gem5/src/mem/protocol/MOESI_hammer-cache.sm

1517 lines
49 KiB
Text
Raw Normal View History

/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* Copyright (c) 2009 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* AMD's contributions to the MOESI hammer protocol do not constitute an
* endorsement of its similarity to any AMD products.
*
* Authors: Milo Martin
* Brad Beckmann
*/
machine(L1Cache, "AMD Hammer-like protocol")
: Sequencer * sequencer,
CacheMemory * L1IcacheMemory,
CacheMemory * L1DcacheMemory,
CacheMemory * L2cacheMemory,
int cache_response_latency = 10,
int issue_latency = 2,
int l2_cache_hit_latency = 10,
bool no_mig_atomic = true
{
// NETWORK BUFFERS
MessageBuffer requestFromCache, network="To", virtual_network="2", ordered="false";
MessageBuffer responseFromCache, network="To", virtual_network="4", ordered="false";
MessageBuffer unblockFromCache, network="To", virtual_network="5", ordered="false";
MessageBuffer forwardToCache, network="From", virtual_network="3", ordered="false";
MessageBuffer responseToCache, network="From", virtual_network="4", ordered="false";
// STATES
enumeration(State, desc="Cache states", default="L1Cache_State_I") {
// Base states
I, desc="Idle";
S, desc="Shared";
O, desc="Owned";
M, desc="Modified (dirty)";
MM, desc="Modified (dirty and locally modified)";
// Transient States
IM, "IM", desc="Issued GetX";
SM, "SM", desc="Issued GetX, we still have an old copy of the line";
OM, "OM", desc="Issued GetX, received data";
ISM, "ISM", desc="Issued GetX, received data, waiting for all acks";
M_W, "M^W", desc="Issued GetS, received exclusive data";
MM_W, "MM^W", desc="Issued GetX, received exclusive data";
IS, "IS", desc="Issued GetS";
SS, "SS", desc="Issued GetS, received data, waiting for all acks";
OI, "OI", desc="Issued PutO, waiting for ack";
MI, "MI", desc="Issued PutX, waiting for ack";
II, "II", desc="Issued PutX/O, saw Other_GETS or Other_GETX, waiting for ack";
IT, "IT", desc="Invalid block transferring to L1";
ST, "ST", desc="S block transferring to L1";
OT, "OT", desc="O block transferring to L1";
MT, "MT", desc="M block transferring to L1";
MMT, "MMT", desc="MM block transferring to L1";
}
// EVENTS
enumeration(Event, desc="Cache events") {
Load, desc="Load request from the processor";
Ifetch, desc="I-fetch request from the processor";
Store, desc="Store request from the processor";
L2_Replacement, desc="L2 Replacement";
L1_to_L2, desc="L1 to L2 transfer";
Trigger_L2_to_L1D, desc="Trigger L2 to L1-Data transfer";
Trigger_L2_to_L1I, desc="Trigger L2 to L1-Instruction transfer";
Complete_L2_to_L1, desc="L2 to L1 transfer completed";
// Requests
Other_GETX, desc="A GetX from another processor";
Other_GETS, desc="A GetS from another processor";
Merged_GETS, desc="A Merged GetS from another processor";
Other_GETS_No_Mig, desc="A GetS from another processor";
NC_DMA_GETS, desc="special GetS when only DMA exists";
Invalidate, desc="Invalidate block";
// Responses
Ack, desc="Received an ack message";
Shared_Ack, desc="Received an ack message, responder has a shared copy";
Data, desc="Received a data message";
Shared_Data, desc="Received a data message, responder has a shared copy";
Exclusive_Data, desc="Received a data message, responder had an exclusive copy, they gave it to us";
Writeback_Ack, desc="Writeback O.K. from directory";
Writeback_Nack, desc="Writeback not O.K. from directory";
// Triggers
All_acks, desc="Received all required data and message acks";
All_acks_no_sharers, desc="Received all acks and no other processor has a shared copy";
}
// TYPES
// STRUCTURE DEFINITIONS
MessageBuffer mandatoryQueue, ordered="false";
// CacheEntry
structure(Entry, desc="...", interface="AbstractCacheEntry") {
State CacheState, desc="cache state";
bool Dirty, desc="Is the data dirty (different than memory)?";
DataBlock DataBlk, desc="data for the block";
bool FromL2, default="false", desc="block just moved from L2";
bool AtomicAccessed, default="false", desc="block just moved from L2";
}
// TBE fields
structure(TBE, desc="...") {
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="data for the block, required for concurrent writebacks";
bool Dirty, desc="Is the data dirty (different than memory)?";
int NumPendingMsgs, desc="Number of acks/data messages that this processor is waiting for";
bool Sharers, desc="On a GetS, did we find any other sharers in the system";
MachineID LastResponder, desc="last machine to send a response for this request";
MachineID CurOwner, desc="current owner of the block, used for UnblockS responses";
Time InitialRequestTime, default="0", desc="time the initial requests was sent from the L1Cache";
Time ForwardRequestTime, default="0", desc="time the dir forwarded the request";
