Commit graph

101 commits

Author SHA1 Message Date
Andreas Hansson
d4273cc9a6 mem: Set the cache line size on a system level
This patch removes the notion of a peer block size and instead sets
the cache line size on the system level.

Previously the size was set per cache, and communicated through the
interconnect. There were plenty checks to ensure that everyone had the
same size specified, and these checks are now removed. Another benefit
that is not yet harnessed is that the cache line size is now known at
construction time, rather than after the port binding. Hence, the
block size can be locally stored and does not have to be queried every
time it is used.

A follow-on patch updates the configuration scripts accordingly.
2013-07-18 08:31:16 -04:00
Andreas Hansson
2308f812ef mem: Make the buses multi layered
This patch makes the buses multi layered, and effectively creates a
crossbar structure with distributed contention ports at the
destination ports. Before this patch, a bus could have a single
request, response and snoop response in flight at any time, and with
these changes there can be as many requests as connected slaves (bus
master ports), and as many responses as connected masters (bus slave
ports).

Together with address interleaving, this patch enables us to create
high-throughput memory interconnects, e.g. 50+ GByte/s.
2013-05-30 12:54:01 -04:00
Andreas Hansson
e82996d9da mem: Separate the two snoop response cases in the bus
This patch makes the flow control and state updates of the coherent
bus more clear by separating the two cases, i.e. forward as a snoop
response, or turn it into a normal response.

With this change it is also more clear what resources are being
occupied, and that we effectively bypass the busy check for the second
case. As a result of the change in resource usage some stats change.
2013-05-30 12:54:00 -04:00
Uri Wiener
91f7b065a9 mem: Add basic stats to the buses
This patch adds a basic set of stats which are hard to impossible to
implement using only communication monitors, and are needed for
insight such as bus utilization, transactions through the bus etc.

Stats added include throughput and transaction distribution, and also
a two-dimensional vector capturing how many packets and how much data
is exchanged between the masters and slaves connected to the bus.
2013-05-30 12:53:58 -04:00
Andreas Hansson
e1e73c5f39 mem: Use unordered set in bus request tracking
This patch changes the set used to track outstanding requests to an
unordered set (part of C++11 STL). There is no need to maintain the
order, and hopefully there might even be a small performance benefit.
2013-05-30 12:53:57 -04:00
Andreas Hansson
93a8423dea mem: Separate waiting for the bus and waiting for a peer
This patch splits the retryList into a list of ports that are waiting
for the bus itself to become available, and a map that tracks the
ports where forwarding failed due to a peer not accepting the
packet. Thus, when a retry reaches the bus, it can be sent to the
appropriate port that initiated that transaction.

As a consequence of this patch, only ports that are really ready to go
will get a retry, thus reducing the amount of redundant failed
attempts. This patch also makes it easier to reason about the order of
servicing requests as the ports waiting for the bus are now clearly
FIFO and much easier to change if desired.
2013-03-26 14:46:47 -04:00
Andreas Hansson
362f6f1a16 mem: Introduce a variable for the retrying port
This patch introduces a variable to keep track of the retrying port
instead of relying on it being the front of the retryList.

Besides the improvement in readability, this patch is a step towards
separating out the two cases where a port is waiting for the bus to be
free, and where the forwarding did not succeed and the bus is waiting
for a retry to pass on to the original initiator of the transaction.

The changes made are currently such that the regressions are not
affected. This is ensured by always prioritizing the currently
retrying port and putting it back at the front of the retry list.
2013-03-26 14:46:46 -04:00
Andreas Hansson
cafd38f36c mem: Merge ranges in bus before passing them on
This patch adds basic merging of address ranges to the bus, such that
interleaved ranges are merged together before being passed on by the
bus. As such, the bus aggregates the address ranges of the connected
slave ports and then passes on the merged ranges through its master
ports. The bus thus hides the complexity of the interleaved ranges and
only exposes contigous ranges to the surrounding system.

As part of this patch, the bus ranges are also cached for any future
queries.
2013-03-01 13:20:19 -05:00
Andreas Hansson
b3fc8839c4 mem: Make packet bus-related time accounting relative
This patch changes the bus-related time accounting done in the packet
to be relative. Besides making it easier to align the cache timing to
cache clock cycles, it also makes it possible to create a Last-Level
Cache (LLC) directly to a memory controller without a bus inbetween.

