequeue(clockEdge());
}
action(p_popResponseQueue, "\p", desc="Pop request queue") {
dmaResponseQueue_in.dequeue();
dmaResponseQueue_in.dequeue(clockEdge());
}
transition(READY, ReadRequest, BUSY_RD) {

View file

@ -181,6 +181,7 @@ machine({L1Cache, L2Cache}, "AMD Hammer-like protocol")
TBETable TBEs, template="<L1Cache_TBE>", constructor="m_number_of_TBEs";
Tick clockEdge();
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
void set_tbe(TBE b);
@ -329,7 +330,7 @@ machine({L1Cache, L2Cache}, "AMD Hammer-like protocol")
// Trigger Queue
in_port(triggerQueue_in, TriggerMsg, triggerQueue, rank=3) {
if (triggerQueue_in.isReady()) {
if (triggerQueue_in.isReady(clockEdge())) {
peek(triggerQueue_in, TriggerMsg) {
Entry cache_entry := getCacheEntry(in_msg.addr);
@ -352,7 +353,7 @@ machine({L1Cache, L2Cache}, "AMD Hammer-like protocol")
// Response Network
in_port(responseToCache_in, ResponseMsg, responseToCache, rank=2) {
if (responseToCache_in.isReady()) {
if (responseToCache_in.isReady(clockEdge())) {
peek(responseToCache_in, ResponseMsg, block_on="addr") {
Entry cache_entry := getCacheEntry(in_msg.addr);
@ -377,7 +378,7 @@ machine({L1Cache, L2Cache}, "AMD Hammer-like protocol")
// Forward Network
in_port(forwardToCache_in, RequestMsg, forwardToCache, rank=1) {
if (forwardToCache_in.isReady()) {
if (forwardToCache_in.isReady(clockEdge())) {
peek(forwardToCache_in, RequestMsg, block_on="addr") {
Entry cache_entry := getCacheEntry(in_msg.addr);
@ -421,7 +422,7 @@ machine({L1Cache, L2Cache}, "AMD Hammer-like protocol")
// Mandatory Queue
in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...", rank=0) {
if (mandatoryQueue_in.isReady()) {
if (mandatoryQueue_in.isReady(clockEdge())) {
peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {
// Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
@ -950,15 +951,15 @@ machine({L1Cache, L2Cache}, "AMD Hammer-like protocol")
}
action(j_popTriggerQueue, "j", desc="Pop trigger queue.") {
triggerQueue_in.dequeue();
triggerQueue_in.dequeue(clockEdge());
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue();
mandatoryQueue_in.dequeue(clockEdge());
}
action(l_popForwardQueue, "l", desc="Pop forwareded request queue.") {
forwardToCache_in.dequeue();
forwardToCache_in.dequeue(clockEdge());
}
action(hp_copyFromTBEToL2, "li", desc="Copy data from TBE to L2 cache entry.") {
@ -1017,7 +1018,7 @@ machine({L1Cache, L2Cache}, "AMD Hammer-like protocol")
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseToCache_in.dequeue();
responseToCache_in.dequeue(clockEdge());
}
action(ll_L2toL1Transfer, "ll", desc="") {

View file

@ -184,6 +184,7 @@ machine(Directory, "AMD Hammer-like protocol")
bool isPresent(Addr);
}
Tick clockEdge();
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
void set_tbe(TBE a);
@ -314,7 +315,7 @@ machine(Directory, "AMD Hammer-like protocol")
// Trigger Queue
in_port(triggerQueue_in, TriggerMsg, triggerQueue, rank=5) {
if (triggerQueue_in.isReady()) {
if (triggerQueue_in.isReady(clockEdge())) {
peek(triggerQueue_in, TriggerMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
@ -338,7 +339,7 @@ machine(Directory, "AMD Hammer-like protocol")
}
in_port(unblockNetwork_in, ResponseMsg, unblockToDir, rank=4) {
if (unblockNetwork_in.isReady()) {
if (unblockNetwork_in.isReady(clockEdge())) {
peek(unblockNetwork_in, ResponseMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
@ -367,7 +368,7 @@ machine(Directory, "AMD Hammer-like protocol")
// Response Network
in_port(responseToDir_in, ResponseMsg, responseToDir, rank=3) {
if (responseToDir_in.isReady()) {
if (responseToDir_in.isReady(clockEdge())) {
peek(responseToDir_in, ResponseMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
@ -390,7 +391,7 @@ machine(Directory, "AMD Hammer-like protocol")
// off-chip memory request/response is done
in_port(memQueue_in, MemoryMsg, responseFromMemory, rank=2) {
if (memQueue_in.isReady()) {
if (memQueue_in.isReady(clockEdge())) {
peek(memQueue_in, MemoryMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
@ -407,7 +408,7 @@ machine(Directory, "AMD Hammer-like protocol")
}
in_port(requestQueue_in, RequestMsg, requestToDir, rank=1) {
if (requestQueue_in.isReady()) {
if (requestQueue_in.isReady(clockEdge())) {
peek(requestQueue_in, RequestMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
@ -441,7 +442,7 @@ machine(Directory, "AMD Hammer-like protocol")
}
in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir, rank=0) {
if (dmaRequestQueue_in.isReady()) {
if (dmaRequestQueue_in.isReady(clockEdge())) {
peek(dmaRequestQueue_in, DMARequestMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.LineAddress);
TBE tbe := TBEs[in_msg.LineAddress];
@ -682,7 +683,7 @@ machine(Directory, "AMD Hammer-like protocol")
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseToDir_in.dequeue();
responseToDir_in.dequeue(clockEdge());
}
action(o_checkForCompletion, "o", desc="Check if we have received all the messages required for completion") {
@ -1115,14 +1116,14 @@ machine(Directory, "AMD Hammer-like protocol")
}
action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
requestQueue_in.dequeue();
requestQueue_in.dequeue(clockEdge());
}
action(j_popIncomingUnblockQueue, "j", desc="Pop incoming unblock queue") {
peek(unblockNetwork_in, ResponseMsg) {
APPEND_TRANSITION_COMMENT(in_msg.Sender);
}
unblockNetwork_in.dequeue();
unblockNetwork_in.dequeue(clockEdge());
}
action(k_wakeUpDependents, "k", desc="wake-up dependents") {
@ -1130,15 +1131,15 @@ machine(Directory, "AMD Hammer-like protocol")
}
action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
memQueue_in.dequeue();
memQueue_in.dequeue(clockEdge());
}
action(g_popTriggerQueue, "g", desc="Pop trigger queue") {
triggerQueue_in.dequeue();
triggerQueue_in.dequeue(clockEdge());
}
action(p_popDmaRequestQueue, "pd", desc="pop dma request queue") {
dmaRequestQueue_in.dequeue();
dmaRequestQueue_in.dequeue(clockEdge());
}
action(zd_stallAndWaitDMARequest, "zd", desc="Stall and wait the dma request queue") {

