It was technically possible but clumsy to determine what endianness a guest
was configured with using the state in byteswap.hh. This change makes that
information available more directly.
Also get rid of unused (and mildly redundant) ByteOrderDiffers constant.
The decoder now checks the value of FULL_SYSTEM in a switch statement to
decide whether to return a real syscall instruction or one that triggers
syscall emulation (or a panic in FS mode). The switch statement should devolve
into an if, and also should be optimized out since it's based on constant
input.
In FS mode the syscall function will panic, but the interface will be
consistent and code which calls syscall can be compiled in. This will allow,
for instance, instructions that use syscall to be built unconditionally but
then not returned by the decoder.
Some DPRINTFs were printing uninitalized values because the DPRINTFs were
always being printed even when the features they were printing weren't
being used. This change moves the DPRINTFs into the appropriate if blocks
and initializes the state variables correctly.
There also is a case where the offset into the packet could be calculated
incorrectly during a DMA that is fixed.
Check that we're not currently writing back an address the prefetcher is trying
to prefetch before issuing it. We previously checked the mshrQueue and the cache
itself, but forgot to check the writeBuffer. This fixes a memory corrucption
issue with an L2 prefetcher.
These ops allow gem5 ops to be called from within java programs like the following:
import jni.gem5Op;
public class HelloWorld {
public static void main(String[] args) {
gem5Op gem5 = new gem5Op();
System.out.println("Rpns0:" + gem5.rpns());
System.out.println("Rpns1:" + gem5.rpns());
}
static {
System.loadLibrary("gem5OpJni");
}
}
When building you need to make sure classpath include gem5OpJni.jar:
javac -classpath $CLASSPATH:/path/to/gem5OpJni.jar HelloWorld.java
and when running you need to make sure both the java and library path are set:
java -classpath $CLASSPATH:/path/to/gem5OpJni.jar -Djava.library.path=/path/to/libgem5OpJni.so HelloWorld
Only create a memory ordering violation when the value could have changed
between two subsequent loads, instead of just when loads go out-of-order
to the same address. While not very common in the case of Alpha, with
an architecture with a hardware table walker this can happen reasonably
frequently beacuse a translation will miss and start a table walk and
before the CPU re-schedules the faulting instruction another one will
pass it to the same address (or cache block depending on the dendency
checking).
This patch has been tested with a couple of self-checking hand crafted
programs to stress ordering between two cores.
The performance improvement on SPEC benchmarks can be substantial (2-10%).
So a mips-cross-gdb can connect with gem5(MIPS_SE), and do some remote
debugging.
Testing:
Build gem5 for MIPS_SE and make gem5 wait at beginning:
modify "rgdb_wait = -1" to "rgdb_wait = 0" in src/sim/system.cc;
scons build/MIPS_SE/gem5.opt CPU_MODELS=O3CPU
----
Build GDB-7.3 mips-cross:
./configure --target=mips-linux-gnu --prefix=xxx/gdb-7.3-install/
make
make install
----
Run:
./build/MIPS_SE/gem5.opt configs/example/se.py --detailed --caches
./mips-linux-gnu-gdb xxx/gem5/tests/test-progs/hello/bin/mips/linux/hello
(gdb) target remote :7000
(gdb) info registers
(gdb) disassemble
(gdb) si
(gdb) break main
(gdb) c
(gdb) quit
Testing done.
Having two StaticInst classes, one nominally ISA dependent and the other ISA
dependent, has not been historically useful and makes the StaticInst class
more complicated that it needs to be. This change merges StaticInstBase into
StaticInst.
This change pulls the instruction decoding machinery (including caches) out of
the StaticInst class and puts it into its own class. This has a few intrinsic
benefits. First, the StaticInst code, which has gotten to be quite large, gets
simpler. Second, the code that handles decode caching is now separated out
into its own component and can be looked at in isolation, making it easier to
understand. I took the opportunity to restructure the code a bit which will
hopefully also help.
Beyond that, this change also lays some ground work for each ISA to have its
own, potentially stateful decode object. We'd be able to include less
contextualizing information in the ExtMachInst objects since that context
would be applied at the decoder. Also, the decoder could "know" ahead of time
that all the instructions it's going to see are going to be, for instance, 64
bit mode, and it will have one less thing to check when it decodes them.
