gem5/src/arch/alpha/isa/decoder.isa

1085 lines
45 KiB
Plaintext
Raw Normal View History

// -*- mode:c++ -*-
// Copyright (c) 2013 ARM Limited
// All rights reserved
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Copyright (c) 2003-2006 The Regents of The University of Michigan
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Steve Reinhardt
////////////////////////////////////////////////////////////////////
//
// The actual decoder specification
//
decode OPCODE default Unknown::unknown() {
format LoadAddress {
0x08: lda({{ Ra = Rb + disp; }});
0x09: ldah({{ Ra = Rb + (disp << 16); }});
}
format LoadOrNop {
0x0a: ldbu({{ Ra_uq = Mem_ub; }});
0x0c: ldwu({{ Ra_uq = Mem_uw; }});
0x0b: ldq_u({{ Ra = Mem_uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }});
0x23: ldt({{ Fa = Mem_df; }});
0x2a: ldl_l({{ Ra_sl = Mem_sl; }}, mem_flags = LLSC);
0x2b: ldq_l({{ Ra_uq = Mem_uq; }}, mem_flags = LLSC);
}
format LoadOrPrefetch {
0x28: ldl({{ Ra_sl = Mem_sl; }});
0x29: ldq({{ Ra_uq = Mem_uq; }}, pf_flags = EVICT_NEXT);
// IsFloating flag on lds gets the prefetch to disassemble
// using f31 instead of r31... funcitonally it's unnecessary
0x22: lds({{ Fa_uq = s_to_t(Mem_ul); }},
pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating);
}
format Store {
0x0e: stb({{ Mem_ub = Ra<7:0>; }});
0x0d: stw({{ Mem_uw = Ra<15:0>; }});
0x2c: stl({{ Mem_ul = Ra<31:0>; }});
0x2d: stq({{ Mem_uq = Ra_uq; }});
0x0f: stq_u({{ Mem_uq = Ra_uq; }}, {{ EA = (Rb + disp) & ~7; }});
0x26: sts({{ Mem_ul = t_to_s(Fa_uq); }});
0x27: stt({{ Mem_df = Fa; }});
}
format StoreCond {
0x2e: stl_c({{ Mem_ul = Ra<31:0>; }},
{{
Change how memory operands are handled in ISA descriptions. Should enable implementation of split-phase timing loads with new memory model. May create slight timing differences under FullCPU, as I believe we were not handling software prefetches correctly before when the split MemAcc/Exec model was used. I haven't looked into this in any detail though. arch/alpha/isa/decoder.isa: HwLoadStore format split into separate HwLoad and HwStore formats. Copy instructions now fall under MiscPrefetch format. Mem_write_result is now just write_result in store conditionals. arch/alpha/isa/mem.isa: Split MemAccExecute and LoadStoreExecute templates into separate templates for loads and stores; now that memory operands are handled differently from registers, it's impossible to have a single template serve both. Also unified the handling of "regular" prefetches (loads to r31) and "misc" prefetches (e.g., wh64) under the new scheme. It looks like SW prefetches were not handled correctly in FullCPU up til now, since we generated an execute() method for the outer instruction but didn't generate a proper method for MemAcc::execute() (instead getting a default no-op method for that). arch/alpha/isa/pal.isa: Split HwLoadStore into separate HwLoad and HwStore formats to select proper template (see change to mem.isa in this changeset). arch/isa_parser.py: Stop trying to treat memory operands like register operands, since we never used them in a uniform way anyway, and it made it impossible to do split-phase loads as needed for the new CPU model. Now there's no more 'op_mem_rd', 'op_nonmem_rd', etc.: 'op_rd' just does register operands, and the template code is responsible for formulating the call to the memory system. Right now the only thing exported by InstObjParams is a new attribute 'mem_acc_size' which gives the memory access size in bits, though more attributes can be added if needed. Also moved code in findOperands() method to OperandDescriptorList.__init__(), which is where it belongs. --HG-- extra : convert_revision : 6d53d07e0c5e828455834ded4395fa40f9146a34