The bus is unique in that it does not ever make the packets wait to
reflect the time spent forwarding them. Instead, the cache is
currently responsible for making the packets wait. Thus, the bus
annotates the packets with the time needed for the first word to
appear, and also the last word. The cache then delays the packets in
its queues before passing them on. It is worth noting that every
object attached to a bus (devices, memories, bridges, etc) should be
doing this if we opt for keeping this way of accounting for the bus
timing.
2013-02-19 05:56:06 -05:00
Andreas Hansson
7cd49b24d2 sim: Make clock private and access using clockPeriod()
This patch makes the clock member private to the ClockedObject and
forces all children to access it using clockPeriod(). This makes it
impossible to inadvertently change the clock, and also makes it easier
to transition to a situation where the clock is derived from e.g. a
clock domain, or through a multiplier.
2013-02-19 05:56:06 -05:00
Andreas Hansson
71da1d2157 base: Encapsulate the underlying fields in AddrRange
This patch makes the start and end address private in a move to
prevent direct manipulation and matching of ranges based on these
fields. This is done so that a transition to ranges with interleaving
support is possible.

As a result of hiding the start and end, a number of member functions
are needed to perform the comparisons and manipulations that
previously took place directly on the members. An accessor function is
provided for the start address, and a function is added to test if an
address is within a range. As a result of the latter the != and ==
operator is also removed in favour of the member function. A member
function that returns a string representation is also created to allow
debug printing.

In general, this patch does not add any functionality, but it does
take us closer to a situation where interleaving (and more cleverness)
can be added under the bonnet without exposing it to the user. More on
that in a later patch.
2013-01-07 13:05:38 -05:00
Andreas Sandberg
b81a977e6a sim: Move the draining interface into a separate base class
This patch moves the draining interface from SimObject to a separate
class that can be used by any object needing draining. However,
objects not visible to the Python code (i.e., objects not deriving
from SimObject) still depend on their parents informing them when to
drain. This patch also gets rid of the CountedDrainEvent (which isn't
really an event) and replaces it with a DrainManager.
2012-11-02 11:32:01 -05:00
Andreas Hansson
2a740aa096 Port: Add protocol-agnostic ports in the port hierarchy
This patch adds an additional level of ports in the inheritance
hierarchy, separating out the protocol-specific and protocl-agnostic
parts. All the functionality related to the binding of ports is now
confined to use BaseMaster/BaseSlavePorts, and all the
protocol-specific parts stay in the Master/SlavePort. In the future it
will be possible to add other protocol-specific implementations.

The functions used in the binding of ports, i.e. getMaster/SlavePort
now use the base classes, and the index parameter is updated to use
the PortID typedef with the symbolic InvalidPortID as the default.
2012-10-15 08:12:35 -04:00
Andreas Hansson
0c58106b6e Mem: Use deque instead of list for bus retries
This patch changes the data structure used to keep track of ports that
should be told to retry. As the bus is doing this in an FCFS way,
there is no point having a list. A deque is a better match (and is at
least in theory a better choice from a performance point of view).
2012-10-15 08:12:25 -04:00
Andreas Hansson
36d199b9a9 Mem: Use range operations in bus in preparation for striping
This patch transitions the bus to use the AddrRange operations instead
of directly accessing the start and end. The change facilitates the
move to a more elaborate AddrRange class that also supports address
striping in the bus by specifying interleaving bits in the ranges.

Two new functions are added to the AddrRange to determine if two
ranges intersect, and if one is a subset of another. The bus
propagation of address ranges is also tweaked such that an update is
only propagated if the bus received information from all the
downstream slave modules. This avoids the iteration and need for the
cycle-breaking scheme that was previously used.
2012-10-15 08:07:04 -04:00
Andreas Hansson
43ca8415e8 Mem: Determine bus block size during initialisation
This patch moves the block size computation from findBlockSize to
initialisation time, once all the neighbouring ports are connected.

