This patch is a first step to align the port names used in the Python
world and the C++ world. Ultimately it serves to make the use of
config.json together with output from the simulation easier, including
post-processing of statistics.
Most notably, the CPU, cache, and bus is addressed in this patch, and
there might be other ports that should be updated accordingly. The
dash name separator has also been replaced with a "." which is what is
used to concatenate the names in python, and a separation is made
between the master and slave port in the bus.
This patch changes the default bus width to a more sensible 8 bytes
(64 bits), which is in line with most on-chip buses. Although there
are cases where a wider or narrower bus is useful, the 8 bytes is a
good compromise to serve as the default.
This patch changes essentially all statistics, and will be bundled
with the outstanding changes to the bus.
This patch splits the existing buses into multiple layers. The
non-coherent bus is split into a request and a response layer, and the
coherent bus adds an additional layer for the snoop responses. The
layer is modified to be templatised on the port type, such that the
different layers can have retryLists with either master or slave
ports. This patch also removes the dynamic cast from the retry, as
previously promised when moving the recvRetry from the port base class
to the master/slave port respectively.
Overall, the split bus more closely reflects any modern on-chip bus
and should be at step in the right direction. From this point, it
would be reasonable straight forward to add separate layers (and thus
contention points and arbitration) for each port and thus create a
true crossbar.
The regressions all produce the correct output, but have varying
degrees of changes to their statistics. A separate patch will be
pushed with the updates to the reference statistics.
This patch moves all flow control, arbitration and state information
into a bus layer. The layer is thus responsible for all the state
transitions, and for keeping hold of the retry list. Consequently the
layer is also responsible for the draining.
With this change, the non-coherent and coherent bus are given a single
layer to avoid changing any temporal behaviour, but the patch opens up
for adding more layers.
This patch adds a state enum and member variable in the bus, tracking
the bus state, thus eliminating the need for tickNextIdle and inRetry,
and fixing an issue that allowed the bus to be occupied by multiple
packets at once (hopefully it also makes it easier to understand the
code).
The bus, in its current form, uses tickNextIdle and inRetry to keep
track of the state of the bus. However, it only updates tickNextIdle
_after_ forwarding a packet using sendTiming, and the result is that
the bus is still seen as idle, and a module that receives the packet
and starts transmitting new packets in zero time will still see the
bus as idle (and this is done by a number of DMA devices). The issue
can also be seen in isOccupied where the bus calls reschedule on an
event instead of schedule.
This patch addresses the problem by marking the bus as _not_ idle
already by the time we conclude that the bus is not occupied and we
will deal with the packet.
As a result of not allowing multiple packets to occupy the bus, some
regressions have slight changes in their statistics. A separate patch
updates these accordingly.
Further ahead, a follow-on patch will introduce a separate state
variable for request/responses/snoop responses, and thus implement a
split request/response bus with separate flow control for the
different message types (even further ahead it will introduce a
multi-layer bus).
This patch makes getAddrRanges const throughout the code base. There
is no reason why it should not be, and making it const prevents adding
any unintentional side-effects.
This patch adds getAddrRanges to the master port, and thus avoids
going through getSlavePort to be able to ask the slave. Similar to the
previous patch that added isSnooping to the SlavePort, this patch aims
to introduce an additional level of hierarchy in the ports (base port
being protocol-agnostic) and getSlave/MasterPort will return port
pointers to these base classes.
The function is named getAddrRanges also on the master port, but does
nothing besides asking the connected slave port. The slave port, as
before, has to provide an implementation and actually produce a list
of address ranges. The initial design used the name getSlaveAddrRanges
for the new function, but the more verbose name was later changed.
This patch adds isSnooping to the slave port, and thus avoids going
through getMasterPort to be able to ask the master. Over the course of
the next few patches, all getMasterPort/getSlavePort in Port and
MemObject are to be protocol agnostic, and the snooping is part of the
protocol layer.