2006-02-10 15:12:55 +01:00
uint64_t tmp = write_result;
// see stq_c
Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
if (tmp == 1) {
xc->setStCondFailures(0);
}
}}, mem_flags = LLSC, inst_flags = IsStoreConditional);
0x2f: stq_c({{ Mem_uq = Ra; }},
{{
Change how memory operands are handled in ISA descriptions. Should enable implementation of split-phase timing loads with new memory model. May create slight timing differences under FullCPU, as I believe we were not handling software prefetches correctly before when the split MemAcc/Exec model was used. I haven't looked into this in any detail though. arch/alpha/isa/decoder.isa: HwLoadStore format split into separate HwLoad and HwStore formats. Copy instructions now fall under MiscPrefetch format. Mem_write_result is now just write_result in store conditionals. arch/alpha/isa/mem.isa: Split MemAccExecute and LoadStoreExecute templates into separate templates for loads and stores; now that memory operands are handled differently from registers, it's impossible to have a single template serve both. Also unified the handling of "regular" prefetches (loads to r31) and "misc" prefetches (e.g., wh64) under the new scheme. It looks like SW prefetches were not handled correctly in FullCPU up til now, since we generated an execute() method for the outer instruction but didn't generate a proper method for MemAcc::execute() (instead getting a default no-op method for that). arch/alpha/isa/pal.isa: Split HwLoadStore into separate HwLoad and HwStore formats to select proper template (see change to mem.isa in this changeset). arch/isa_parser.py: Stop trying to treat memory operands like register operands, since we never used them in a uniform way anyway, and it made it impossible to do split-phase loads as needed for the new CPU model. Now there's no more 'op_mem_rd', 'op_nonmem_rd', etc.: 'op_rd' just does register operands, and the template code is responsible for formulating the call to the memory system. Right now the only thing exported by InstObjParams is a new attribute 'mem_acc_size' which gives the memory access size in bits, though more attributes can be added if needed. Also moved code in findOperands() method to OperandDescriptorList.__init__(), which is where it belongs. --HG-- extra : convert_revision : 6d53d07e0c5e828455834ded4395fa40f9146a34
2006-02-10 15:12:55 +01:00
uint64_t tmp = write_result;
// If the write operation returns 0 or 1, then
// this was a conventional store conditional,
// and the value indicates the success/failure
// of the operation. If another value is
// returned, then this was a Turbolaser
// mailbox access, and we don't update the
// result register at all.
Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
if (tmp == 1) {
// clear failure counter... this is
// non-architectural and for debugging
// only.
xc->setStCondFailures(0);
}
}}, mem_flags = LLSC, inst_flags = IsStoreConditional);
}
format IntegerOperate {
2010-12-20 22:24:40 +01:00
0x10: decode INTFUNC { // integer arithmetic operations
0x00: addl({{ Rc_sl = Ra_sl + Rb_or_imm_sl; }});
0x40: addlv({{
int32_t tmp = Ra_sl + Rb_or_imm_sl;
// signed overflow occurs when operands have same sign
// and sign of result does not match.
if (Ra_sl<31:> == Rb_or_imm_sl<31:> && tmp<31:> != Ra_sl<31:>)
fault = std::make_shared<IntegerOverflowFault>();
Rc_sl = tmp;
}});
0x02: s4addl({{ Rc_sl = (Ra_sl << 2) + Rb_or_imm_sl; }});
0x12: s8addl({{ Rc_sl = (Ra_sl << 3) + Rb_or_imm_sl; }});
0x20: addq({{ Rc = Ra + Rb_or_imm; }});
0x60: addqv({{
uint64_t tmp = Ra + Rb_or_imm;
// signed overflow occurs when operands have same sign
// and sign of result does not match.