There is no need to dynamically update the block size, and the caching
of the value effectively avoided that anyhow. This is very similar to
what was already in place, just with a slightly leaner implementation.
2012-10-11 06:38:43 -04:00
Andreas Hansson
4aee3aa073 Mem: Tidy up bus member variables types
This patch merely tidies up the types used for the bus member
variables. It also makes the constant ones const.
2012-09-21 10:11:24 -04:00
Andreas Hansson
ffb6aec603 AddrRange: Transition from Range<T> to AddrRange
This patch takes the final plunge and transitions from the templated
Range class to the more specific AddrRange. In doing so it changes the
obvious Range<Addr> to AddrRange, and also bumps the range_map to be
AddrRangeMap.

In addition to the obvious changes, including the removal of redundant
includes, this patch also does some house keeping in preparing for the
introduction of address interleaving support in the ranges. The Range
class is also stripped of all the functionality that is never used.

--HG--
rename : src/base/range.hh => src/base/addr_range.hh
rename : src/base/range_map.hh => src/base/addr_range_map.hh
2012-09-19 06:15:44 -04:00
Andreas Hansson
452217817f Clock: Move the clock and related functions to ClockedObject
This patch moves the clock of the CPU, bus, and numerous devices to
the new class ClockedObject, that sits in between the SimObject and
MemObject in the class hierarchy. Although there are currently a fair
amount of MemObjects that do not make use of the clock, they
potentially should do so, e.g. the caches should at some point have
the same clock as the CPU, potentially with a 1:n ratio. This patch
does not introduce any new clock objects or object hierarchies
(clusters, clock domains etc), but is still a step in the direction of
having a more structured approach clock domains.

The most contentious part of this patch is the serialisation of clocks
that some of the modules (but not all) did previously. This
serialisation should not be needed as the clock is set through the
parameters even when restoring from the checkpoint. In other words,
the state is "stored" in the Python code that creates the modules.

The nextCycle methods are also simplified and the clock phase
parameter of the CPU is removed (this could be part of a clock object
once they are introduced).
2012-08-21 05:49:01 -04:00
Andreas Hansson
8caaac048a Bus: Split the bus into separate request/response layers
This patch splits the existing buses into multiple layers. The
non-coherent bus is split into a request and a response layer, and the
coherent bus adds an additional layer for the snoop responses. The
layer is modified to be templatised on the port type, such that the
different layers can have retryLists with either master or slave
ports. This patch also removes the dynamic cast from the retry, as
previously promised when moving the recvRetry from the port base class
to the master/slave port respectively.

Overall, the split bus more closely reflects any modern on-chip bus
and should be at step in the right direction. From this point, it
would be reasonable straight forward to add separate layers (and thus
contention points and arbitration) for each port and thus create a
true crossbar.

The regressions all produce the correct output, but have varying
degrees of changes to their statistics. A separate patch will be
pushed with the updates to the reference statistics.
2012-07-09 12:35:37 -04:00
Andreas Hansson
995e6e4670 Bus: Add a notion of layers to the buses
This patch moves all flow control, arbitration and state information
into a bus layer. The layer is thus responsible for all the state
transitions, and for keeping hold of the retry list. Consequently the
layer is also responsible for the draining.

With this change, the non-coherent and coherent bus are given a single
layer to avoid changing any temporal behaviour, but the patch opens up
for adding more layers.
2012-07-09 12:35:36 -04:00
Andreas Hansson
14f9c77dd3 Bus: Replace tickNextIdle and inRetry with a state variable
This patch adds a state enum and member variable in the bus, tracking
the bus state, thus eliminating the need for tickNextIdle and inRetry,
and fixing an issue that allowed the bus to be occupied by multiple
packets at once (hopefully it also makes it easier to understand the
code).

The bus, in its current form, uses tickNextIdle and inRetry to keep
track of the state of the bus. However, it only updates tickNextIdle
_after_ forwarding a packet using sendTiming, and the result is that
the bus is still seen as idle, and a module that receives the packet
and starts transmitting new packets in zero time will still see the
bus as idle (and this is done by a number of DMA devices). The issue
can also be seen in isOccupied where the bus calls reschedule on an
event instead of schedule.