The function is already present on the master port, where it is
implemented by the module itself, e.g. a cache. On the slave side, it
is merely asking the connected master port. The same name is used by
both functions despite their difference in behaviour. The initial
design used isMasterSnooping on the slave port side, but the more
verbose function name was later changed.
This patch is the last part of moving all protocol-related
functionality out of the Port base class. All the send/recv functions
are already moved, and the retry (which still governs all the timing
transport functions) is the only part that remained in the base class.
The only point where this currently causes a bit of inconvenience is
in the bus where the retry list is global and holds Port pointers (not
Master/SlavePort). This is about to change with the split into a
request/response bus and will soon be removed anyway.
The patch has no impact on any regressions.
This patch is the result of static analysis identifying a number of
memory leaks. The leaks are all benign as they are a result of not
deallocating memory in the desctructor. The fix still has value as it
removes false positives in the static analysis.
The LRU policy always evicted the least recently touched way, even if it
contained valid data and another way was invalid, as can happen if a block has
been invalidated by coherance. This can result in caches never warming up even
though they are replacing blocks. This modifies the LRU policy to move blocks
to LRU position on invalidation.
Currently when multiple CPUs perform a load-linked/store-conditional sequence,
the loads all create a list of reservations which is then scanned when the
stores occur. A reservation matching the context and address of the store is
sought, BUT all reservations matching the address are also erased at this point.
The upshot is that a store-conditional will remove all reservations even if the
store itself does not succeed. A livelock was observed using 7-8 CPUs where a
thread would erase the reservations of other threads, not succeed, loop and put
its own reservation in again only to have it blown by another thread that
unsuccessfully now tries to store-conditional -- no forward progress was made,
hanging the system.
The correct way to do this is to only blow a reservation when a store
(conditional or not) actually /occurs/ to its address. One thread always wins
(the one that does the store-conditional first).
This patch is a temporary fix until Andreas' four-phase patches
get reviewed and committed. Removing FastAlloc seems to have exposed
an issue which previously was reasonable rare in which packets are freed
before the sending cache is done with them. This change puts incoming packets
no a pendingDelete queue which are deleted at the start of the next call and
thus breaks the dependency between when the caller returns true and when the
packet is actually used by the sending cache.
Running valgrind on a multi-core linux boot and the memtester results in no
valgrind warnings.
While FastAlloc provides a small performance increase (~1.5%) over regular malloc it isn't thread safe.
After removing FastAlloc and using tcmalloc I've seen a performance increase of 12% over libc malloc
when running twolf for ARM.
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
This patch merely remove the Packet* from the isOccupied member
function. Historically this was used to check if the packet was an
express snoop, but this is now done outside this function (where
relevant).
The main aim of this patch is to arrive at a suitable port interface
for vector ports, including both the packet and the port id. This
patch changes the bus transport functions
(recvFunctional/Atomic/Timing) to require a PortId parameter
indicating the source port. Previously this information was passed by
setting the source field of the packet, and this is only required in
the case of a timing request.
With this patch, the use of the source and destination field is also
more restrictive, as they are only needed for timing accesses. The
modifications to these fields for atomic snoops is now removed
entirely, also making minor modifications to the cache.
This patch removes the Packet::NodeID typedef and unifies it with the
Port::PortId. The src and dest fields in the packet are used to hold a
port id (e.g. in the bus), and thus the two should actually be the
same.
The typedef PortID is now global (in base/types.hh) and aligned with
the ThreadID in terms of capitalisation and naming of the
InvalidPortID constant.
Before this patch, two flags were used for valid destination and
source, rather than relying on a named value (InvalidPortID), and
this is now redundant, as the src and dest field themselves are
sufficient to tell whether the current value is a valid port
identifier or not. Consequently, the VALID_SRC and VALID_DST are
removed.
As part of the cleaning up, a number of int parameters and local
variables are updated to use PortID.
Note that Ruby still has its own NodeID typedef. Furthermore, the
MemObject getMaster/SlavePort still has an int idx parameter with a
default value of -1 which should eventually change to PortID idx =
InvalidPortID.