if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
fault = std::make_shared<IntegerOverflowFault>();
Rc = tmp;
}});
0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
0x09: subl({{ Rc_sl = Ra_sl - Rb_or_imm_sl; }});
0x49: sublv({{
int32_t tmp = Ra_sl - Rb_or_imm_sl;
// signed overflow detection is same as for add,
// except we need to look at the *complemented*
// sign bit of the subtrahend (Rb), i.e., if the initial
// signs are the *same* then no overflow can occur
if (Ra_sl<31:> != Rb_or_imm_sl<31:> && tmp<31:> != Ra_sl<31:>)
fault = std::make_shared<IntegerOverflowFault>();
Rc_sl = tmp;
}});
0x0b: s4subl({{ Rc_sl = (Ra_sl << 2) - Rb_or_imm_sl; }});
0x1b: s8subl({{ Rc_sl = (Ra_sl << 3) - Rb_or_imm_sl; }});
0x29: subq({{ Rc = Ra - Rb_or_imm; }});
0x69: subqv({{
uint64_t tmp = Ra - Rb_or_imm;
// signed overflow detection is same as for add,
// except we need to look at the *complemented*
// sign bit of the subtrahend (Rb), i.e., if the initial
// signs are the *same* then no overflow can occur
if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
fault = std::make_shared<IntegerOverflowFault>();
Rc = tmp;
}});
0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
0x6d: cmple({{ Rc = (Ra_sq <= Rb_or_imm_sq); }});
0x4d: cmplt({{ Rc = (Ra_sq < Rb_or_imm_sq); }});
0x3d: cmpule({{ Rc = (Ra_uq <= Rb_or_imm_uq); }});
0x1d: cmpult({{ Rc = (Ra_uq < Rb_or_imm_uq); }});
0x0f: cmpbge({{
int hi = 7;
int lo = 0;
uint64_t tmp = 0;
for (int i = 0; i < 8; ++i) {
tmp |= (Ra_uq<hi:lo> >= Rb_or_imm_uq<hi:lo>) << i;
hi += 8;
lo += 8;
}
Rc = tmp;
}});
}
2010-12-20 22:24:40 +01:00
0x11: decode INTFUNC { // integer logical operations
0x00: and({{ Rc = Ra & Rb_or_imm; }});
0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
0x20: bis({{ Rc = Ra | Rb_or_imm; }});
0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
// conditional moves
0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
0x44: cmovlt({{ Rc = (Ra_sq < 0) ? Rb_or_imm : Rc; }});
0x46: cmovge({{ Rc = (Ra_sq >= 0) ? Rb_or_imm : Rc; }});
0x64: cmovle({{ Rc = (Ra_sq <= 0) ? Rb_or_imm : Rc; }});
0x66: cmovgt({{ Rc = (Ra_sq > 0) ? Rb_or_imm : Rc; }});
// For AMASK, RA must be R31.
0x61: decode RA {
31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
}
// For IMPLVER, RA must be R31 and the B operand
// must be the immediate value 1.
0x6c: decode RA {
31: decode IMM {
1: decode INTIMM {
// return EV5 for FullSystem and EV6 otherwise
1: implver({{ Rc = FullSystem ? 1 : 2 }});
}
}
}
// The mysterious 11.25...
