The goal of the patch is to do away with the CacheMsg class currently in use
in coherence protocols. In place of CacheMsg, the RubyRequest class will used.
This class is already present in slicc_interface/RubyRequest.hh. In fact,
objects of class CacheMsg are generated by copying values from a RubyRequest
object.
The tester code is in testers/networktest.
The tester can be invoked by configs/example/ruby_network_test.py.
A dummy coherence protocol called Network_test is also addded for network-only simulations and testing. The protocol takes in messages from the tester and just pushes them into the network in the appropriate vnet, without storing any state.
I had recently committed a patch that removed the WakeUp*.py files from the
slicc/ast directory. I had forgotten to remove the import calls for these
files from slicc/ast/__init__.py. This resulted in error while running
regressions on zizzer. This patch does the needful.
Now, instead of --bench benchname, you can do --bench bench1-bench2-bench3 and it will
set up a simulation that instantiates those three workloads. Only caveat is that now,
for sanity checking, your -n X must match the number of benches in the list.
This patch fixes the problem where Ruby would fail to call sendRetry on ports
after it nacked the port. This patch is particularly helpful for bursty dma
requests which often include several packets.
In SLICC, in order to define a type a data type for which it should not
generate any code, the keyword external_type is used. For those data types for
which code should be generated, the keyword structure is used. This patch
eliminates the use of keyword external_type for defining structures. structure
key word can now have an optional attribute external, which would be used for
figuring out whether or not to generate the code for this structure. Also, now
structures can have functions as well data members in them.
In order to add stall and wait facility for protocols, a keyword
wake_up_dependents was introduced. This patch removes the keyword,
instead this functionality is now implemented as function call.
In order to add stall and wait facility for protocols, a keyword
wake_up_all_dependents was introduced. This patch removes the keyword,
instead this functionality is now implemented as function call.
Thanks to swig this was interfering with the standard Python
random module. The only function in that module was seed(),
which erroneously called srand48(). Moved the function to
m5.internal.core, renamed it seedRandom(), and made it call
random_mt.init() instead.
FastAlloc's reuse policies can mask allocation bugs, so
we typically want it disabled when debugging. Set
FORCE_FAST_ALLOC to enable even when debugging, and set
NO_FAST_ALLOC to disable even in non-debug builds.
The ISAR registers describe which features the processor supports.
Transcribe the values listed in section B5.2.5 of the ARM ARM
into the registers as read-only values
This change speeds up booting, especially in MP cases, by not executing
udelay() on the core but instead skipping ahead tha amount of time that is being
delayed.
This patch prevents not executed conditional instructions marked as
IsQuiesce from stalling the pipeline indefinitely. If the instruction
is not executed the quiesceSkip psuedoinst is called which schedules a
wakes up call to the fetch stage.
This changes the RFE macroop into 3 microops:
URa = [sp]; URb = [sp+4]; // load CPSR,PC values from stack
sp = sp + offset; // optionally auto-increment
PC = URa; CPSR = URb; // write to the PC and CPSR.
Importantly:
- writing to PC is handled in the last micro-op.
- loading occurs prior to state changes.
This change fixes the problem for all the cases we actively use. If you want to try
more creative I/O device attachments (E.g. sharing an L2), this won't work. You
would need another level of caching between the I/O device and the cache
(which you actually need anyway with our current code to make sure writes
propagate). This is required so that you can mark the cache in between as
top level and it won't try to send ownership of a block to the I/O device.
Asserts have been added that should catch any issues.
Without this change the a store can be issued to the cache multiple times.
If this case occurs when the l1 cache is out of mshrs (and thus blocked)
the processor will never make forward progress because each cycle it will
send a single request using the recently freed mshr and not completing the
multipart store. This will continue forever.