Time FirstResponseTime, default="0", desc="the time the first response was received";
}
external_type(TBETable) {
TBE lookup(Address);
void allocate(Address);
void deallocate(Address);
bool isPresent(Address);
}
TBETable TBEs, template_hack="<L1Cache_TBE>";
Entry getCacheEntry(Address addr), return_by_ref="yes" {
if (L2cacheMemory.isTagPresent(addr)) {
return static_cast(Entry, L2cacheMemory[addr]);
} else if (L1DcacheMemory.isTagPresent(addr)) {
return static_cast(Entry, L1DcacheMemory[addr]);
} else {
return static_cast(Entry, L1IcacheMemory[addr]);
}
}
void changePermission(Address addr, AccessPermission permission) {
if (L2cacheMemory.isTagPresent(addr)) {
return L2cacheMemory.changePermission(addr, permission);
} else if (L1DcacheMemory.isTagPresent(addr)) {
return L1DcacheMemory.changePermission(addr, permission);
} else {
return L1IcacheMemory.changePermission(addr, permission);
}
}
bool isCacheTagPresent(Address addr) {
return (L2cacheMemory.isTagPresent(addr) || L1DcacheMemory.isTagPresent(addr) || L1IcacheMemory.isTagPresent(addr));
}
State getState(Address addr) {
assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);
assert((L1IcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false);
assert((L1DcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false);
if(TBEs.isPresent(addr)) {
return TBEs[addr].TBEState;
} else if (isCacheTagPresent(addr)) {
return getCacheEntry(addr).CacheState;
}
return State:I;
}
void setState(Address addr, State state) {
assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);
assert((L1IcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false);
assert((L1DcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false);
if (TBEs.isPresent(addr)) {
TBEs[addr].TBEState := state;
}
if (isCacheTagPresent(addr)) {
getCacheEntry(addr).CacheState := state;
// Set permission
if ((state == State:MM) ||
(state == State:MM_W)) {
changePermission(addr, AccessPermission:Read_Write);
} else if (state == State:S ||
state == State:O ||
state == State:M ||
state == State:M_W ||
state == State:SM ||
state == State:ISM ||
state == State:OM ||
state == State:SS) {
changePermission(addr, AccessPermission:Read_Only);
} else {
changePermission(addr, AccessPermission:Invalid);
}
}
}
Event mandatory_request_type_to_event(CacheRequestType type) {
if (type == CacheRequestType:LD) {
return Event:Load;
} else if (type == CacheRequestType:IFETCH) {
return Event:Ifetch;
} else if ((type == CacheRequestType:ST) || (type == CacheRequestType:ATOMIC)) {
return Event:Store;
} else {
error("Invalid CacheRequestType");
}
}
GenericMachineType getNondirectHitMachType(Address addr, MachineID sender) {
if (machineIDToMachineType(sender) == MachineType:L1Cache) {
//
// NOTE direct local hits should not call this
//
return GenericMachineType:L1Cache_wCC;
} else {
return ConvertMachToGenericMach(machineIDToMachineType(sender));
}
}
GenericMachineType testAndClearLocalHit(Address addr) {
if (getCacheEntry(addr).FromL2) {
getCacheEntry(addr).FromL2 := false;
return GenericMachineType:L2Cache;
} else {
return GenericMachineType:L1Cache;
}
}
MessageBuffer triggerQueue, ordered="true";
// ** OUT_PORTS **
out_port(requestNetwork_out, RequestMsg, requestFromCache);
out_port(responseNetwork_out, ResponseMsg, responseFromCache);
out_port(unblockNetwork_out, ResponseMsg, unblockFromCache);
out_port(triggerQueue_out, TriggerMsg, triggerQueue);
// ** IN_PORTS **
// Trigger Queue
in_port(triggerQueue_in, TriggerMsg, triggerQueue) {
if (triggerQueue_in.isReady()) {
peek(triggerQueue_in, TriggerMsg) {
if (in_msg.Type == TriggerType:L2_to_L1) {
trigger(Event:Complete_L2_to_L1, in_msg.Address);
} else if (in_msg.Type == TriggerType:ALL_ACKS) {
trigger(Event:All_acks, in_msg.Address);
} else if (in_msg.Type == TriggerType:ALL_ACKS_NO_SHARERS) {
trigger(Event:All_acks_no_sharers, in_msg.Address);
} else {
error("Unexpected message");
}
}
}
}
// Nothing from the request network
// Forward Network
in_port(forwardToCache_in, RequestMsg, forwardToCache) {
if (forwardToCache_in.isReady()) {
peek(forwardToCache_in, RequestMsg, block_on="Address") {
if (in_msg.Type == CoherenceRequestType:GETX) {
trigger(Event:Other_GETX, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:MERGED_GETS) {
trigger(Event:Merged_GETS, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:GETS) {
if (machineCount(MachineType:L1Cache) > 1) {
if (isCacheTagPresent(in_msg.Address)) {
if (getCacheEntry(in_msg.Address).AtomicAccessed && no_mig_atomic) {
trigger(Event:Other_GETS_No_Mig, in_msg.Address);
} else {
trigger(Event:Other_GETS, in_msg.Address);
}
} else {
trigger(Event:Other_GETS, in_msg.Address);
}
} else {
trigger(Event:NC_DMA_GETS, in_msg.Address);
}
} else if (in_msg.Type == CoherenceRequestType:INV) {
