The delayed commit flag is used in conjunction with interrupt pending flag to
figure out whether or not fetch stage should get more instructions. This patch
clears this flag when instructions are squashed. Also, in case an interrupt is
pending, currently it is not possible to access the instruction cache. This
patch allows accessing the cache in case this flag is set.
The condition for handling interrupts is to check whether or not the cpu's
instruction list is empty. As observed, this can lead to cases in which even
though the instruction list is empty, interrupts are handled when they should
not be. The condition is being strengthened so that interrupts get handled only
when the last committed microop did not had IsDelayedCommit set.
This patch adds a function to the ROB that will get the squashing instruction
from the ROB's list of instructions. This squashing instruction is used for
figuring out the macroop from which the fetch stage should fetch the microops.
Further, a check has been added that if the instructions are to be fetched
from the cache maintained by the fetch stage, then the data in the cache should
be valid and the PC of the thread being fetched from is same as the address of
the cache block.
This pointer was only being stored in code that came from SE mode. The system
pointer is always meaningful and available, so it should always be stored.
This patch removes the onRetryList field from the BusPort class and
entirely relies on the retryList which holds all ports that are
waiting to retry. The onRetryList field and the retryList were
previously used with overloaded functionalities and only one is really
needed (there were also checks to assert they held the same
information). After this patch the bus ports will be split into master
and slave ports and this simplifies that transition.
Because there are no longer architecture independent but specialized functions
in arch/XXX/faults.hh, code that isn't using the faults from a particular ISA
no longer needs to be able to include them through the switching header file
arch/faults.hh. By removing that header file (arch/faults.hh), the potential
interface between ISA code and non ISA code is narrowed.
The code that checks whether pages allocated by allocPhysPages only checks
that the first page fits into physical memory, not that all of them do. This
change makes the code check the last page which should work properly. This
function used to only allocate one page at a time, so the first page and last
page used to be the same thing.
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).
clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
This patch is a very straight-forward simplification, removing the
unecessary otherPort pointer from the cache port. The pointer was only
used to forward range changes, and the address range is fixed for the
cache. Removing the pointer simplifies the transition to master/slave
ports.
This patch is a trivial simplification, removing the cpu pointer from
SimpleThread and relying on the baseCpu pointer in ThreadState. The
patch does not add or change any functionality, it merely cleans up
the code.
Usage: m5 writefile <filename>
File will be created in the gem5 output folder with the identical filename.
Implementation is largely based on the existing "readfile" functionality.
Currently does not support exporting of folders.
Brings the CheckerCPU back to life to allow FS and SE checking of the
O3CPU. These changes have only been tested with the ARM ISA. Other
ISAs potentially require modification.
This patch makes the physMemPort of the RubyPort a PioPort rather than
an M5Port. This reflects the fact that the M5Port and PioPort have
different roles. The M5Port is really a coherent slave that is
connected to the CPUs and other coherent masters of the system,
e.g. DMA ports. The PioPort, on the other hand, is a master port that
is connected to the memory and other slaves, for example the pio
devices.
This simplifies future changes into master/slave ports and is
consistent with the port roles throughout the system.
This patch cleans up forward declarations and a member-function
prototype that still referred to the old FunctionalPort, VirtualPort
and TranslatingPort. There is no change in functionality.
This patch makes O3's LSQ maintain total order between stores. Essentially
only the store at the head of the store buffer is allowed to be in flight.
Only after that store completes, the next store is issued to the memory
system. By default, the x86 architecture will have TSO.
This patch adds a missing curly brace when clearing and setting the
appropriate bits in the ns_gige.cc code.
This commit is not based on any runtime bug experienced, but rather
inspection of the code.
CopyStringOut() improperly indexed setting the null
character, would result in zeroing a random byte
of memory after(out of bounds) the character array.
This patch implements the functionality for forwarding invalidations and
replacements from the L1 cache of the Ruby memory system to the O3 CPU. The
implementation adds a list of ports to RubyPort. Whenever a replacement or an
invalidation is performed, the L1 cache forwards this to all the ports, which
is the LSQ in case of the O3 CPU.
This command will be sent from the memory system (Ruby) to the LSQ of
an O3 CPU so that the LSQ, if it needs to, invalidates the address in
the request packet.
This patch removes the idiosyncratic nature of the default bus port
and makes it yet another port in the list of interfaces. Rather than
having a specific pointer to the default port we merely track the
identifier of this port. This change makes future port diversification
easier and overall cleans up the bus code.
In preparation for the introduction of Master and Slave ports, this
patch removes the default port parameter in the Python port and thus
forces the argument list of the Port to contain only the
description. The drawback at this point is that the config port and
dma port of PCI and DMA devices have to be connected explicitly. This
is key for future diversification as the pio and config port are
slaves, but the dma port is a master.
This patch makes the bus bridge uni-directional and specialises the
bus ports to be a master port and a slave port. This greatly
simplifies the assumptions on both sides as either port only has to
deal with requests or responses. The following patches introduce the
notion of master and slave ports, and would not be possible without
this split of responsibilities.
In making the bridge unidirectional, the address range mechanism of
the bridge is also changed. For the cases where communication is
taking place both ways, an additional bridge is needed. This causes
issues with the existing mechanism, as the busses cannot determine
when to stop iterating the address updates from the two bridges. To
avoid this issue, and also greatly simplify the specification, the
bridge now has a fixed set of address ranges, specified at creation
time.
The functional ports are no longer used and this patch cleans up the
legacy that is still present in buses, memories, CPUs etc. Note that
this does not refer to the class FunctionalPort (already removed), but
rather ports with the name (and use) functional.
This patch simplifies the address-range determination mechanism and
also unifies the naming across ports and devices. It further splits
the queries for determining if a port is snooping and what address
ranges it responds to (aiming towards a separation of
cache-maintenance ports and pure memory-mapped ports). Default
behaviours are such that most ports do not have to define isSnooping,
and master ports need not implement getAddrRanges.
This patch removes the default port and instead relies on the peer
being set to NULL initially. The binding check (i.e. is a port
connected or not) will eventually be moved to the init function of the
modules.
This patch removes the inheritance of EventManager from the ports and
moves all responsibility for event queues to the owner. Eventually the
event manager should be the interface block, which could either be the
structural owner or a subblock like a LSQ in the O3 CPU for example.
This patch performs minimal changes to move the instruction and data
ports from specialised subclasses to the base CPU (to the largest
degree possible). Ultimately it servers to make the CPU(s) have a
well-defined interface to the memory sub-system.
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.
The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
This patch changes the access permission for the WB_E_W state from
Busy to Read_Write to avoid having issues in follow-on patches with
functional accesses going through Ruby. This change was made after
consultation with all involved parties and is more of a work-around
than a fix.
The system port is used as a globally reachable access point to the
memory subsystem. The benefit of using an actual port is that the
usual infrastructure is used to resolve any access and thus makes the
overall system able to handle distributed memories in any
configuration, and also makes the accesses agnostic to the address
map. This patch only introduces the port and does not actually use it
for anything.
This patch changes the functionalAccess member function in the cache
model such that it is aware of what port the access came from, i.e. if
it came from the CPU side or from the memory side. By adding this
information, it is possible to respect the 'forwardSnoops' flag for
snooping requests coming from the memory side and not forward
them. This fixes an outstanding issue with the IO bus getting accesses
that have no valid destination port and also cleans up future changes
to the bus model.
A recent changeset (aae12ce9f34c) removed support for
PAL-mode breakpoints in Alpha, since it was awkward
and likely unused. This patch lets a user know if they
potentially run into this limitation.