View file

@ -52,6 +52,8 @@ machine(DMA, "DMA Controller")
State cur_state;
Tick clockEdge();
State getState(Addr addr) {
return cur_state;
}
@ -77,7 +79,7 @@ machine(DMA, "DMA Controller")
out_port(requestToDir_out, DMARequestMsg, requestToDir, desc="...");
in_port(dmaRequestQueue_in, SequencerMsg, mandatoryQueue, desc="...") {
if (dmaRequestQueue_in.isReady()) {
if (dmaRequestQueue_in.isReady(clockEdge())) {
peek(dmaRequestQueue_in, SequencerMsg) {
if (in_msg.Type == SequencerRequestType:LD ) {
trigger(Event:ReadRequest, in_msg.LineAddress);
@ -91,7 +93,7 @@ machine(DMA, "DMA Controller")
}
in_port(dmaResponseQueue_in, DMAResponseMsg, responseFromDir, desc="...") {
if (dmaResponseQueue_in.isReady()) {
if (dmaResponseQueue_in.isReady(clockEdge())) {
peek( dmaResponseQueue_in, DMAResponseMsg) {
if (in_msg.Type == DMAResponseType:ACK) {
trigger(Event:Ack, in_msg.LineAddress);
@ -147,11 +149,11 @@ machine(DMA, "DMA Controller")
}
action(p_popRequestQueue, "p", desc="Pop request queue") {
dmaRequestQueue_in.dequeue();
dmaRequestQueue_in.dequeue(clockEdge());
}
action(p_popResponseQueue, "\p", desc="Pop request queue") {
dmaResponseQueue_in.dequeue();
dmaResponseQueue_in.dequeue(clockEdge());
}
transition(READY, ReadRequest, BUSY_RD) {

View file

@ -68,6 +68,7 @@ machine(L1Cache, "Network_test L1 Cache")
}
// FUNCTIONS
Tick clockEdge();
// cpu/testers/networktest/networktest.cc generates packets of the type
// ReadReq, INST_FETCH, and WriteReq.
@ -129,7 +130,7 @@ machine(L1Cache, "Network_test L1 Cache")
// Mandatory Queue
in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...") {
if (mandatoryQueue_in.isReady()) {
if (mandatoryQueue_in.isReady(clockEdge())) {
peek(mandatoryQueue_in, RubyRequest) {
trigger(mandatory_request_type_to_event(in_msg.Type),
in_msg.LineAddress, getCacheEntry(in_msg.LineAddress));
@ -174,7 +175,7 @@ machine(L1Cache, "Network_test L1 Cache")
}
action(m_popMandatoryQueue, "m", desc="Pop the mandatory request queue") {
mandatoryQueue_in.dequeue();
mandatoryQueue_in.dequeue(clockEdge());
}
action(r_load_hit, "r", desc="Notify sequencer the load completed.") {

View file

@ -60,7 +60,9 @@ machine(Directory, "Network_test Directory")
DataBlock DataBlk, desc="data for the block";
}
// ** OBJECTS **
// ** FUNCTIONS **
Tick clockEdge();
State getState(Addr addr) {
return State:I;
}
@ -87,7 +89,7 @@ machine(Directory, "Network_test Directory")
// ** IN_PORTS **
in_port(requestQueue_in, RequestMsg, requestToDir) {
if (requestQueue_in.isReady()) {
if (requestQueue_in.isReady(clockEdge())) {
peek(requestQueue_in, RequestMsg) {
if (in_msg.Type == CoherenceRequestType:MSG) {
trigger(Event:Receive_Request, in_msg.addr);
@ -98,7 +100,7 @@ machine(Directory, "Network_test Directory")
}
}
in_port(forwardQueue_in, RequestMsg, forwardToDir) {
if (forwardQueue_in.isReady()) {
if (forwardQueue_in.isReady(clockEdge())) {
peek(forwardQueue_in, RequestMsg) {
if (in_msg.Type == CoherenceRequestType:MSG) {
trigger(Event:Receive_Forward, in_msg.addr);
@ -109,7 +111,7 @@ machine(Directory, "Network_test Directory")
}
}
in_port(responseQueue_in, RequestMsg, responseToDir) {
if (responseQueue_in.isReady()) {
if (responseQueue_in.isReady(clockEdge())) {
peek(responseQueue_in, RequestMsg) {
if (in_msg.Type == CoherenceRequestType:MSG) {
trigger(Event:Receive_Response, in_msg.addr);
@ -123,15 +125,15 @@ machine(Directory, "Network_test Directory")
// Actions
action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
requestQueue_in.dequeue();
requestQueue_in.dequeue(clockEdge());
}
action(f_popIncomingForwardQueue, "f", desc="Pop incoming forward queue") {
forwardQueue_in.dequeue();
forwardQueue_in.dequeue(clockEdge());
}
action(r_popIncomingResponseQueue, "r", desc="Pop incoming response queue") {
responseQueue_in.dequeue();
responseQueue_in.dequeue(clockEdge());
}
// TRANSITIONS