trigger(Event:Invalidate, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:WB_ACK) {
trigger(Event:Writeback_Ack, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:WB_NACK) {
trigger(Event:Writeback_Nack, in_msg.Address);
} else {
error("Unexpected message");
}
}
}
}
// Response Network
in_port(responseToCache_in, ResponseMsg, responseToCache) {
if (responseToCache_in.isReady()) {
peek(responseToCache_in, ResponseMsg, block_on="Address") {
if (in_msg.Type == CoherenceResponseType:ACK) {
trigger(Event:Ack, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:ACK_SHARED) {
trigger(Event:Shared_Ack, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:DATA) {
trigger(Event:Data, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:DATA_SHARED) {
trigger(Event:Shared_Data, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) {
trigger(Event:Exclusive_Data, in_msg.Address);
} else {
error("Unexpected message");
}
}
}
}
// Nothing from the unblock network
// Mandatory Queue
in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") {
if (mandatoryQueue_in.isReady()) {
peek(mandatoryQueue_in, CacheMsg, block_on="LineAddress") {
// Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
if (in_msg.Type == CacheRequestType:IFETCH) {
// ** INSTRUCTION ACCESS ***
// Check to see if it is in the OTHER L1
if (L1DcacheMemory.isTagPresent(in_msg.LineAddress)) {
// The block is in the wrong L1, try to write it to the L2
if (L2cacheMemory.cacheAvail(in_msg.LineAddress)) {
trigger(Event:L1_to_L2, in_msg.LineAddress);
} else {
trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(in_msg.LineAddress));
}
}
if (L1IcacheMemory.isTagPresent(in_msg.LineAddress)) {
// The tag matches for the L1, so the L1 fetches the line. We know it can't be in the L2 due to exclusion
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress);
} else {
if (L1IcacheMemory.cacheAvail(in_msg.LineAddress)) {
// L1 does't have the line, but we have space for it in the L1
if (L2cacheMemory.isTagPresent(in_msg.LineAddress)) {
// L2 has it (maybe not with the right permissions)
trigger(Event:Trigger_L2_to_L1I, in_msg.LineAddress);
} else {
// We have room, the L2 doesn't have it, so the L1 fetches the line
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress);
}
} else {
// No room in the L1, so we need to make room
if (L2cacheMemory.cacheAvail(L1IcacheMemory.cacheProbe(in_msg.LineAddress))) {
// The L2 has room, so we move the line from the L1 to the L2
trigger(Event:L1_to_L2, L1IcacheMemory.cacheProbe(in_msg.LineAddress));
} else {
// The L2 does not have room, so we replace a line from the L2
trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(L1IcacheMemory.cacheProbe(in_msg.LineAddress)));
}
}
}
} else {
// *** DATA ACCESS ***
// Check to see if it is in the OTHER L1
if (L1IcacheMemory.isTagPresent(in_msg.LineAddress)) {
// The block is in the wrong L1, try to write it to the L2
if (L2cacheMemory.cacheAvail(in_msg.LineAddress)) {
trigger(Event:L1_to_L2, in_msg.LineAddress);
} else {
trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(in_msg.LineAddress));
}
}
if (L1DcacheMemory.isTagPresent(in_msg.LineAddress)) {
// The tag matches for the L1, so the L1 fetches the line. We know it can't be in the L2 due to exclusion
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress);
} else {
if (L1DcacheMemory.cacheAvail(in_msg.LineAddress)) {
// L1 does't have the line, but we have space for it in the L1
if (L2cacheMemory.isTagPresent(in_msg.LineAddress)) {
// L2 has it (maybe not with the right permissions)
trigger(Event:Trigger_L2_to_L1D, in_msg.LineAddress);
} else {
// We have room, the L2 doesn't have it, so the L1 fetches the line
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress);
}
} else {
// No room in the L1, so we need to make room
if (L2cacheMemory.cacheAvail(L1DcacheMemory.cacheProbe(in_msg.LineAddress))) {
// The L2 has room, so we move the line from the L1 to the L2
trigger(Event:L1_to_L2, L1DcacheMemory.cacheProbe(in_msg.LineAddress));
} else {
// The L2 does not have room, so we replace a line from the L2
trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(L1DcacheMemory.cacheProbe(in_msg.LineAddress)));
}
}
}
}
}
}
}
// ACTIONS
action(a_issueGETS, "a", desc="Issue GETS") {
enqueue(requestNetwork_out, RequestMsg, latency=issue_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETS;
out_msg.Requestor := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.InitialRequestTime := get_time();
TBEs[address].NumPendingMsgs := machineCount(MachineType:L1Cache); // One from each other cache (n-1) plus the memory (+1)
}
}
action(b_issueGETX, "b", desc="Issue GETX") {
enqueue(requestNetwork_out, RequestMsg, latency=issue_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETX;
