Time from base/time.hh has a name clash with Time from Ruby's
TypeDefines.hh. Eventually Ruby's Time should go away, so instead of
fixing this properly just try to avoid the clash.
- Make the initialized flag always available, not just in debug mode.
- Make the Initialized flag actually use several bits so it is very
unlikely that something that's uninitialized accidentally looks
initialized.
- Add an initialized() function that tells you if the current event is
indeed initialized.
- Clear the flags on delete so it can't be accidentally thought of as
initialized.
- Fix getFlags assert statement. "How did this ever work?"
Symbolic names should still be used, but this makes it easier to do
things like:
Event::Priority MyObject_Pri = Event::Default_Pri + 1
Remember that higher numbers are lower priority (should we fix this?)
1) Move alpha-specific code out of page_table.cc:serialize().
2) Begin serializing M5_pid and unserializing it, but adding an function to do optional paramIn so that old checkpoints don't need to be fixed up.
3) Fix up alpha startup code so that the unserialized M5_pid value is properly written to DTB_IPR_ASN.
4) Fix the memory unserialize that I forgot somehow in the last changeset.
5) Add in an agg_se.py to handle aggregated checkpoints. --bench foo-bar plus positional arguments foo bar are the only changes in usage from se.py.
Note this aggregation stuff has only been tested for Alpha and nothing else, though it should take a very minimal amount of work to get it to work with another ISA.
When accessing arguments for a syscall, the position of an argument depends on
the policies of the ISA, how much space preceding arguments took up, and the
"alignment" of the index for this particular argument into the number of
possible storate locations. This change adjusts getSyscallArg to take its
index parameter by reference instead of value and to adjust it to point to the
possible location of the next argument on the stack, basically just after the
current one. This way, the rules for the new argument can be applied locally
without knowing about other arguments since those have already been taken into
account implicitly.
All system calls have also been changed to reflect the new interface. In a
number of cases this made the implementation clearer since it encourages
arguments to be collected in one place in order and then used as necessary
later, as opposed to scattering them throughout the function or using them in
place in long expressions. It also discourages using getSyscallArg over and
over to retrieve the same value when a temporary would do the job.
This adds support for the 32-bit, big endian Power ISA. This supports both
integer and floating point instructions based on the Power ISA Book I v2.06.
Glibc often assumes that memory it receives from the kernel after a brk
system call will contain only zeros. This is important during a calloc,
because it won't clear the new memory itself. In the simulator, if the
new page exists, it will be cleared using this patch, to mimic the kernel's
functionality.
Get rid of misc.py and just stick misc things in __init__.py
Move utility functions out of SCons files and into m5.util
Move utility type stuff from m5/__init__.py to m5/util/__init__.py
Remove buildEnv from m5 and allow access only from m5.defines
Rename AddToPath to addToPath while we're moving it to m5.util
Rename read_command to readCommand while we're moving it
Rename compare_versions to compareVersions while we're moving it.
--HG--
rename : src/python/m5/convert.py => src/python/m5/util/convert.py
rename : src/python/m5/smartdict.py => src/python/m5/util/smartdict.py
Using a look up table changed the run time of the SPARC_FS solaris boot
regression from:
real 14m45.951s
user 13m57.528s
sys 0m3.452s
to:
real 12m19.777s
user 12m2.685s
sys 0m2.420s
Start by turning all of the *Source functions into classes
so we can do more calculations and more easily collect the data we need.
Add parameters to the new classes for indicating what sorts of flags the
objects should be compiled with so we can allow certain files to be compiled
without Werror for example.
This patch adds limited multithreading support in syscall-emulation
mode, by using the clone system call. The clone system call works
for Alpha, SPARC and x86, and multithreaded applications run
correctly in Alpha and SPARC.