This patch addresses the problem by marking the bus as _not_ idle
already by the time we conclude that the bus is not occupied and we
will deal with the packet.

As a result of not allowing multiple packets to occupy the bus, some
regressions have slight changes in their statistics. A separate patch
updates these accordingly.

Further ahead, a follow-on patch will introduce a separate state
variable for request/responses/snoop responses, and thus implement a
split request/response bus with separate flow control for the
different message types (even further ahead it will introduce a
multi-layer bus).
2012-07-09 12:35:35 -04:00
Andreas Hansson
46d9adb68c Port: Make getAddrRanges const
This patch makes getAddrRanges const throughout the code base. There
is no reason why it should not be, and making it const prevents adding
any unintentional side-effects.
2012-07-09 12:35:34 -04:00
Andreas Hansson
0d32940711 Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.

A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.

A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.

The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.

A bit of minor tidying up has also been done.

--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 13:30:04 -04:00
Andreas Hansson
b8cf48accc Bus: Remove redundant packet parameter from isOccupied
This patch merely remove the Packet* from the isOccupied member
function. Historically this was used to check if the packet was an
express snoop, but this is now done outside this function (where
relevant).
2012-05-30 05:31:11 -04:00
Andreas Hansson
5880fbe96d Bus: Turn the PortId into a transport function parameter
The main aim of this patch is to arrive at a suitable port interface
for vector ports, including both the packet and the port id. This
patch changes the bus transport functions
(recvFunctional/Atomic/Timing) to require a PortId parameter
indicating the source port. Previously this information was passed by
setting the source field of the packet, and this is only required in
the case of a timing request.

With this patch, the use of the source and destination field is also
more restrictive, as they are only needed for timing accesses. The
modifications to these fields for atomic snoops is now removed
entirely, also making minor modifications to the cache.
2012-05-30 05:30:24 -04:00
Andreas Hansson
cad802761a Packet: Unify the use of PortID in packet and port
This patch removes the Packet::NodeID typedef and unifies it with the
Port::PortId. The src and dest fields in the packet are used to hold a
port id (e.g. in the bus), and thus the two should actually be the
same.

The typedef PortID is now global (in base/types.hh) and aligned with
the ThreadID in terms of capitalisation and naming of the
InvalidPortID constant.

Before this patch, two flags were used for valid destination and
source, rather than relying on a named value (InvalidPortID), and
this is now redundant, as the src and dest field themselves are
sufficient to tell whether the current value is a valid port
identifier or not. Consequently, the VALID_SRC and VALID_DST are
removed.

As part of the cleaning up, a number of int parameters and local
variables are updated to use PortID.

Note that Ruby still has its own NodeID typedef. Furthermore, the
MemObject getMaster/SlavePort still has an int idx parameter with a
default value of -1 which should eventually change to PortID idx =
InvalidPortID.
2012-05-30 05:29:42 -04:00
Andreas Hansson
3fea59e162 MEM: Separate requests and responses for timing accesses
This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.

For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).

The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.

With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
2012-05-01 13:40:42 -04:00
Andreas Hansson
beed20d7bc MEM: Use base class Master/SlavePort pointers in the bus
This patch makes some rather trivial simplifications to the bus in
that it changes the use of BusMasterPort and BusSlavePort pointers to
simply use MasterPort and SlavePort (iterators are also updated
accordingly).

This change is a step towards a future patch that introduces a
separation of the interface and the structural port itself.
2012-04-25 10:45:23 -04:00
Andreas Hansson
4c92708b48 MEM: Add the PortId type and a corresponding id field to Port
This patch introduces the PortId type, moves the definition of
INVALID_PORT_ID to the Port class, and also gives every port an id to
reflect the fact that each element in a vector port has an
identifier/index.

Previously the bus and Ruby testers (and potentially other users of
the vector ports) added the id field in their port subclasses, and now
this functionality is always present as it is moved to the base class.
2012-04-25 10:41:23 -04:00
Andreas Hansson
dccca0d3a9 MEM: Separate snoops and normal memory requests/responses
This patch introduces port access methods that separates snoop
request/responses from normal memory request/responses. The
differentiation is made for functional, atomic and timing accesses and
builds on the introduction of master and slave ports.