out_msg.Requestor := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.InitialRequestTime := get_time();
TBEs[address].NumPendingMsgs := machineCount(MachineType:L1Cache); // One from each other cache (n-1) plus the memory (+1)
}
}
action(c_sendExclusiveData, "c", desc="Send exclusive data from cache to requestor") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := getCacheEntry(address).DataBlk;
out_msg.Dirty := getCacheEntry(address).Dirty;
if (in_msg.DirectedProbe) {
out_msg.Acks := machineCount(MachineType:L1Cache);
} else {
out_msg.Acks := 2;
}
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(d_issuePUT, "d", desc="Issue PUT") {
enqueue(requestNetwork_out, RequestMsg, latency=issue_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:PUT;
out_msg.Requestor := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(e_sendData, "e", desc="Send data from cache to requestor") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := getCacheEntry(address).DataBlk;
out_msg.Dirty := getCacheEntry(address).Dirty;
if (in_msg.DirectedProbe) {
out_msg.Acks := machineCount(MachineType:L1Cache);
} else {
out_msg.Acks := 2;
}
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(ee_sendDataShared, "\e", desc="Send data from cache to requestor, keep a shared copy") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA_SHARED;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := getCacheEntry(address).DataBlk;
DPRINTF(RubySlicc, "%s\n", out_msg.DataBlk);
out_msg.Dirty := getCacheEntry(address).Dirty;
if (in_msg.DirectedProbe) {
out_msg.Acks := machineCount(MachineType:L1Cache);
} else {
out_msg.Acks := 2;
}
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(em_sendDataSharedMultiple, "em", desc="Send data from cache to all requestors") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA_SHARED;
out_msg.Sender := machineID;
out_msg.Destination := in_msg.MergedRequestors;
out_msg.DataBlk := getCacheEntry(address).DataBlk;
DPRINTF(RubySlicc, "%s\n", out_msg.DataBlk);
out_msg.Dirty := getCacheEntry(address).Dirty;
out_msg.Acks := machineCount(MachineType:L1Cache);
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(f_sendAck, "f", desc="Send ack from cache to requestor") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.Acks := 1;
assert(in_msg.DirectedProbe == false);
out_msg.MessageSize := MessageSizeType:Response_Control;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(ff_sendAckShared, "\f", desc="Send shared ack from cache to requestor") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:ACK_SHARED;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.Acks := 1;
assert(in_msg.DirectedProbe == false);
out_msg.MessageSize := MessageSizeType:Response_Control;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(g_sendUnblock, "g", desc="Send unblock to memory") {
enqueue(unblockNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:UNBLOCK;
out_msg.Sender := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
}
}
action(gm_sendUnblockM, "gm", desc="Send unblock to memory and indicate M/O/E state") {
enqueue(unblockNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:UNBLOCKM;
out_msg.Sender := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
}
}
action(gs_sendUnblockS, "gs", desc="Send unblock to memory and indicate S state") {
enqueue(unblockNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:UNBLOCKS;
out_msg.Sender := machineID;
out_msg.CurOwner := TBEs[address].CurOwner;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
}
}
action(h_load_hit, "h", desc="Notify sequencer the load completed.") {
DPRINTF(RubySlicc, "%s\n", getCacheEntry(address).DataBlk);
sequencer.readCallback(address,
testAndClearLocalHit(address),
getCacheEntry(address).DataBlk);
}
action(hx_external_load_hit, "hx", desc="load required external msgs") {
DPRINTF(RubySlicc, "%s\n", getCacheEntry(address).DataBlk);
peek(responseToCache_in, ResponseMsg) {
sequencer.readCallback(address,
getNondirectHitMachType(in_msg.Address, in_msg.Sender),
getCacheEntry(address).DataBlk,
TBEs[address].InitialRequestTime,
TBEs[address].ForwardRequestTime,
TBEs[address].FirstResponseTime);
}
}
action(hh_store_hit, "\h", desc="Notify sequencer that store completed.") {
DPRINTF(RubySlicc, "%s\n", getCacheEntry(address).DataBlk);
peek(mandatoryQueue_in, CacheMsg) {
sequencer.writeCallback(address,
testAndClearLocalHit(address),
getCacheEntry(address).DataBlk);
getCacheEntry(address).Dirty := true;
if (in_msg.Type == CacheRequestType:ATOMIC) {
getCacheEntry(address).AtomicAccessed := true;
}
}
}
action(sx_external_store_hit, "sx", desc="store required external msgs.") {
DPRINTF(RubySlicc, "%s\n", getCacheEntry(address).DataBlk);
