This will allow it to be specialized by the ISAs. The existing caching scheme
is provided by the BasicDecodeCache in the GenericISA namespace and is built
from the generalized components.
--HG--
rename : src/cpu/decode_cache.cc => src/arch/generic/decode_cache.cc
These classes are always used together, and merging them will give the ISAs
more flexibility in how they cache things and manage the process.
--HG--
rename : src/arch/x86/predecoder_tables.cc => src/arch/x86/decoder_tables.cc
This patch addresses a number of minor issues that cause problems when
compiling with clang >= 3.0 and gcc >= 4.6. Most importantly, it
avoids using the deprecated ext/hash_map and instead uses
unordered_map (and similarly so for the hash_set). To make use of the
new STL containers, g++ and clang has to be invoked with "-std=c++0x",
and this is now added for all gcc versions >= 4.6, and for clang >=
3.0. For gcc >= 4.3 and <= 4.5 and clang <= 3.0 we use the tr1
unordered_map to avoid the deprecation warning.
The addition of c++0x in turn causes a few problems, as the
compiler is more stringent and adds a number of new warnings. Below,
the most important issues are enumerated:
1) the use of namespaces is more strict, e.g. for isnan, and all
headers opening the entire namespace std are now fixed.
2) another other issue caused by the more stringent compiler is the
narrowing of the embedded python, which used to be a char array,
and is now unsigned char since there were values larger than 128.
3) a particularly odd issue that arose with the new c++0x behaviour is
found in range.hh, where the operator< causes gcc to complain about
the template type parsing (the "<" is interpreted as the beginning
of a template argument), and the problem seems to be related to the
begin/end members introduced for the range-type iteration, which is
a new feature in c++11.
As a minor update, this patch also fixes the build flags for the clang
debug target that used to be shared with gcc and incorrectly use
"-ggdb".
This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.
All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.
To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.
Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
--HG--
rename : src/mem/PhysicalMemory.py => src/mem/AbstractMemory.py
rename : src/mem/PhysicalMemory.py => src/mem/SimpleMemory.py
rename : src/mem/physical.cc => src/mem/abstract_mem.cc
rename : src/mem/physical.hh => src/mem/abstract_mem.hh
rename : src/mem/physical.cc => src/mem/simple_mem.cc
rename : src/mem/physical.hh => src/mem/simple_mem.hh
This patch makes the code compile with clang 2.9 and 3.0 again by
making two very minor changes. Firt, it maintains a strict typing in
the forward declaration of the BaseCPUParams. Second, it adds a
FullSystemInt flag of the type unsigned int next to the boolean
FullSystem flag. The FullSystemInt variable can be used in
decode-statements (expands to switch statements) in the instruction
decoder.
Making the CheckerCPU a runtime time option requires the code to be compatible
with ISAs other than ARM. This patch adds the appropriate function
stubs to allow compilation.
This patch is adding a clearer design intent to all objects that would
not be complete without a port proxy by making the proxies members
rathen than dynamically allocated. In essence, if NULL would not be a
valid value for the proxy, then we avoid using a pointer to make this
clear.
The same approach is used for the methods using these proxies, such as
loadSections, that now use references rather than pointers to better
reflect the fact that NULL would not be an acceptable value (in fact
the code would break and that is how this patch started out).
Overall the concept of "using a reference to express unconditional
composition where a NULL pointer is never valid" could be done on a
much broader scale throughout the code base, but for now it is only
done in the locations affected by the proxies.
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).
clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
This patch cleans up forward declarations and a member-function
prototype that still referred to the old FunctionalPort, VirtualPort
and TranslatingPort. There is no change in functionality.
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.
The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
This parameter depends on a number of coincidences to work properly. First,
there must be an array assigned to system called "cpu" even though there's no
parameter called that. Second, the items in the "cpu" array have to have a
"clock" parameter which has a "frequency" member. This is true of the normal
CPUs, but isn't true of the memory tester CPUs. This happened to work before
because the memory tester CPUs were only used in SE mode where this parameter
was being excluded. Since everything is being pulled into a common binary,
this won't work any more. Since the boot_cpu_frequency parameter is only used
by Alpha's Linux System object (and Mips's through copy and paste), the
definition of that parameter is moved down to those objects specifically.
PageTable supported an allocate() call that called back
through the Process to allocate memory, but did not have
a method to map addresses without allocating new pages.
It makes more sense for Process to do the allocation, so
this method was renamed allocateMem() and moved to Process,
and uses a new map() call on PageTable.
The remaining uses of the process pointer in PageTable
were only to get the name and the PID, so by passing these
in directly in the constructor, we can make PageTable
completely independent of Process.
In order for a system object to work in SE mode and FS mode, it has to either
always require a platform object even in SE mode, or get rid of the
requirement all together. Making SE mode carry around unnecessary/unused bits
of FS seems less than ideal, so I decided to go with the second option. The
platform pointer in the System class was used for exactly one purpose, a path
for the Alpha Linux system object to get to the real time clock and read its
frequency so that it could short cut the loops_per_jiffy calculation. There
was also a copy and pasted implementation in MIPS, but since it was only there
because it was there in Alpha I still count that as one use.
This change reverses the mechanism that communicates the RTC frequency so that
the Tsunami platform object pushes it up to the AlphaSystem object. This is
slightly less specific than it could be because really only the
AlphaLinuxSystem uses it. Because the intrFrequency function on the Platform
class was no longer necessary (and unimplemented on anything but Alpha) it was
eliminated.
After this change, a platform will need to have a system, but a system won't
have to have a platform.
By using an underscore, the "." is still available and can unambiguously be
used to refer to members of a structure if an operand is a structure, class,
etc. This change mostly just replaces the appropriate "."s with "_"s, but
there were also a few places where the ISA descriptions where handling the
extensions themselves and had their own regular expressions to update. The
regular expressions in the isa parser were updated as well. It also now
looks for one of the defined type extensions specifically after connecting "_"
where before it would look for any sequence of characters after a "."
following an operand name and try to use it as the extension. This helps to
disambiguate cases where a "_" may legitimately be part of an operand name but
not separate the name from the type suffix.
Because leaving the "_" and suffix on the variable name still leaves a valid
C++ identifier and all extensions need to be consistent in a given context, I
considered leaving them on as a breadcrumb that would show what the intended
type was for that operand. Unfortunately the operands can be referred to in
code templates, the Mem operand in particular, and since the exact type of Mem
can be different for different uses of the same template, that broke things.
This change is a significant reorganization of the MIPS fault code that gets
rid of duplication, fixes some bugs, doubtlessly introduces others, and adds
names for the exception code constants.
Pass in a bool to indicate if the fault is from a store instead of having two
different classes. The classes were also misleadingly named since loads are
also processed by the DTB but should return ITB faults since they aren't
stores. The TLB may be returning the wrong fault in this case, but I haven't
looked at it closely.
Get rid of Fault classes left over from when this file was copied from Alpha,
and rename ArithmeticOverflowFault to be IntegerOverflowFault and get rid of
the old IntegerOverflowFault stub. The Integer version is what's actually in
the manual, but the Arithmetic version had the implementation.