Before the introduction of this patch, the packets belonging to the
different phases of the protocol (request -> [forwarded snoop request
-> snoop response]* -> response) all use the same port access
functions, even though the snoop packets flow in the opposite
direction to the normal packet. That is, a coherent master sends
normal request and receives responses, but receives snoop requests and
sends snoop responses (vice versa for the slave). These two distinct
phases now use different access functions, as described below.

Starting with the functional access, a master sends a request to a
slave through sendFunctional, and the request packet is turned into a
response before the call returns. In a system without cache coherence,
this is all that is needed from the functional interface. For the
cache-coherent scenario, a slave also sends snoop requests to coherent
masters through sendFunctionalSnoop, with responses returned within
the same packet pointer. This is currently used by the bus and caches,
and the LSQ of the O3 CPU. The send/recvFunctional and
send/recvFunctionalSnoop are moved from the Port super class to the
appropriate subclass.

Atomic accesses follow the same flow as functional accesses, with
request being sent from master to slave through sendAtomic. In the
case of cache-coherent ports, a slave can send snoop requests to a
master through sendAtomicSnoop. Just as for the functional access
methods, the atomic send and receive member functions are moved to the
appropriate subclasses.

The timing access methods are different from the functional and atomic
in that requests and responses are separated in time and
send/recvTiming are used for both directions. Hence, a master uses
sendTiming to send a request to a slave, and a slave uses sendTiming
to send a response back to a master, at a later point in time. Snoop
requests and responses travel in the opposite direction, similar to
what happens in functional and atomic accesses. With the introduction
of this patch, it is possible to determine the direction of packets in
the bus, and no longer necessary to look for both a master and a slave
port with the requested port id.

In contrast to the normal recvFunctional, recvAtomic and recvTiming
that are pure virtual functions, the recvFunctionalSnoop,
recvAtomicSnoop and recvTimingSnoop have a default implementation that
calls panic. This is to allow non-coherent master and slave ports to
not implement these functions.
2012-04-14 05:45:07 -04:00
William Wang
f9d403a7b9 MEM: Introduce the master/slave port sub-classes in C++
This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.

The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.

The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.

The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
2012-03-30 09:40:11 -04:00
Andreas Hansson
9727b1be18 MEM: Unify bus access methods and prepare for master/slave split
This patch unifies the recvFunctional, recvAtomic and recvTiming to
all be based on a similar structure: 1) extract information about the
incoming packet, 2) send it out to the appropriate snoopers, 3)
determine where it is going, and 4) forward it to the right
destination. The naming of variables across the different access
functions is now consistent as well.

Additionally, the patch introduces the member functions releaseBus and
retryWaiting to better distinguish between the two cases when we
should tell a sender to retry. The first case is when the bus goes
from busy to idle, and the second case is when it receives a retry
from a destination that did not immediatelly accept a packet.

As a very minor change, the MMU debug flag is no longer used in the bus.
2012-03-22 06:37:21 -04:00
Andreas Hansson
1031b824b9 MEM: Move port creation to the memory object(s) construction
This patch moves all port creation from the getPort method to be
consistently done in the MemObject's constructor. This is possible
thanks to the Swig interface passing the length of the vector ports.
Previously there was a mix of: 1) creating the ports as members (at
object construction time) and using getPort for the name resolution,
or 2) dynamically creating the ports in the getPort call. This is now
uniform. Furthermore, objects that would not be complete without a
port have these ports as members rather than having pointers to
dynamically allocated ports.