0x25: WarnUnimpl::eleven25();
}
0x12: decode INTFUNC {
0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
0x34: srl({{ Rc = Ra_uq >> Rb_or_imm<5:0>; }});
0x3c: sra({{ Rc = Ra_sq >> Rb_or_imm<5:0>; }});
0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
0x52: mskwh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
}});
0x62: msklh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
}});
0x72: mskqh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
}});
0x06: extbl({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
0x16: extwl({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
0x26: extll({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
0x36: extql({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8)); }});
0x5a: extwh({{
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
0x6a: extlh({{
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
0x7a: extqh({{
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
0x57: inswh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra_uq<15:0> >> (64 - 8 * bv)) : 0;
}});
0x67: inslh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra_uq<31:0> >> (64 - 8 * bv)) : 0;
}});
0x77: insqh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra_uq >> (64 - 8 * bv)) : 0;
}});
0x30: zap({{
uint64_t zapmask = 0;
for (int i = 0; i < 8; ++i) {
if (Rb_or_imm<i:>)
zapmask |= (mask(8) << (i * 8));
}
Rc = Ra & ~zapmask;
}});
0x31: zapnot({{
uint64_t zapmask = 0;
for (int i = 0; i < 8; ++i) {
if (!Rb_or_imm<i:>)
zapmask |= (mask(8) << (i * 8));
}
Rc = Ra & ~zapmask;
}});
}
2010-12-20 22:24:40 +01:00
0x13: decode INTFUNC { // integer multiplies
0x00: mull({{ Rc_sl = Ra_sl * Rb_or_imm_sl; }}, IntMultOp);
0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
0x30: umulh({{
uint64_t hi, lo;
mul128(Ra, Rb_or_imm, hi, lo);
Rc = hi;
}}, IntMultOp);
0x40: mullv({{
// 32-bit multiply with trap on overflow
int64_t Rax = Ra_sl; // sign extended version of Ra_sl
int64_t Rbx = Rb_or_imm_sl;
int64_t tmp = Rax * Rbx;
// To avoid overflow, all the upper 32 bits must match
// the sign bit of the lower 32. We code this as
// checking the upper 33 bits for all 0s or all 1s.
uint64_t sign_bits = tmp<63:31>;
if (sign_bits != 0 && sign_bits != mask(33))
fault = std::make_shared<IntegerOverflowFault>();
Rc_sl = tmp<31:0>;
}}, IntMultOp);
0x60: mulqv({{
// 64-bit multiply with trap on overflow
uint64_t hi, lo;
mul128(Ra, Rb_or_imm, hi, lo);
// all the upper 64 bits must match the sign bit of
// the lower 64
if (!((hi == 0 && lo<63:> == 0) ||
(hi == mask(64) && lo<63:> == 1)))
fault = std::make_shared<IntegerOverflowFault>();
Rc = lo;
}}, IntMultOp);
}
0x1c: decode INTFUNC {
0x00: decode RA { 31: sextb({{ Rc_sb = Rb_or_imm< 7:0>; }}); }
0x01: decode RA { 31: sextw({{ Rc_sw = Rb_or_imm<15:0>; }}); }
0x30: ctpop({{
uint64_t count = 0;
for (int i = 0; Rb<63:i>; ++i) {
if (Rb<i:i> == 0x1)
++count;
}
Rc = count;
}}, IntAluOp);
0x31: perr({{
uint64_t temp = 0;
int hi = 7;
int lo = 0;
for (int i = 0; i < 8; ++i) {
uint8_t ra_ub = Ra_uq<hi:lo>;
uint8_t rb_ub = Rb_uq<hi:lo>;
temp += (ra_ub >= rb_ub) ?