View file

@ -1,4 +1,3 @@
/*
* Copyright (c) 1999-2005 Mark D. Hill and David A. Wood
* All rights reserved.
@ -31,6 +30,7 @@
NodeID version;
MachineID machineID;
NodeID clusterID;
Cycles recycle_latency;
// Functions implemented in the AbstractController class for
// making timing access to the memory maintained by the

View file

@ -37,6 +37,7 @@ external_type(PacketPtr, primitive="yes");
external_type(Packet, primitive="yes");
external_type(Addr, primitive="yes");
external_type(Cycles, primitive="yes", default="Cycles(0)");
external_type(Tick, primitive="yes", default="0");
structure(DataBlock, external = "yes", desc="..."){
void clear();

View file

@ -41,9 +41,9 @@ external_type(OutPort, primitive="yes");
external_type(Scalar, primitive="yes");
structure(InPort, external = "yes", primitive="yes") {
bool isReady();
Cycles dequeue();
void recycle();
bool isReady(Tick current_time);
Tick dequeue(Tick current_time);
void recycle(Tick current_time, Tick recycle_latency);
bool isEmpty();
bool isStallMapEmpty();
int getStallMapSize();
@ -179,9 +179,9 @@ structure (DMASequencer, external = "yes") {
}
structure (TimerTable, inport="yes", external = "yes") {
bool isReady();
Addr readyAddress();
void set(Addr, Cycles);
bool isReady(Tick);
Addr nextAddress();
void set(Addr, Tick);
void unset(Addr);
bool isSet(Addr);
}