peek(responseToCache_in, ResponseMsg) {
sequencer.writeCallback(address,
getNondirectHitMachType(address, in_msg.Sender),
getCacheEntry(address).DataBlk,
TBEs[address].InitialRequestTime,
TBEs[address].ForwardRequestTime,
TBEs[address].FirstResponseTime);
}
getCacheEntry(address).Dirty := true;
}
action(sxt_trig_ext_store_hit, "sxt", desc="store required external msgs.") {
DPRINTF(RubySlicc, "%s\n", getCacheEntry(address).DataBlk);
sequencer.writeCallback(address,
getNondirectHitMachType(address,
TBEs[address].LastResponder),
getCacheEntry(address).DataBlk,
TBEs[address].InitialRequestTime,
TBEs[address].ForwardRequestTime,
TBEs[address].FirstResponseTime);
getCacheEntry(address).Dirty := true;
}
action(i_allocateTBE, "i", desc="Allocate TBE") {
check_allocate(TBEs);
TBEs.allocate(address);
TBEs[address].DataBlk := getCacheEntry(address).DataBlk; // Data only used for writebacks
TBEs[address].Dirty := getCacheEntry(address).Dirty;
TBEs[address].Sharers := false;
}
action(j_popTriggerQueue, "j", desc="Pop trigger queue.") {
triggerQueue_in.dequeue();
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue();
}
action(l_popForwardQueue, "l", desc="Pop forwareded request queue.") {
forwardToCache_in.dequeue();
}
action(hp_copyFromTBEToL2, "li", desc="Copy data from TBE to L2 cache entry.") {
getCacheEntry(address).Dirty := TBEs[address].Dirty;
getCacheEntry(address).DataBlk := TBEs[address].DataBlk;
}
action(nb_copyFromTBEToL1, "fu", desc="Copy data from TBE to L1 cache entry.") {
getCacheEntry(address).Dirty := TBEs[address].Dirty;
getCacheEntry(address).DataBlk := TBEs[address].DataBlk;
getCacheEntry(address).FromL2 := true;
}
action(m_decrementNumberOfMessages, "m", desc="Decrement the number of messages for which we're waiting") {
peek(responseToCache_in, ResponseMsg) {
assert(in_msg.Acks > 0);
DPRINTF(RubySlicc, "%d\n", TBEs[address].NumPendingMsgs);
TBEs[address].NumPendingMsgs := TBEs[address].NumPendingMsgs - in_msg.Acks;
DPRINTF(RubySlicc, "%d\n", TBEs[address].NumPendingMsgs);
TBEs[address].LastResponder := in_msg.Sender;
if (TBEs[address].InitialRequestTime != zero_time() && in_msg.InitialRequestTime != zero_time()) {
assert(TBEs[address].InitialRequestTime == in_msg.InitialRequestTime);
}
if (in_msg.InitialRequestTime != zero_time()) {
TBEs[address].InitialRequestTime := in_msg.InitialRequestTime;
}
if (TBEs[address].ForwardRequestTime != zero_time() && in_msg.ForwardRequestTime != zero_time()) {
assert(TBEs[address].ForwardRequestTime == in_msg.ForwardRequestTime);
}
if (in_msg.ForwardRequestTime != zero_time()) {
TBEs[address].ForwardRequestTime := in_msg.ForwardRequestTime;
}
if (TBEs[address].FirstResponseTime == zero_time()) {
TBEs[address].FirstResponseTime := get_time();
}
}
}
action(uo_updateCurrentOwner, "uo", desc="When moving SS state, update current owner.") {
peek(responseToCache_in, ResponseMsg) {
TBEs[address].CurOwner := in_msg.Sender;
}
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseToCache_in.dequeue();
}
action(ll_L2toL1Transfer, "ll", desc="") {
enqueue(triggerQueue_out, TriggerMsg, latency=l2_cache_hit_latency) {
out_msg.Address := address;
out_msg.Type := TriggerType:L2_to_L1;
}
}
action(o_checkForCompletion, "o", desc="Check if we have received all the messages required for completion") {
if (TBEs[address].NumPendingMsgs == 0) {
enqueue(triggerQueue_out, TriggerMsg) {
out_msg.Address := address;
if (TBEs[address].Sharers) {
out_msg.Type := TriggerType:ALL_ACKS;
} else {
out_msg.Type := TriggerType:ALL_ACKS_NO_SHARERS;
}
}
}
}
action(p_decrementNumberOfMessagesByOne, "p", desc="Decrement the number of messages for which we're waiting by one") {
TBEs[address].NumPendingMsgs := TBEs[address].NumPendingMsgs - 1;
}
action(pp_incrementNumberOfMessagesByOne, "\p", desc="Increment the number of messages for which we're waiting by one") {
TBEs[address].NumPendingMsgs := TBEs[address].NumPendingMsgs + 1;
}
action(q_sendDataFromTBEToCache, "q", desc="Send data from TBE to cache") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
DPRINTF(RubySlicc, "%s\n", out_msg.Destination);
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.Dirty := TBEs[address].Dirty;
if (in_msg.DirectedProbe) {
out_msg.Acks := machineCount(MachineType:L1Cache);
} else {
out_msg.Acks := 2;
}
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(qm_sendDataFromTBEToCache, "qm", desc="Send data from TBE to cache, multiple sharers") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination := in_msg.MergedRequestors;
DPRINTF(RubySlicc, "%s\n", out_msg.Destination);
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.Dirty := TBEs[address].Dirty;
out_msg.Acks := machineCount(MachineType:L1Cache);