(ra_ub - rb_ub) : (rb_ub - ra_ub);
hi += 8;
lo += 8;
}
Rc = temp;
}});
0x32: ctlz({{
uint64_t count = 0;
uint64_t temp = Rb;
if (temp<63:32>) temp >>= 32; else count += 32;
if (temp<31:16>) temp >>= 16; else count += 16;
if (temp<15:8>) temp >>= 8; else count += 8;
if (temp<7:4>) temp >>= 4; else count += 4;
if (temp<3:2>) temp >>= 2; else count += 2;
if (temp<1:1>) temp >>= 1; else count += 1;
if ((temp<0:0>) != 0x1) count += 1;
Rc = count;
}}, IntAluOp);
0x33: cttz({{
uint64_t count = 0;
uint64_t temp = Rb;
if (!(temp<31:0>)) { temp >>= 32; count += 32; }
if (!(temp<15:0>)) { temp >>= 16; count += 16; }
if (!(temp<7:0>)) { temp >>= 8; count += 8; }
if (!(temp<3:0>)) { temp >>= 4; count += 4; }
if (!(temp<1:0>)) { temp >>= 2; count += 2; }
if (!(temp<0:0> & ULL(0x1))) {
temp >>= 1; count += 1;
}
if (!(temp<0:0> & ULL(0x1))) count += 1;
Rc = count;
}}, IntAluOp);
0x34: unpkbw({{
Rc = (Rb_uq<7:0>
| (Rb_uq<15:8> << 16)
| (Rb_uq<23:16> << 32)
| (Rb_uq<31:24> << 48));
}}, IntAluOp);
0x35: unpkbl({{
Rc = (Rb_uq<7:0> | (Rb_uq<15:8> << 32));
}}, IntAluOp);
0x36: pkwb({{
Rc = (Rb_uq<7:0>
| (Rb_uq<23:16> << 8)
| (Rb_uq<39:32> << 16)
| (Rb_uq<55:48> << 24));
}}, IntAluOp);
0x37: pklb({{
Rc = (Rb_uq<7:0> | (Rb_uq<39:32> << 8));
}}, IntAluOp);
0x38: minsb8({{
uint64_t temp = 0;
int hi = 63;
int lo = 56;
for (int i = 7; i >= 0; --i) {
int8_t ra_sb = Ra_uq<hi:lo>;
int8_t rb_sb = Rb_uq<hi:lo>;
temp = ((temp << 8)
| ((ra_sb < rb_sb) ? Ra_uq<hi:lo>
: Rb_uq<hi:lo>));
hi -= 8;
lo -= 8;
}
Rc = temp;
}});
0x39: minsw4({{
uint64_t temp = 0;
int hi = 63;
int lo = 48;
for (int i = 3; i >= 0; --i) {
int16_t ra_sw = Ra_uq<hi:lo>;
int16_t rb_sw = Rb_uq<hi:lo>;
temp = ((temp << 16)
| ((ra_sw < rb_sw) ? Ra_uq<hi:lo>
: Rb_uq<hi:lo>));
hi -= 16;
lo -= 16;
}
Rc = temp;
}});
0x3a: minub8({{
uint64_t temp = 0;
int hi = 63;
int lo = 56;
for (int i = 7; i >= 0; --i) {
uint8_t ra_ub = Ra_uq<hi:lo>;
uint8_t rb_ub = Rb_uq<hi:lo>;
temp = ((temp << 8)
| ((ra_ub < rb_ub) ? Ra_uq<hi:lo>
: Rb_uq<hi:lo>));
hi -= 8;
lo -= 8;
}
Rc = temp;
}});
0x3b: minuw4({{
uint64_t temp = 0;
int hi = 63;
int lo = 48;
for (int i = 3; i >= 0; --i) {
uint16_t ra_sw = Ra_uq<hi:lo>;
uint16_t rb_sw = Rb_uq<hi:lo>;
temp = ((temp << 16)
| ((ra_sw < rb_sw) ? Ra_uq<hi:lo>
: Rb_uq<hi:lo>));
hi -= 16;
lo -= 16;
}
Rc = temp;
}});
0x3c: maxub8({{
uint64_t temp = 0;
int hi = 63;
int lo = 56;
for (int i = 7; i >= 0; --i) {
uint8_t ra_ub = Ra_uq<hi:lo>;
uint8_t rb_ub = Rb_uq<hi:lo>;
temp = ((temp << 8)
| ((ra_ub > rb_ub) ? Ra_uq<hi:lo>
: Rb_uq<hi:lo>));
hi -= 8;
lo -= 8;
}
Rc = temp;
}});
0x3d: maxuw4({{
uint64_t temp = 0;
int hi = 63;
int lo = 48;
for (int i = 3; i >= 0; --i) {
uint16_t ra_uw = Ra_uq<hi:lo>;
uint16_t rb_uw = Rb_uq<hi:lo>;
temp = ((temp << 16)
| ((ra_uw > rb_uw) ? Ra_uq<hi:lo>
: Rb_uq<hi:lo>));
hi -= 16;
lo -= 16;
}
Rc = temp;