This patch updates the comments for the src and dest fields to reflect
their actual use. Due to a number of patches (e.g. removing the
Broadcast flag), the old comments are no longer indicative of the
current usage.
This patch splits the PacketBuffer class into a RequestState and a
DeferredRequest and DeferredResponse. Only the requests need a
SenderState, and the deferred requests and responses only need an
associated point in time for the request and the response queue.
Besides the cleaning up, the goal is to simplify the transition to a
new port handshake, and with these changes, the two packet queues are
starting to look very similar to the generic packet queue, but
currently they do a few unique things relating to the NACK and
counting of requests/responses that the packet queue cannot be
conveniently used. This will be addressed in a later patch.
This patch removes unused commands and attributes from the packet to
avoid any confusion. It is part of an effort to clear up how and where
different commands and attributes are used.
The scheduling of the deadlock check event was being done incorrectly as the
clock was not being multiplied, so as to convert the time into ticks. This
patch removes that bug.
This patch adds a communication monitor MemObject that can be inserted
between a master and slave port to provide a range of statistics about
the communication passing through it. The communication monitor is
non-invasive and does not change any properties or timing of the
packets, with the exception of adding a sender state to be able to
track latency. The statistics are only collected in timing mode (not
atomic) to avoid slowing down any fast forwarding.
An example of the statistics captured by the monitor are: read/write
burst lengths, bandwidth, request-response latency, outstanding
transactions, inter transaction time, transaction count, and address
distribution. The monitor can be used in combination with periodic
resetting and dumping of stats (through schedStatEvent) to study the
behaviour over time.
In future patches, a selection of convenience scripts will be added to
aid in visualising the statistics collected by the monitor.
This patch adds a guarding if-statement to avoid forwarding
uncacheable requests (or rather their corresponding request packets)
to bus snoopers. These packets should never have any effect on the
caches, and thus there is no need to forward them to the snoopers.
This patch fixes a bug that caused snoop requests to be placed in a
packet queue. Instead, the packet is now sent immediately using
sendTimingSnoopReq, thus bypassing the packet queue and any normal
responses waiting to be sent.
This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.
For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).
The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.
With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
This patch makes some rather trivial simplifications to the bus in
that it changes the use of BusMasterPort and BusSlavePort pointers to
simply use MasterPort and SlavePort (iterators are also updated
accordingly).
This change is a step towards a future patch that introduces a
separation of the interface and the structural port itself.
This patch introduces the PortId type, moves the definition of
INVALID_PORT_ID to the Port class, and also gives every port an id to
reflect the fact that each element in a vector port has an
identifier/index.
Previously the bus and Ruby testers (and potentially other users of
the vector ports) added the id field in their port subclasses, and now
this functionality is always present as it is moved to the base class.
This patch simplifies the packet by removing the broadcast flag and
instead more firmly relying on (and enforcing) the semantics of
transactions in the classic memory system, i.e. request packets are
routed from a master to a slave based on the address, and when they
are created they have neither a valid source, nor destination. On
their way to the slave, the request packet is updated with a source
field for all modules that multiplex packets from multiple master
(e.g. a bus). When a request packet is turned into a response packet
(at the final slave), it moves the potentially populated source field
to the destination field, and the response packet is routed through
any multiplexing components back to the master based on the
destination field.
Modules that connect multiplexing components, such as caches and
bridges store any existing source and destination field in the sender
state as a stack (just as before).
The packet constructor is simplified in that there is no longer a need
to pass the Packet::Broadcast as the destination (this was always the
case for the classic memory system). In the case of Ruby, rather than
using the parameter to the constructor we now rely on setDest, as
there is already another three-argument constructor in the packet
class.
In many places where the packet information was printed as part of
DPRINTFs, request packets would be printed with a numeric "dest" that
would always be -1 (Broadcast) and that field is now removed from the
printing.