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(qq_sendDataFromTBEToMemory, "\q", desc="Send data from TBE to memory") {
enqueue(unblockNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Sender := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.Dirty := TBEs[address].Dirty;
if (TBEs[address].Dirty) {
out_msg.Type := CoherenceResponseType:WB_DIRTY;
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.MessageSize := MessageSizeType:Writeback_Data;
} else {
out_msg.Type := CoherenceResponseType:WB_CLEAN;
// NOTE: in a real system this would not send data. We send
// data here only so we can check it at the memory
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(r_setSharerBit, "r", desc="We saw other sharers") {
TBEs[address].Sharers := true;
}
action(s_deallocateTBE, "s", desc="Deallocate TBE") {
TBEs.deallocate(address);
}
action(t_sendExclusiveDataFromTBEToMemory, "t", desc="Send exclusive data from TBE to memory") {
enqueue(unblockNetwork_out, ResponseMsg, latency=cache_response_latency) {
out_msg.Address := address;
out_msg.Sender := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.Dirty := TBEs[address].Dirty;
if (TBEs[address].Dirty) {
out_msg.Type := CoherenceResponseType:WB_EXCLUSIVE_DIRTY;
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.MessageSize := MessageSizeType:Writeback_Data;
} else {
out_msg.Type := CoherenceResponseType:WB_EXCLUSIVE_CLEAN;
// NOTE: in a real system this would not send data. We send
// data here only so we can check it at the memory
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(u_writeDataToCache, "u", desc="Write data to cache") {
peek(responseToCache_in, ResponseMsg) {
getCacheEntry(address).DataBlk := in_msg.DataBlk;
getCacheEntry(address).Dirty := in_msg.Dirty;
}
}
action(v_writeDataToCacheVerify, "v", desc="Write data to cache, assert it was same as before") {
peek(responseToCache_in, ResponseMsg) {
DPRINTF(RubySlicc, "Cached Data Block: %s, Msg Data Block: %s\n",
getCacheEntry(address).DataBlk, in_msg.DataBlk);
assert(getCacheEntry(address).DataBlk == in_msg.DataBlk);
getCacheEntry(address).DataBlk := in_msg.DataBlk;
getCacheEntry(address).Dirty := in_msg.Dirty || getCacheEntry(address).Dirty;
}
}
action(gg_deallocateL1CacheBlock, "\g", desc="Deallocate cache block. Sets the cache to invalid, allowing a replacement in parallel with a fetch.") {
if (L1DcacheMemory.isTagPresent(address)) {
L1DcacheMemory.deallocate(address);
} else {
L1IcacheMemory.deallocate(address);
}
}
action(ii_allocateL1DCacheBlock, "\i", desc="Set L1 D-cache tag equal to tag of block B.") {
if (L1DcacheMemory.isTagPresent(address) == false) {
L1DcacheMemory.allocate(address, new Entry);
}
}
action(jj_allocateL1ICacheBlock, "\j", desc="Set L1 I-cache tag equal to tag of block B.") {
if (L1IcacheMemory.isTagPresent(address) == false) {
L1IcacheMemory.allocate(address, new Entry);
}
}
action(vv_allocateL2CacheBlock, "\v", desc="Set L2 cache tag equal to tag of block B.") {
L2cacheMemory.allocate(address, new Entry);
}
action(rr_deallocateL2CacheBlock, "\r", desc="Deallocate L2 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") {
L2cacheMemory.deallocate(address);
}
action(uu_profileMiss, "\u", desc="Profile the demand miss") {
peek(mandatoryQueue_in, CacheMsg) {
if (L1IcacheMemory.isTagPresent(address)) {
L1IcacheMemory.profileMiss(in_msg);
} else if (L1DcacheMemory.isTagPresent(address)) {
L1DcacheMemory.profileMiss(in_msg);
}
if (L2cacheMemory.isTagPresent(address) == false) {
L2cacheMemory.profileMiss(in_msg);
}
}
}
action(zz_recycleMandatoryQueue, "\z", desc="Send the head of the mandatory queue to the back of the queue.") {
mandatoryQueue_in.recycle();
}
//*****************************************************
// TRANSITIONS
//*****************************************************
// Transitions for Load/Store/L2_Replacement from transient states
transition({IM, SM, ISM, OM, IS, SS, OI, MI, II, IT, ST, OT, MT, MMT}, {Store, L2_Replacement}) {
zz_recycleMandatoryQueue;
}
transition({M_W, MM_W}, {L2_Replacement}) {
zz_recycleMandatoryQueue;
}
transition({IM, IS, OI, MI, II, IT, ST, OT, MT, MMT}, {Load, Ifetch}) {
zz_recycleMandatoryQueue;
}
transition({IM, SM, ISM, OM, IS, SS, MM_W, M_W, OI, MI, II, IT, ST, OT, MT, MMT}, L1_to_L2) {
zz_recycleMandatoryQueue;
}
transition({IT, ST, OT, MT, MMT}, {Other_GETX, NC_DMA_GETS, Other_GETS, Merged_GETS, Other_GETS_No_Mig, Invalidate}) {
// stall
}
// Transitions moving data between the L1 and L2 caches
transition({I, S, O, M, MM}, L1_to_L2) {
i_allocateTBE;
gg_deallocateL1CacheBlock;
vv_allocateL2CacheBlock;
hp_copyFromTBEToL2;
s_deallocateTBE;
}
transition(I, Trigger_L2_to_L1D, IT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
ii_allocateL1DCacheBlock;
nb_copyFromTBEToL1; // Not really needed for state I