View file

@ -40,7 +40,7 @@ using namespace std;
using m5::stl_helpers::operator<<;
MessageBuffer::MessageBuffer(const Params *p)
: SimObject(p), m_recycle_latency(p->recycle_latency),
: SimObject(p),
m_max_size(p->buffer_size), m_time_last_time_size_checked(0),
m_time_last_time_enqueue(0), m_time_last_time_pop(0),
m_last_arrival_time(0), m_strict_fifo(p->ordered),
@ -48,9 +48,6 @@ MessageBuffer::MessageBuffer(const Params *p)
{
m_msg_counter = 0;
m_consumer = NULL;
m_sender = NULL;
m_receiver = NULL;
m_size_last_time_size_checked = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
@ -63,10 +60,10 @@ MessageBuffer::MessageBuffer(const Params *p)
}
unsigned int
MessageBuffer::getSize()
MessageBuffer::getSize(Tick curTime)
{
if (m_time_last_time_size_checked != m_receiver->curCycle()) {
m_time_last_time_size_checked = m_receiver->curCycle();
if (m_time_last_time_size_checked != curTime) {
m_time_last_time_size_checked = curTime;
m_size_last_time_size_checked = m_prio_heap.size();
}
@ -74,7 +71,7 @@ MessageBuffer::getSize()
}
bool
MessageBuffer::areNSlotsAvailable(unsigned int n)
MessageBuffer::areNSlotsAvailable(unsigned int n, Tick current_time)
{
// fast path when message buffers have infinite size
@ -88,11 +85,11 @@ MessageBuffer::areNSlotsAvailable(unsigned int n)
// size immediately
unsigned int current_size = 0;
if (m_time_last_time_pop < m_sender->clockEdge()) {
if (m_time_last_time_pop < current_time) {
// no pops this cycle - heap size is correct
current_size = m_prio_heap.size();
} else {
if (m_time_last_time_enqueue < m_sender->curCycle()) {
if (m_time_last_time_enqueue < current_time) {
// no enqueues this cycle - m_size_at_cycle_start is correct
current_size = m_size_at_cycle_start;
} else {
@ -118,8 +115,6 @@ const Message*
MessageBuffer::peek() const
{
DPRINTF(RubyQueue, "Peeking at head of queue.\n");
assert(isReady());
const Message* msg_ptr = m_prio_heap.front().get();
assert(msg_ptr);
@ -128,24 +123,24 @@ MessageBuffer::peek() const
}
// FIXME - move me somewhere else
Cycles
Tick
random_time()
{
Cycles time(1);
time += Cycles(random_mt.random(0, 3)); // [0...3]
Tick time = 1;
time += random_mt.random(0, 3); // [0...3]
if (random_mt.random(0, 7) == 0) { // 1 in 8 chance
time += Cycles(100 + random_mt.random(1, 15)); // 100 + [1...15]
time += 100 + random_mt.random(1, 15); // 100 + [1...15]
}
return time;
}
void
MessageBuffer::enqueue(MsgPtr message, Cycles delta)
MessageBuffer::enqueue(MsgPtr message, Tick current_time, Tick delta)
{
// record current time incase we have a pop that also adjusts my size
if (m_time_last_time_enqueue < m_sender->curCycle()) {
if (m_time_last_time_enqueue < current_time) {
m_msgs_this_cycle = 0; // first msg this cycle
m_time_last_time_enqueue = m_sender->curCycle();
m_time_last_time_enqueue = current_time;
}
m_msg_counter++;
@ -154,23 +149,20 @@ MessageBuffer::enqueue(MsgPtr message, Cycles delta)
// Calculate the arrival time of the message, that is, the first
// cycle the message can be dequeued.
assert(delta > 0);
Tick current_time = m_sender->clockEdge();
Tick arrival_time = 0;
if (!RubySystem::getRandomization() || !m_randomization) {
// No randomization
arrival_time = current_time + delta * m_sender->clockPeriod();
arrival_time = current_time + delta;
} else {
// Randomization - ignore delta
if (m_strict_fifo) {
if (m_last_arrival_time < current_time) {
m_last_arrival_time = current_time;
}
arrival_time = m_last_arrival_time +
random_time() * m_sender->clockPeriod();
arrival_time = m_last_arrival_time + random_time();
} else {
arrival_time = current_time +
random_time() * m_sender->clockPeriod();
arrival_time = current_time + random_time();
}
}
@ -180,9 +172,8 @@ MessageBuffer::enqueue(MsgPtr message, Cycles delta)
if (arrival_time < m_last_arrival_time) {
panic("FIFO ordering violated: %s name: %s current time: %d "
"delta: %d arrival_time: %d last arrival_time: %d\n",
*this, name(), current_time,
delta * m_sender->clockPeriod(),
arrival_time, m_last_arrival_time);
*this, name(), current_time, delta, arrival_time,
m_last_arrival_time);
}
}
@ -195,10 +186,10 @@ MessageBuffer::enqueue(MsgPtr message, Cycles delta)
Message* msg_ptr = message.get();
assert(msg_ptr != NULL);
assert(m_sender->clockEdge() >= msg_ptr->getLastEnqueueTime() &&
assert(current_time >= msg_ptr->getLastEnqueueTime() &&
"ensure we aren't dequeued early");
msg_ptr->updateDelayedTicks(m_sender->clockEdge());
msg_ptr->updateDelayedTicks(current_time);
msg_ptr->setLastEnqueueTime(arrival_time);
msg_ptr->setMsgCounter(m_msg_counter);
@ -215,32 +206,30 @@ MessageBuffer::enqueue(MsgPtr message, Cycles delta)
m_consumer->storeEventInfo(m_vnet_id);
}
Cycles
MessageBuffer::dequeue()
Tick
MessageBuffer::dequeue(Tick current_time)
{
DPRINTF(RubyQueue, "Popping\n");
assert(isReady());
assert(isReady(current_time));
// get MsgPtr of the message about to be dequeued
MsgPtr message = m_prio_heap.front();
// get the delay cycles
message->updateDelayedTicks(m_receiver->clockEdge());
Cycles delayCycles =
m_receiver->ticksToCycles(message->getDelayedTicks());
message->updateDelayedTicks(current_time);
Tick delay = message->getDelayedTicks();
// record previous size and time so the current buffer size isn't
// adjusted until schd cycle
if (m_time_last_time_pop < m_receiver->clockEdge()) {
if (m_time_last_time_pop < current_time) {
m_size_at_cycle_start = m_prio_heap.size();
m_time_last_time_pop = m_receiver->clockEdge();
m_time_last_time_pop = current_time;
}
pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MsgPtr>());
pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
m_prio_heap.pop_back();
return delayCycles;
return delay;
}
void
@ -249,25 +238,26 @@ MessageBuffer::clear()
m_prio_heap.clear();
m_msg_counter = 0;
m_time_last_time_enqueue = Cycles(0);
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
}
void
MessageBuffer::recycle()
MessageBuffer::recycle(Tick current_time, Tick recycle_latency)
{
DPRINTF(RubyQueue, "Recycling.\n");
assert(isReady());
assert(isReady(current_time));
MsgPtr node = m_prio_heap.front();
pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
node->setLastEnqueueTime(m_receiver->clockEdge(m_recycle_latency));
Tick future_time = current_time + recycle_latency;
node->setLastEnqueueTime(future_time);
m_prio_heap.back() = node;
push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
m_consumer->
scheduleEventAbsolute(m_receiver->clockEdge(m_recycle_latency));
m_consumer->scheduleEventAbsolute(future_time);
}
void
@ -289,11 +279,10 @@ MessageBuffer::reanalyzeList(list<MsgPtr> &lt, Tick schdTick)
}
void
MessageBuffer::reanalyzeMessages(Addr addr)
MessageBuffer::reanalyzeMessages(Addr addr, Tick current_time)
{
DPRINTF(RubyQueue, "ReanalyzeMessages %s\n", addr);
assert(m_stall_msg_map.count(addr) > 0);
Tick curTick = m_receiver->clockEdge();
//
// Put all stalled messages associated with this address back on the
@ -301,15 +290,14 @@ MessageBuffer::reanalyzeMessages(Addr addr)
// scheduled for the current cycle so that the previously stalled messages
// will be observed before any younger messages that may arrive this cycle
//
reanalyzeList(m_stall_msg_map[addr], curTick);
reanalyzeList(m_stall_msg_map[addr], current_time);
m_stall_msg_map.erase(addr);
}
void
MessageBuffer::reanalyzeAllMessages()
MessageBuffer::reanalyzeAllMessages(Tick current_time)
{
DPRINTF(RubyQueue, "ReanalyzeAllMessages\n");
Tick curTick = m_receiver->clockEdge();
//
// Put all stalled messages associated with this address back on the
@ -319,20 +307,20 @@ MessageBuffer::reanalyzeAllMessages()
//
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end(); ++map_iter) {
reanalyzeList(map_iter->second, curTick);
reanalyzeList(map_iter->second, current_time);
}
m_stall_msg_map.clear();
}
void
MessageBuffer::stallMessage(Addr addr)
MessageBuffer::stallMessage(Addr addr, Tick current_time)
{
DPRINTF(RubyQueue, "Stalling due to %s\n", addr);
assert(isReady());
assert(isReady(current_time));
assert(getOffset(addr) == 0);
MsgPtr message = m_prio_heap.front();
dequeue();
dequeue(current_time);
//
// Note: no event is scheduled to analyze the map at a later time.
@ -356,10 +344,10 @@ MessageBuffer::print(ostream& out) const
}
bool
MessageBuffer::isReady() const
MessageBuffer::isReady(Tick current_time) const
{
return ((m_prio_heap.size() > 0) &&
(m_prio_heap.front()->getLastEnqueueTime() <= m_receiver->clockEdge()));
(m_prio_heap.front()->getLastEnqueueTime() <= current_time));
}
bool