This patch also enables an elaboration-time enumeration of all the
ports in the system which can be used to determine the masterId.
2012-02-24 11:43:53 -05:00
Andreas Hansson
ef4af8cec8 MEM: Fatal when no port can be found for an address
This patch adds a check in the findPort method to ensure that an
invalid port id is never returned. Previously this could happen if no
default port was set, and no address matched the request, in which
case -1 was returned causing a SEGFAULT when using the id to index in
the port array. To clean things up further a symbolic name is added
for the invalid port id.
2012-02-24 11:40:29 -05:00
Andreas Hansson
cdb32860b4 MEM: Remove onRetryList from BusPort and rely on retryList
This patch removes the onRetryList field from the BusPort class and
entirely relies on the retryList which holds all ports that are
waiting to retry. The onRetryList field and the retryList were
previously used with overloaded functionalities and only one is really
needed (there were also checks to assert they held the same
information). After this patch the bus ports will be split into master
and slave ports and this simplifies that transition.
2012-02-09 13:06:27 -05:00
Andreas Hansson
acd289b7ef MEM: Make the bus default port yet another port
This patch removes the idiosyncratic nature of the default bus port
and makes it yet another port in the list of interfaces. Rather than
having a specific pointer to the default port we merely track the
identifier of this port. This change makes future port diversification
easier and overall cleans up the bus code.
2012-01-17 12:55:09 -06:00
William Wang
e731cf4c1d MEM: Remove the functional ports from the memory system
The functional ports are no longer used and this patch cleans up the
legacy that is still present in buses, memories, CPUs etc. Note that
this does not refer to the class FunctionalPort (already removed), but
rather ports with the name (and use) functional.
2012-01-17 12:55:09 -06:00
Andreas Hansson
07cf9d914b MEM: Separate queries for snooping and address ranges
This patch simplifies the address-range determination mechanism and
also unifies the naming across ports and devices. It further splits
the queries for determining if a port is snooping and what address
ranges it responds to (aiming towards a separation of
cache-maintenance ports and pure memory-mapped ports). Default
behaviours are such that most ports do not have to define isSnooping,
and master ports need not implement getAddrRanges.
2012-01-17 12:55:09 -06:00
Andreas Hansson
142380a373 MEM: Remove Port removeConn and MemObject deletePortRefs
Cleaning up and simplifying the ports and going towards a more strict
elaboration-time creation and binding of the ports.
2012-01-17 12:55:09 -06:00
Nathan Binkert
39a055645f includes: sort all includes 2011-04-15 10:44:06 -07:00
Steve Reinhardt
0685ae7a2d bus: clean up default responder code.
Clean up some minor things left over from the default responder
change in rev 9af6fb59752f.  Mostly renaming the 'responder_set'
param to 'use_default_range' to actually reflect what it does...
old name wasn't that descriptive in the first place, but now
it really doesn't make sense at all.

Also got rid of the bogus obsolete assignment to 'bus.responder'
which used to be a parameter but now is interpreted as an
implicit child assignment, and which was giving me problems in
the config restructuring to come.  (A good argument for not
allowing implicit child assignments, IMO, but that's water under
the bridge, I'm afraid.)

Also moved the Bus constructor to the .cc file since that's
where it should have been all along.
2010-08-17 05:06:21 -07:00
Nathan Binkert
6faf377b53 types: clean up types, especially signed vs unsigned 2009-06-04 23:21:12 -07:00
Nathan Binkert
8d2e51c7f5 includes: sort includes again 2009-05-17 14:34:52 -07:00
Nathan Binkert
709d859530 includes: use base/types.hh not inttypes.h or stdint.h 2009-05-17 14:34:51 -07:00
Steve Reinhardt
caaac16803 Backed out changeset 94a7bb476fca: caused memory leak. 2008-06-28 13:19:38 -04:00
Steve Reinhardt
6b45238316 Generate more useful error messages for unconnected ports.
Force all non-default ports to provide a name and an
owner in the constructor.
2008-06-21 01:04:43 -04:00
Steve Reinhardt
131c65f429 Restructure bus timing calcs to cope with pkt being deleted by target.
--HG--
extra : convert_revision : db8497e73a44f2a06aab121e797e88b4c0c31330
2008-03-17 03:07:38 -04:00
Gabe Black
ec1a4cbbc7 Bus: Fix the bus timing to be more realistic.
--HG--
extra : convert_revision : acd70dc98ab840e55b114706fbb6afb2a95e54bc
2008-02-26 02:20:08 -05:00
Stephen Hines
6cc1573923 Make the Event::description() a const function
--HG--
extra : convert_revision : c7768d54d3f78685e93920069f5485083ca989c0
2008-02-06 16:32:40 -05:00