This patch introduces port access methods that separates snoop
request/responses from normal memory request/responses. The
differentiation is made for functional, atomic and timing accesses and
builds on the introduction of master and slave ports.
Before the introduction of this patch, the packets belonging to the
different phases of the protocol (request -> [forwarded snoop request
-> snoop response]* -> response) all use the same port access
functions, even though the snoop packets flow in the opposite
direction to the normal packet. That is, a coherent master sends
normal request and receives responses, but receives snoop requests and
sends snoop responses (vice versa for the slave). These two distinct
phases now use different access functions, as described below.
Starting with the functional access, a master sends a request to a
slave through sendFunctional, and the request packet is turned into a
response before the call returns. In a system without cache coherence,
this is all that is needed from the functional interface. For the
cache-coherent scenario, a slave also sends snoop requests to coherent
masters through sendFunctionalSnoop, with responses returned within
the same packet pointer. This is currently used by the bus and caches,
and the LSQ of the O3 CPU. The send/recvFunctional and
send/recvFunctionalSnoop are moved from the Port super class to the
appropriate subclass.
Atomic accesses follow the same flow as functional accesses, with
request being sent from master to slave through sendAtomic. In the
case of cache-coherent ports, a slave can send snoop requests to a
master through sendAtomicSnoop. Just as for the functional access
methods, the atomic send and receive member functions are moved to the
appropriate subclasses.
The timing access methods are different from the functional and atomic
in that requests and responses are separated in time and
send/recvTiming are used for both directions. Hence, a master uses
sendTiming to send a request to a slave, and a slave uses sendTiming
to send a response back to a master, at a later point in time. Snoop
requests and responses travel in the opposite direction, similar to
what happens in functional and atomic accesses. With the introduction
of this patch, it is possible to determine the direction of packets in
the bus, and no longer necessary to look for both a master and a slave
port with the requested port id.
In contrast to the normal recvFunctional, recvAtomic and recvTiming
that are pure virtual functions, the recvFunctionalSnoop,
recvAtomicSnoop and recvTimingSnoop have a default implementation that
calls panic. This is to allow non-coherent master and slave ports to
not implement these functions.
This patch addresses a number of minor issues that cause problems when
compiling with clang >= 3.0 and gcc >= 4.6. Most importantly, it
avoids using the deprecated ext/hash_map and instead uses
unordered_map (and similarly so for the hash_set). To make use of the
new STL containers, g++ and clang has to be invoked with "-std=c++0x",
and this is now added for all gcc versions >= 4.6, and for clang >=
3.0. For gcc >= 4.3 and <= 4.5 and clang <= 3.0 we use the tr1
unordered_map to avoid the deprecation warning.
The addition of c++0x in turn causes a few problems, as the
compiler is more stringent and adds a number of new warnings. Below,
the most important issues are enumerated:
1) the use of namespaces is more strict, e.g. for isnan, and all
headers opening the entire namespace std are now fixed.
2) another other issue caused by the more stringent compiler is the
narrowing of the embedded python, which used to be a char array,
and is now unsigned char since there were values larger than 128.
3) a particularly odd issue that arose with the new c++0x behaviour is
found in range.hh, where the operator< causes gcc to complain about
the template type parsing (the "<" is interpreted as the beginning
of a template argument), and the problem seems to be related to the
begin/end members introduced for the range-type iteration, which is
a new feature in c++11.
As a minor update, this patch also fixes the build flags for the clang
debug target that used to be shared with gcc and incorrectly use
"-ggdb".
This patch fixes a bug in Ruby that caused non-deterministic
simulation when changing the underlying hash map implementation. The
reason is order-dependent behaviour in combination with iteration over
the hash map contents. The two locations where a sorted container is
assumed are now changed to make use of a std::map instead of the
unordered hash map.
With this change, the stats changes slightly and the follow-on
changeset will update the relevant statistics.
Fixes checkpointing with respect to lost events after swapping event queues.
Also adds DPRINTFs to better understand what's going on when Ruby serializes
and unserializes.