View file

@ -55,24 +55,24 @@ class MessageBuffer : public SimObject
typedef MessageBufferParams Params;
MessageBuffer(const Params *p);
void reanalyzeMessages(Addr addr);
void reanalyzeAllMessages();
void stallMessage(Addr addr);
void reanalyzeMessages(Addr addr, Tick current_time);
void reanalyzeAllMessages(Tick current_time);
void stallMessage(Addr addr, Tick current_time);
// TRUE if head of queue timestamp <= SystemTime
bool isReady() const;
bool isReady(Tick current_time) const;
void
delayHead()
delayHead(Tick current_time, Tick delta)
{
MsgPtr m = m_prio_heap.front();
std::pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
std::greater<MsgPtr>());
m_prio_heap.pop_back();
enqueue(m, Cycles(1));
enqueue(m, current_time, delta);
}
bool areNSlotsAvailable(unsigned int n);
bool areNSlotsAvailable(unsigned int n, Tick curTime);
int getPriority() { return m_priority_rank; }
void setPriority(int rank) { m_priority_rank = rank; }
void setConsumer(Consumer* consumer)
@ -86,20 +86,6 @@ class MessageBuffer : public SimObject
m_consumer = consumer;
}
void setSender(ClockedObject* obj)
{
DPRINTF(RubyQueue, "Setting sender: %s\n", obj->name());
assert(m_sender == NULL || m_sender == obj);
m_sender = obj;
}
void setReceiver(ClockedObject* obj)
{
DPRINTF(RubyQueue, "Setting receiver: %s\n", obj->name());
assert(m_receiver == NULL || m_receiver == obj);
m_receiver = obj;
}
Consumer* getConsumer() { return m_consumer; }
bool getOrdered() { return m_strict_fifo; }
@ -108,26 +94,20 @@ class MessageBuffer : public SimObject
//! message queue. The function assumes that the queue is nonempty.
const Message* peek() const;
const MsgPtr&
peekMsgPtr() const
{
assert(isReady());
return m_prio_heap.front();
}
const MsgPtr &peekMsgPtr() const { return m_prio_heap.front(); }
void enqueue(MsgPtr message) { enqueue(message, Cycles(1)); }
void enqueue(MsgPtr message, Cycles delta);
void enqueue(MsgPtr message, Tick curTime, Tick delta);
//! Updates the delay cycles of the message at the head of the queue,
//! removes it from the queue and returns its total delay.
Cycles dequeue();
Tick dequeue(Tick current_time);
void recycle();
void recycle(Tick current_time, Tick recycle_latency);
bool isEmpty() const { return m_prio_heap.size() == 0; }
bool isStallMapEmpty() { return m_stall_msg_map.size() == 0; }
unsigned int getStallMapSize() { return m_stall_msg_map.size(); }
unsigned int getSize();
unsigned int getSize(Tick curTime);
void clear();
void print(std::ostream& out) const;
@ -148,17 +128,10 @@ class MessageBuffer : public SimObject
uint32_t functionalWrite(Packet *pkt);
private:
//added by SS
const Cycles m_recycle_latency;
void reanalyzeList(std::list<MsgPtr> &, Tick);
private:
// Data Members (m_ prefix)
//! The two ends of the buffer.
ClockedObject* m_sender;
ClockedObject* m_receiver;
//! Consumer to signal a wakeup(), can be NULL
Consumer* m_consumer;
std::vector<MsgPtr> m_prio_heap;
@ -170,12 +143,12 @@ class MessageBuffer : public SimObject
StallMsgMapType m_stall_msg_map;
const unsigned int m_max_size;
Cycles m_time_last_time_size_checked;
Tick m_time_last_time_size_checked;
unsigned int m_size_last_time_size_checked;
// variables used so enqueues appear to happen immediately, while
// pop happen the next cycle
Cycles m_time_last_time_enqueue;
Tick m_time_last_time_enqueue;
Tick m_time_last_time_pop;
Tick m_last_arrival_time;
@ -193,7 +166,7 @@ class MessageBuffer : public SimObject
int m_vnet_id;
};
Cycles random_time();
Tick random_time();
inline std::ostream&
operator<<(std::ostream& out, const MessageBuffer& obj)

View file

@ -37,7 +37,6 @@ class MessageBuffer(SimObject):
ordered = Param.Bool(False, "Whether the buffer is ordered")
buffer_size = Param.Unsigned(0, "Maximum number of entries to buffer \
(0 allows infinite entries)")
recycle_latency = Param.Cycles(Parent.recycle_latency, "")
randomization = Param.Bool(False, "")
master = MasterPort("Master port to MessageBuffer receiver")

View file

@ -115,13 +115,6 @@ NetworkInterface_d::addNode(vector<MessageBuffer *>& in,
for (auto& it : in) {
if (it != nullptr) {
it->setConsumer(this);
it->setReceiver(this);
}
}
for (auto& it : out) {
if (it != nullptr) {
it->setSender(this);
}
}
}
@ -222,6 +215,7 @@ NetworkInterface_d::wakeup()
DPRINTF(RubyNetwork, "m_id: %d woke up at time: %lld", m_id, curCycle());
MsgPtr msg_ptr;
Tick curTime = clockEdge();
// Checking for messages coming from the protocol
// can pick up a message/cycle for each virtual net
@ -231,10 +225,10 @@ NetworkInterface_d::wakeup()
continue;
}
while (b->isReady()) { // Is there a message waiting
while (b->isReady(curTime)) { // Is there a message waiting
msg_ptr = b->peekMsgPtr();
if (flitisizeMessage(msg_ptr, vnet)) {
b->dequeue();
b->dequeue(curTime);
} else {
break;
}
@ -253,7 +247,7 @@ NetworkInterface_d::wakeup()
free_signal = true;
outNode_ptr[t_flit->get_vnet()]->enqueue(
t_flit->get_msg_ptr(), Cycles(1));
t_flit->get_msg_ptr(), curTime, cyclesToTicks(Cycles(1)));
}
// Simply send a credit back since we are not buffering
// this flit in the NI
@ -363,7 +357,7 @@ NetworkInterface_d::checkReschedule()
continue;
}
while (it->isReady()) { // Is there a message waiting
while (it->isReady(clockEdge())) { // Is there a message waiting
scheduleEvent(Cycles(1));
return;
}