s_deallocateTBE;
uu_profileMiss;
zz_recycleMandatoryQueue;
ll_L2toL1Transfer;
}
transition(S, Trigger_L2_to_L1D, ST) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
ii_allocateL1DCacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
uu_profileMiss;
zz_recycleMandatoryQueue;
ll_L2toL1Transfer;
}
transition(O, Trigger_L2_to_L1D, OT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
ii_allocateL1DCacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
uu_profileMiss;
zz_recycleMandatoryQueue;
ll_L2toL1Transfer;
}
transition(M, Trigger_L2_to_L1D, MT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
ii_allocateL1DCacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
uu_profileMiss;
zz_recycleMandatoryQueue;
ll_L2toL1Transfer;
}
transition(MM, Trigger_L2_to_L1D, MMT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
ii_allocateL1DCacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
uu_profileMiss;
zz_recycleMandatoryQueue;
ll_L2toL1Transfer;
}
transition(I, Trigger_L2_to_L1I, IT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
jj_allocateL1ICacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
uu_profileMiss;
zz_recycleMandatoryQueue;
ll_L2toL1Transfer;
}
transition(S, Trigger_L2_to_L1I, ST) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
jj_allocateL1ICacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
uu_profileMiss;
zz_recycleMandatoryQueue;
ll_L2toL1Transfer;
}
transition(O, Trigger_L2_to_L1I, OT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
jj_allocateL1ICacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
uu_profileMiss;
zz_recycleMandatoryQueue;
ll_L2toL1Transfer;
}
transition(M, Trigger_L2_to_L1I, MT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
jj_allocateL1ICacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
uu_profileMiss;
zz_recycleMandatoryQueue;
ll_L2toL1Transfer;
}
transition(MM, Trigger_L2_to_L1I, MMT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
jj_allocateL1ICacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
uu_profileMiss;
zz_recycleMandatoryQueue;
ll_L2toL1Transfer;
}
transition(IT, Complete_L2_to_L1, I) {
j_popTriggerQueue;
}
transition(ST, Complete_L2_to_L1, S) {
j_popTriggerQueue;
}
transition(OT, Complete_L2_to_L1, O) {
j_popTriggerQueue;
}
transition(MT, Complete_L2_to_L1, M) {
j_popTriggerQueue;
}
transition(MMT, Complete_L2_to_L1, MM) {
j_popTriggerQueue;
}
// Transitions from Idle
transition(I, Load, IS) {
ii_allocateL1DCacheBlock;
i_allocateTBE;
a_issueGETS;
uu_profileMiss;
k_popMandatoryQueue;
}
transition(I, Ifetch, IS) {
jj_allocateL1ICacheBlock;
i_allocateTBE;
a_issueGETS;
uu_profileMiss;
k_popMandatoryQueue;
}
transition(I, Store, IM) {
ii_allocateL1DCacheBlock;
i_allocateTBE;
b_issueGETX;
uu_profileMiss;
k_popMandatoryQueue;
}
transition(I, L2_Replacement) {
rr_deallocateL2CacheBlock;
}
transition(I, {Other_GETX, NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig, Invalidate}) {
f_sendAck;
l_popForwardQueue;
}
// Transitions from Shared
transition({S, SM, ISM}, {Load, Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(S, Store, SM) {
i_allocateTBE;
b_issueGETX;
uu_profileMiss;
k_popMandatoryQueue;
}
transition(S, L2_Replacement, I) {
rr_deallocateL2CacheBlock;
}
transition(S, {Other_GETX, Invalidate}, I) {
f_sendAck;
l_popForwardQueue;
}
transition(S, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig}) {
ff_sendAckShared;
l_popForwardQueue;
}
// Transitions from Owned
transition({O, OM, SS, MM_W, M_W}, {Load, Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(O, Store, OM) {
i_allocateTBE;
b_issueGETX;
p_decrementNumberOfMessagesByOne;
uu_profileMiss;
k_popMandatoryQueue;
}
transition(O, L2_Replacement, OI) {
i_allocateTBE;
d_issuePUT;
rr_deallocateL2CacheBlock;
}
transition(O, {Other_GETX, Invalidate}, I) {
e_sendData;
l_popForwardQueue;
}
transition(O, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig}) {
ee_sendDataShared;
l_popForwardQueue;
}
transition(O, Merged_GETS) {
em_sendDataSharedMultiple;
l_popForwardQueue;
}
// Transitions from Modified
transition(MM, {Load, Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(MM, Store) {
hh_store_hit;
k_popMandatoryQueue;
}
transition(MM, L2_Replacement, MI) {
i_allocateTBE;
d_issuePUT;
rr_deallocateL2CacheBlock;
}
transition(MM, {Other_GETX, Invalidate}, I) {
c_sendExclusiveData;
l_popForwardQueue;
}
transition(MM, Other_GETS, I) {
c_sendExclusiveData;
l_popForwardQueue;
}
transition(MM, NC_DMA_GETS) {
c_sendExclusiveData;
l_popForwardQueue;
}
transition(MM, Other_GETS_No_Mig, O) {
ee_sendDataShared;
l_popForwardQueue;
}
transition(MM, Merged_GETS, O) {
em_sendDataSharedMultiple;
l_popForwardQueue;
}
// Transitions from Dirty Exclusive