Because the decode caching mechanism has been separated out, it's now possible
to have multiple caches which correspond to different types of decoding
context. Having one cache for each element of the cross product of different
configurations may become prohibitive, so it may be desirable to clear out the
cache when relatively static state changes and not to have one for each
setting.
Because the decode function is no longer universally accessible as a static
member of the StaticInst class, a new function was added to the ThreadContexts
that returns the applicable decode object.
Do some minor cleanup of some recently added comments, a warning, and change
other instances of stack extension to be like what's now being done for x86.
The way flag bits were being set for microops in x86 ended up implicitly
calling the bitset constructor which was truncating flags beyond the width of
an unsigned long. This change sets the bits in chunks which are always small
enough to avoid being truncated. On 64 bit machines this should reduce to be
the same as before, and on 32 bit machines it should work properly and not be
unreasonably inefficient.
When an instruction is translated in the x86 TLB, a variable called
delayedResponse is passed back and forth which tracks whether a translation
could be completed immediately, or if there's going to be callback that will
finish things up. If a read was to the internal memory space, memory mapped
registers used to implement things like MSRs, the function hadn't yet gotten
to where delayedResponse was set to false, it's default. That meant that the
value was never set, and the TLB could start waiting for a callback that would
never come. This change simply moves the assignment to above where control
can divert to translateInt().
Nothing big here, but when you have an address that is not in the page table request to be allocated, if it falls outside of the maximum stack range all you get is a page fault and you don't know why. Add a little warn() to explain it a bit. Also add some comments and alter logic a little so that you don't totally ignore the return value of checkAndAllocNextPage().
Even though the code is safe, compiler flags a warning here, which are treated as errors for fast/opt. I know it's redundant but it has no side effects and fixes the compile.
In the current implementation of Functional Accesses, it's very hard to
implement broadcast or snooping protocols where the memory has no idea if it
has exclusive access to a cache block or not. Without this knowledge, making
sure the RW vs. RO permissions are right are next to impossible. So we add a
new state called Backing_Store to enable the conveyance that this is the backup
storage for a block, so that it can be written if it is the only possibly RW
block in the system, or written even if there is another RW block in the
system, without causing problems.
Also, a small change to actually set the m_name field for each Controller so
that debugging can be easier. Now you can access a controller's name just by
controller->getName().
There are a set of locations is the linux kernel that are managed via
cache maintence instructions until all processors enable their MMUs & TLBs.
Writes to these locations are manually flushed from the cache to main
memory when the occur so that cores operating without their MMU enabled
and only issuing uncached accesses can receive the correct data. Unfortuantely,
gem5 doesn't support any kind of software directed maintence of the cache.
Until such time as that support exists this patch marks the specific cache blocks
that need to be coherent as non-cacheable until all CPUs enable their MMU and
thus allows gem5 to boot MP systems with caches enabled (a requirement for
booting an O3 cpu and thus an O3 CPU regression).
The driver can read the IDE config register as a 32 bit register since
some adapters use bit 18 as a disable channel bit. If the size isn't
set in a PRD it should be 64K according to the SPEC (and driver) not
128K.
SEV instructions were originally implemented to cause asynchronous squashes
via the generateTCSquash() function in the O3 pipeline when updating the
SEV_MAILBOX miscReg. This caused race conditions between CPUs in an MP system
that would lead to a pipeline either going inactive indefinitely or not being
able to commit squashed instructions. Fixed SEV instructions to behave like
interrupts and cause synchronous sqaushes inside the pipeline, eliminating
the race conditions. Also fixed up the semantics of the WFE instruction to
behave as documented in the ARMv7 ISA description to not sleep if SEV_MAILBOX=1
or unmasked interrupts are pending.
Two issues are fixed in this patch:
1. The load and store pc passed to the predictor are passed in reverse order.
2. The flag indicating that a barrier is inflight was never cleared when
the barrier was squashed instead of committed. This made all load insts
dependent on a non-existent barrier in-flight.