View file

@ -99,13 +99,6 @@ NetworkInterface::addNode(vector<MessageBuffer*>& in,
for (auto& it: in) {
if (it != nullptr) {
it->setConsumer(this);
it->setReceiver(this);
}
}
for (auto& it : out) {
if (it != nullptr) {
it->setSender(this);
}
}
}
@ -250,10 +243,10 @@ NetworkInterface::wakeup()
continue;
}
while (b->isReady()) { // Is there a message waiting
while (b->isReady(clockEdge())) { // Is there a message waiting
msg_ptr = b->peekMsgPtr();
if (flitisizeMessage(msg_ptr, vnet)) {
b->dequeue();
b->dequeue(clockEdge());
} else {
break;
}
@ -272,7 +265,7 @@ NetworkInterface::wakeup()
m_id, curCycle());
outNode_ptr[t_flit->get_vnet()]->enqueue(
t_flit->get_msg_ptr(), Cycles(1));
t_flit->get_msg_ptr(), clockEdge(), cyclesToTicks(Cycles(1)));
// signal the upstream router that this vc can be freed now
inNetLink->release_vc_link(t_flit->get_vc(),
@ -334,7 +327,7 @@ NetworkInterface::checkReschedule()
continue;
}
while (it->isReady()) { // Is there a message waiting
while (it->isReady(clockEdge())) { // Is there a message waiting
scheduleEvent(Cycles(1));
return;
}

View file

@ -144,8 +144,9 @@ PerfectSwitch::operateMessageBuffer(MessageBuffer *buffer, int incoming,
// temporary vectors to store the routing results
vector<LinkID> output_links;
vector<NetDest> output_link_destinations;
Tick current_time = m_switch->clockEdge();
while (buffer->isReady()) {
while (buffer->isReady(current_time)) {
DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
// Peek at message
@ -176,7 +177,7 @@ PerfectSwitch::operateMessageBuffer(MessageBuffer *buffer, int incoming,
for (int out = 0; out < m_out.size(); out++) {
int out_queue_length = 0;
for (int v = 0; v < m_virtual_networks; v++) {
out_queue_length += m_out[out][v]->getSize();
out_queue_length += m_out[out][v]->getSize(current_time);
}
int value =
(out_queue_length << 8) |
@ -220,7 +221,7 @@ PerfectSwitch::operateMessageBuffer(MessageBuffer *buffer, int incoming,
for (int i = 0; i < output_links.size(); i++) {
int outgoing = output_links[i];
if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
if (!m_out[outgoing][vnet]->areNSlotsAvailable(1, current_time))
enough = false;
DPRINTF(RubyNetwork, "Checking if node is blocked ..."
@ -251,7 +252,7 @@ PerfectSwitch::operateMessageBuffer(MessageBuffer *buffer, int incoming,
}
// Dequeue msg
buffer->dequeue();
buffer->dequeue(current_time);
m_pending_message_count[vnet]--;
// Enqueue it - for all outgoing queues
@ -273,7 +274,8 @@ PerfectSwitch::operateMessageBuffer(MessageBuffer *buffer, int incoming,
"inport[%d][%d] to outport [%d][%d].\n",
incoming, vnet, outgoing, vnet);
m_out[outgoing][vnet]->enqueue(msg_ptr);
m_out[outgoing][vnet]->enqueue(msg_ptr, current_time,
m_switch->cyclesToTicks(Cycles(1)));
}
}
}

View file

@ -41,9 +41,6 @@ class SimpleNetwork(RubyNetwork):
endpoint_bandwidth = Param.Int(1000, "bandwidth adjustment factor");
adaptive_routing = Param.Bool(False, "enable adaptive routing");
int_link_buffers = VectorParam.MessageBuffer("Buffers for int_links")
# int_links do not recycle buffers, so this parameter is not used.
# TODO: Move recycle_latency out of MessageBuffers and into controllers
recycle_latency = Param.Cycles(0, "")
def setup_buffers(self):
# Note that all SimpleNetwork MessageBuffers are currently ordered
@ -82,6 +79,3 @@ class Switch(BasicRouter):
virt_nets = Param.Int(Parent.number_of_virtual_networks,
"number of virtual networks")
port_buffers = VectorParam.MessageBuffer("Port buffers")
# Ports do not recycle buffers, so this parameter is not used.
# TODO: Move recycle_latency out of MessageBuffers and into controllers
recycle_latency = Param.Cycles(0, "")

View file

@ -69,12 +69,6 @@ void
Switch::addInPort(const vector<MessageBuffer*>& in)
{
m_perfect_switch->addInPort(in);
for (auto& it : in) {
if (it != nullptr) {
it->setReceiver(this);
}
}
}
void
@ -95,17 +89,10 @@ Switch::addOutPort(const vector<MessageBuffer*>& out,
vector<MessageBuffer*> intermediateBuffers;
for (int i = 0; i < out.size(); ++i) {
if (out[i] != nullptr) {
out[i]->setSender(this);
}
assert(m_num_connected_buffers < m_port_buffers.size());
MessageBuffer* buffer_ptr = m_port_buffers[m_num_connected_buffers];
m_num_connected_buffers++;
intermediateBuffers.push_back(buffer_ptr);
buffer_ptr->setSender(this);
buffer_ptr->setReceiver(this);
}
// Hook the queues to the PerfectSwitch