}});
0x3e: maxsb8({{
uint64_t temp = 0;
int hi = 63;
int lo = 56;
for (int i = 7; i >= 0; --i) {
int8_t ra_sb = Ra_uq<hi:lo>;
int8_t rb_sb = Rb_uq<hi:lo>;
temp = ((temp << 8)
| ((ra_sb > rb_sb) ? Ra_uq<hi:lo>
: Rb_uq<hi:lo>));
hi -= 8;
lo -= 8;
}
Rc = temp;
}});
0x3f: maxsw4({{
uint64_t temp = 0;
int hi = 63;
int lo = 48;
for (int i = 3; i >= 0; --i) {
int16_t ra_sw = Ra_uq<hi:lo>;
int16_t rb_sw = Rb_uq<hi:lo>;
temp = ((temp << 16)
| ((ra_sw > rb_sw) ? Ra_uq<hi:lo>
: Rb_uq<hi:lo>));
hi -= 16;
lo -= 16;
}
Rc = temp;
}});
format BasicOperateWithNopCheck {
0x70: decode RB {
31: ftoit({{ Rc = Fa_uq; }}, FloatCvtOp);
}
0x78: decode RB {
31: ftois({{ Rc_sl = t_to_s(Fa_uq); }},
FloatCvtOp);
}
}
}
}
// Conditional branches.
format CondBranch {
0x39: beq({{ cond = (Ra == 0); }});
0x3d: bne({{ cond = (Ra != 0); }});
0x3e: bge({{ cond = (Ra_sq >= 0); }});
0x3f: bgt({{ cond = (Ra_sq > 0); }});
0x3b: ble({{ cond = (Ra_sq <= 0); }});
0x3a: blt({{ cond = (Ra_sq < 0); }});
0x38: blbc({{ cond = ((Ra & 1) == 0); }});
0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
0x31: fbeq({{ cond = (Fa == 0); }});
0x35: fbne({{ cond = (Fa != 0); }});
0x36: fbge({{ cond = (Fa >= 0); }});
0x37: fbgt({{ cond = (Fa > 0); }});
0x33: fble({{ cond = (Fa <= 0); }});
0x32: fblt({{ cond = (Fa < 0); }});
}
// unconditional branches
format UncondBranch {
0x30: br();
0x34: bsr(IsCall);
}
// indirect branches
0x1a: decode JMPFUNC {
format Jump {
0: jmp();
1: jsr(IsCall);
2: ret(IsReturn);
3: jsr_coroutine(IsCall, IsReturn);
}
}
// Square root and integer-to-FP moves
0x14: decode FP_SHORTFUNC {
// Integer to FP register moves must have RB == 31
0x4: decode RB {
31: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
0x004: itofs({{ Fc_uq = s_to_t(Ra_ul); }}, FloatCvtOp);
0x024: itoft({{ Fc_uq = Ra_uq; }}, FloatCvtOp);
2010-12-20 22:24:40 +01:00
0x014: FailUnimpl::itoff(); // VAX-format conversion
}
}
}
// Square root instructions must have FA == 31
0xb: decode FA {
31: decode FP_TYPEFUNC {
format FloatingPointOperate {
#if SS_COMPATIBLE_FP
0x0b: sqrts({{
if (Fb < 0.0)
fault = std::make_shared<ArithmeticFault>();
Fc = sqrt(Fb);
}}, FloatSqrtOp);
#else
0x0b: sqrts({{
if (Fb_sf < 0.0)
fault = std::make_shared<ArithmeticFault>();
Fc_sf = sqrt(Fb_sf);
}}, FloatSqrtOp);
#endif
0x2b: sqrtt({{
if (Fb < 0.0)
fault = std::make_shared<ArithmeticFault>();
Fc = sqrt(Fb);
}}, FloatSqrtOp);
}
}
}
// VAX-format sqrtf and sqrtg are not implemented
0xa: FailUnimpl::sqrtfg();
}
// IEEE floating point
0x16: decode FP_SHORTFUNC_TOP2 {
// The top two bits of the short function code break this
// space into four groups: binary ops, compares, reserved, and
// conversions. See Table 4-12 of AHB. There are different
// special cases in these different groups, so we decode on
// these top two bits first just to select a decode strategy.