transition(M, {Load, Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(M, Store, MM) {
hh_store_hit;
k_popMandatoryQueue;
}
transition(M, L2_Replacement, MI) {
i_allocateTBE;
d_issuePUT;
rr_deallocateL2CacheBlock;
}
transition(M, {Other_GETX, Invalidate}, I) {
c_sendExclusiveData;
l_popForwardQueue;
}
transition(M, {Other_GETS, Other_GETS_No_Mig}, O) {
ee_sendDataShared;
l_popForwardQueue;
}
transition(M, NC_DMA_GETS) {
ee_sendDataShared;
l_popForwardQueue;
}
transition(M, Merged_GETS, O) {
em_sendDataSharedMultiple;
l_popForwardQueue;
}
// Transitions from IM
transition(IM, {Other_GETX, NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig, Invalidate}) {
f_sendAck;
l_popForwardQueue;
}
transition(IM, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(IM, Data, ISM) {
u_writeDataToCache;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(IM, Exclusive_Data, MM_W) {
u_writeDataToCache;
m_decrementNumberOfMessages;
o_checkForCompletion;
sx_external_store_hit;
n_popResponseQueue;
}
// Transitions from SM
transition(SM, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig}) {
ff_sendAckShared;
l_popForwardQueue;
}
transition(SM, {Other_GETX, Invalidate}, IM) {
f_sendAck;
l_popForwardQueue;
}
transition(SM, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(SM, Data, ISM) {
v_writeDataToCacheVerify;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
// Transitions from ISM
transition(ISM, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(ISM, All_acks_no_sharers, MM) {
sxt_trig_ext_store_hit;
gm_sendUnblockM;
s_deallocateTBE;
j_popTriggerQueue;
}
// Transitions from OM
transition(OM, {Other_GETX, Invalidate}, IM) {
e_sendData;
pp_incrementNumberOfMessagesByOne;
l_popForwardQueue;
}
transition(OM, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig}) {
ee_sendDataShared;
l_popForwardQueue;
}
transition(OM, Merged_GETS) {
em_sendDataSharedMultiple;
l_popForwardQueue;
}
transition(OM, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(OM, {All_acks, All_acks_no_sharers}, MM) {
sxt_trig_ext_store_hit;
gm_sendUnblockM;
s_deallocateTBE;
j_popTriggerQueue;
}
// Transitions from IS
transition(IS, {Other_GETX, NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig, Invalidate}) {
f_sendAck;
l_popForwardQueue;
}
transition(IS, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(IS, Shared_Ack) {
m_decrementNumberOfMessages;
r_setSharerBit;
o_checkForCompletion;
n_popResponseQueue;
}
transition(IS, Data, SS) {
u_writeDataToCache;
m_decrementNumberOfMessages;
o_checkForCompletion;
hx_external_load_hit;
uo_updateCurrentOwner;
n_popResponseQueue;
}
transition(IS, Exclusive_Data, M_W) {
u_writeDataToCache;
m_decrementNumberOfMessages;
o_checkForCompletion;
hx_external_load_hit;
n_popResponseQueue;
}
transition(IS, Shared_Data, SS) {
u_writeDataToCache;
r_setSharerBit;
m_decrementNumberOfMessages;
o_checkForCompletion;
hx_external_load_hit;
uo_updateCurrentOwner;
n_popResponseQueue;
}
// Transitions from SS
transition(SS, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(SS, Shared_Ack) {
m_decrementNumberOfMessages;
r_setSharerBit;
o_checkForCompletion;
n_popResponseQueue;
}
transition(SS, All_acks, S) {
gs_sendUnblockS;
s_deallocateTBE;
j_popTriggerQueue;
}
transition(SS, All_acks_no_sharers, S) {
// Note: The directory might still be the owner, so that is why we go to S
gs_sendUnblockS;
s_deallocateTBE;
j_popTriggerQueue;
}
// Transitions from MM_W
transition(MM_W, Store) {
hh_store_hit;
k_popMandatoryQueue;
}
transition(MM_W, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(MM_W, All_acks_no_sharers, MM) {
gm_sendUnblockM;
s_deallocateTBE;
j_popTriggerQueue;
}
// Transitions from M_W
transition(M_W, Store, MM_W) {
hh_store_hit;
k_popMandatoryQueue;
}
transition(M_W, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(M_W, All_acks_no_sharers, M) {
gm_sendUnblockM;
s_deallocateTBE;
j_popTriggerQueue;
}
// Transitions from OI/MI
transition({OI, MI}, {Other_GETX, Invalidate}, II) {
q_sendDataFromTBEToCache;
l_popForwardQueue;
}
transition({OI, MI}, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig}, OI) {
q_sendDataFromTBEToCache;
l_popForwardQueue;
}
transition({OI, MI}, Merged_GETS, OI) {
qm_sendDataFromTBEToCache;
l_popForwardQueue;
}
transition(MI, Writeback_Ack, I) {
t_sendExclusiveDataFromTBEToMemory;
s_deallocateTBE;
l_popForwardQueue;
}
transition(OI, Writeback_Ack, I) {
qq_sendDataFromTBEToMemory;
s_deallocateTBE;
l_popForwardQueue;
}
// Transitions from II
transition(II, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig, Other_GETX, Invalidate}, II) {
f_sendAck;
l_popForwardQueue;
}
transition(II, Writeback_Ack, I) {
g_sendUnblock;
s_deallocateTBE;
l_popForwardQueue;
}
transition(II, Writeback_Nack, I) {
s_deallocateTBE;
l_popForwardQueue;
}
}