View file

@ -94,14 +94,16 @@ Throttle::operateVnet(int vnet, int &bw_remaining, bool &schedule_wakeup,
if (out == nullptr || in == nullptr) {
return;
}
assert(m_units_remaining[vnet] >= 0);
Tick current_time = m_switch->clockEdge();
while (bw_remaining > 0 && (in->isReady() || m_units_remaining[vnet] > 0) &&
out->areNSlotsAvailable(1)) {
while (bw_remaining > 0 && (in->isReady(current_time) ||
m_units_remaining[vnet] > 0) &&
out->areNSlotsAvailable(1, current_time)) {
// See if we are done transferring the previous message on
// this virtual network
if (m_units_remaining[vnet] == 0 && in->isReady()) {
if (m_units_remaining[vnet] == 0 && in->isReady(current_time)) {
// Find the size of the message we are moving
MsgPtr msg_ptr = in->peekMsgPtr();
Message *net_msg_ptr = msg_ptr.get();
@ -114,8 +116,9 @@ Throttle::operateVnet(int vnet, int &bw_remaining, bool &schedule_wakeup,
m_ruby_system->curCycle());
// Move the message
in->dequeue();
out->enqueue(msg_ptr, m_link_latency);
in->dequeue(current_time);
out->enqueue(msg_ptr, current_time,
m_switch->cyclesToTicks(m_link_latency));
// Count the message
m_msg_counts[net_msg_ptr->getMessageSize()][vnet]++;
@ -128,8 +131,9 @@ Throttle::operateVnet(int vnet, int &bw_remaining, bool &schedule_wakeup,
bw_remaining = max(0, -diff);
}
if (bw_remaining > 0 && (in->isReady() || m_units_remaining[vnet] > 0) &&
!out->areNSlotsAvailable(1)) {
if (bw_remaining > 0 && (in->isReady(current_time) ||
m_units_remaining[vnet] > 0) &&
!out->areNSlotsAvailable(1, current_time)) {
DPRINTF(RubyNetwork, "vnet: %d", vnet);
// schedule me to wakeup again because I'm waiting for my

View file

@ -60,9 +60,6 @@ AbstractController::init()
m_delayVCHistogram.push_back(new Stats::Histogram());
m_delayVCHistogram[i]->init(10);
}
if (getMemoryQueue()) {
getMemoryQueue()->setSender(this);
}
}
void
@ -118,7 +115,8 @@ AbstractController::wakeUpBuffers(Addr addr)
in_port_rank >= 0;
in_port_rank--) {
if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
(*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
(*(m_waiting_buffers[addr]))[in_port_rank]->
reanalyzeMessages(addr, clockEdge());
}
}
delete m_waiting_buffers[addr];
@ -138,7 +136,8 @@ AbstractController::wakeUpAllBuffers(Addr addr)
in_port_rank >= 0;
in_port_rank--) {
if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
(*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
(*(m_waiting_buffers[addr]))[in_port_rank]->
reanalyzeMessages(addr, clockEdge());
}
}
delete m_waiting_buffers[addr];
@ -168,7 +167,7 @@ AbstractController::wakeUpAllBuffers()
//
if (*vec_iter != NULL &&
(wokeUpMsgBufs.count(*vec_iter) == 0)) {
(*vec_iter)->reanalyzeAllMessages();
(*vec_iter)->reanalyzeAllMessages(clockEdge());
wokeUpMsgBufs.insert(*vec_iter);
}
}
@ -328,7 +327,7 @@ AbstractController::recvTimingResp(PacketPtr pkt)
panic("Incorrect packet type received from memory controller!");
}
getMemoryQueue()->enqueue(msg);
getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
delete pkt;
}

View file

@ -47,12 +47,12 @@ class TBETable
void allocate(Addr address);
void deallocate(Addr address);
bool
areNSlotsAvailable(int n) const
areNSlotsAvailable(int n, Tick current_time) const
{
return (m_number_of_TBEs - m_map.size()) >= n;
}
ENTRY* lookup(Addr address);
ENTRY *lookup(Addr address);
// Print cache contents
void print(std::ostream& out) const;

View file

@ -34,14 +34,12 @@ TimerTable::TimerTable()
: m_next_time(0)
{
m_consumer_ptr = NULL;
m_clockobj_ptr = NULL;
m_next_valid = false;
m_next_address = 0;
}
bool
TimerTable::isReady() const
TimerTable::isReady(Tick curTime) const
{
if (m_map.empty())
return false;
@ -50,14 +48,12 @@ TimerTable::isReady() const
updateNext();
}
assert(m_next_valid);
return (m_clockobj_ptr->curCycle() >= m_next_time);
return (curTime >= m_next_time);
}
Addr
TimerTable::readyAddress() const
TimerTable::nextAddress() const
{
assert(isReady());
if (!m_next_valid) {
updateNext();
}
@ -66,17 +62,14 @@ TimerTable::readyAddress() const
}
void
TimerTable::set(Addr address, Cycles relative_latency)
TimerTable::set(Addr address, Tick ready_time)
{
assert(address == makeLineAddress(address));
assert(relative_latency > 0);
assert(!m_map.count(address));
Cycles ready_time = m_clockobj_ptr->curCycle() + relative_latency;
m_map[address] = ready_time;
assert(m_consumer_ptr != NULL);
m_consumer_ptr->
scheduleEventAbsolute(m_clockobj_ptr->clockPeriod() * ready_time);
m_consumer_ptr->scheduleEventAbsolute(ready_time);
m_next_valid = false;
// Don't always recalculate the next ready address

View file

@ -49,25 +49,16 @@ class TimerTable
m_consumer_ptr = consumer_ptr;
}
void setClockObj(ClockedObject* obj)
{
assert(m_clockobj_ptr == NULL);
m_clockobj_ptr = obj;
}
void
setDescription(const std::string& name)
{
m_name = name;
}
bool isReady() const;
Addr readyAddress() const;
bool isReady(Tick curTime) const;
Addr nextAddress() const;
bool isSet(Addr address) const { return !!m_map.count(address); }
void set(Addr address, Cycles relative_latency);
void set(Addr address, uint64_t relative_latency)
{ set(address, Cycles(relative_latency)); }
void set(Addr address, Tick ready_time);
void unset(Addr address);
void print(std::ostream& out) const;
@ -82,14 +73,12 @@ class TimerTable
// use a std::map for the address map as this container is sorted
// and ensures a well-defined iteration order
typedef std::map<Addr, Cycles> AddressMap;
typedef std::map<Addr, Tick> AddressMap;
AddressMap m_map;
mutable bool m_next_valid;
mutable Cycles m_next_time; // Only valid if m_next_valid is true
mutable Tick m_next_time; // Only valid if m_next_valid is true
mutable Addr m_next_address; // Only valid if m_next_valid is true
//! Object used for querying time.
ClockedObject* m_clockobj_ptr;
//! Consumer to signal a wakeup()
Consumer* m_consumer_ptr;

View file

@ -54,7 +54,6 @@ DMASequencer::init()
MemObject::init();
assert(m_controller != NULL);
m_mandatory_q_ptr = m_controller->getMandatoryQueue();
m_mandatory_q_ptr->setSender(this);
m_is_busy = false;
m_data_block_mask = ~ (~0 << RubySystem::getBlockSizeBits());
@ -256,7 +255,7 @@ DMASequencer::makeRequest(PacketPtr pkt)
}
assert(m_mandatory_q_ptr != NULL);
m_mandatory_q_ptr->enqueue(msg);
m_mandatory_q_ptr->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
active_request.bytes_issued += msg->getLen();
return RequestStatus_Issued;
@ -302,7 +301,7 @@ DMASequencer::issueNext()
}
assert(m_mandatory_q_ptr != NULL);
m_mandatory_q_ptr->enqueue(msg);
m_mandatory_q_ptr->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
active_request.bytes_issued += msg->getLen();
DPRINTF(RubyDma,
"DMA request bytes issued %d, bytes completed %d, total len %d\n",

View file

@ -81,7 +81,6 @@ RubyPort::init()
{
assert(m_controller != NULL);
m_mandatory_q_ptr = m_controller->getMandatoryQueue();
m_mandatory_q_ptr->setSender(this);
}
BaseMasterPort &

View file

@ -629,7 +629,7 @@ Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
assert(latency > 0);
assert(m_mandatory_q_ptr != NULL);
m_mandatory_q_ptr->enqueue(msg, latency);
m_mandatory_q_ptr->enqueue(msg, clockEdge(), cyclesToTicks(latency));
}
template <class KEY, class VALUE>

View file

@ -65,9 +65,10 @@ class EnqueueStatementAST(StatementAST):
if self.latexpr != None:
ret_type, rcode = self.latexpr.inline(True)
code("(${{self.queue_name.var.code}}).enqueue(" \
"out_msg, Cycles($rcode));")
"out_msg, clockEdge(), cyclesToTicks(Cycles($rcode)));")
else:
code("(${{self.queue_name.var.code}}).enqueue(out_msg);")
code("(${{self.queue_name.var.code}}).enqueue(out_msg, "\
"clockEdge(), cyclesToTicks(Cycles(1)));")
# End scope
self.symtab.popFrame()

View file

@ -55,6 +55,8 @@ class ObjDeclAST(DeclAST):
c_code = "m_machineID"
elif self.ident == "clusterID":
c_code = "m_clusterID"
elif self.ident == "recycle_latency":
c_code = "m_recycle_latency"
else:
c_code = "(*m_%s_ptr)" % (self.ident)

View file

@ -77,7 +77,7 @@ class PeekStatementAST(StatementAST):
if (m_is_blocking &&
(m_block_map.count(in_msg_ptr->m_$address_field) == 1) &&
(m_block_map[in_msg_ptr->m_$address_field] != &$qcode)) {
$qcode.delayHead();
$qcode.delayHead(clockEdge(), cyclesToTicks(Cycles(1)));
continue;
}
''')

View file

@ -45,5 +45,5 @@ class StallAndWaitStatementAST(StatementAST):
address_code = self.address.var.code
code('''
stallBuffer(&($in_port_code), $address_code);
$in_port_code.stallMessage($address_code);
$in_port_code.stallMessage($address_code, clockEdge());
''')

View file

@ -580,24 +580,10 @@ $c_ident::initNetQueues()
m_net_ptr->set${network}NetQueue(m_version + base, $vid->getOrdered(), $vnet,
"$vnet_type", $vid);
''')
# Set the end
if network == "To":
code('$vid->setSender(this);')
else:
code('$vid->setReceiver(this);')
# Set Priority
if "rank" in var:
code('$vid->setPriority(${{var["rank"]}})')
else:
if var.type_ast.type.c_ident == "MessageBuffer":
code('$vid->setReceiver(this);')
if var.ident.find("triggerQueue") >= 0:
code('$vid->setSender(this);')
elif var.ident.find("optionalQueue") >= 0:
code('$vid->setSender(this);')
code.dedent()
code('''
}
@ -637,9 +623,6 @@ $c_ident::init()
comment = "Type %s default" % vtype.ident
code('*$vid = ${{vtype["default"]}}; // $comment')
if vtype.c_ident == "TimerTable":
code('$vid->setClockObj(this);')
# Set the prefetchers
code()
for prefetcher in self.prefetchers:
@ -1293,7 +1276,7 @@ ${ident}_Controller::doTransitionWorker(${ident}_Event event,
res = trans.resources
for key,val in res.iteritems():
val = '''
if (!%s.areNSlotsAvailable(%s))
if (!%s.areNSlotsAvailable(%s, clockEdge()))
return TransitionResult_ResourceStall;
''' % (key.code, val)
case_sorter.append(val)