// Most of these instructions may have various trapping and
// rounding mode flags set; these are decoded in the
// FloatingPointDecode template used by the
// FloatingPointOperate format.
// add/sub/mul/div: just decode on the short function code
// and source type. All valid trapping and rounding modes apply.
0: decode FP_TRAPMODE {
// check for valid trapping modes here
0,1,5,7: decode FP_TYPEFUNC {
format FloatingPointOperate {
#if SS_COMPATIBLE_FP
0x00: adds({{ Fc = Fa + Fb; }});
0x01: subs({{ Fc = Fa - Fb; }});
0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
#else
0x00: adds({{ Fc_sf = Fa_sf + Fb_sf; }});
0x01: subs({{ Fc_sf = Fa_sf - Fb_sf; }});
0x02: muls({{ Fc_sf = Fa_sf * Fb_sf; }}, FloatMultOp);
0x03: divs({{ Fc_sf = Fa_sf / Fb_sf; }}, FloatDivOp);
#endif
0x20: addt({{ Fc = Fa + Fb; }});
0x21: subt({{ Fc = Fa - Fb; }});
0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
}
}
}
// Floating-point compare instructions must have the default
// rounding mode, and may use the default trapping mode or
// /SU. Both trapping modes are treated the same by M5; the
// only difference on the real hardware (as far a I can tell)
// is that without /SU you'd get an imprecise trap if you
// tried to compare a NaN with something else (instead of an
// "unordered" result).
1: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
FloatCmpOp);
0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
FloatCmpOp);
0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
FloatCmpOp);
0x0a4, 0x5a4: cmptun({{ // unordered
Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
}}, FloatCmpOp);
}
}
// The FP-to-integer and integer-to-FP conversion insts
// require that FA be 31.
3: decode FA {
31: decode FP_TYPEFUNC {
format FloatingPointOperate {
0x2f: decode FP_ROUNDMODE {
format FPFixedRounding {
// "chopped" i.e. round toward zero
0: cvttq({{ Fc_sq = (int64_t)trunc(Fb); }},
Chopped);
// round to minus infinity
1: cvttq({{ Fc_sq = (int64_t)floor(Fb); }},
MinusInfinity);
}
default: cvttq({{ Fc_sq = (int64_t)nearbyint(Fb); }});
}
// The cvtts opcode is overloaded to be cvtst if the trap
// mode is 2 or 6 (which are not valid otherwise)
0x2c: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
// trap on denorm version "cvtst/s" is
// simulated same as cvtst
0x2ac, 0x6ac: cvtst({{ Fc = Fb_sf; }});
}
default: cvtts({{ Fc_sf = Fb; }});
}
// The trapping mode for integer-to-FP conversions
// must be /SUI or nothing; /U and /SU are not
// allowed. The full set of rounding modes are
// supported though.
0x3c: decode FP_TRAPMODE {
0,7: cvtqs({{ Fc_sf = Fb_sq; }});
}
0x3e: decode FP_TRAPMODE {
0,7: cvtqt({{ Fc = Fb_sq; }});
}
}
}
}
}
// misc FP operate
0x17: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
0x010: cvtlq({{
Fc_sl = (Fb_uq<63:62> << 30) | Fb_uq<58:29>;
}});
0x030: cvtql({{
Fc_uq = (Fb_uq<31:30> << 62) | (Fb_uq<29:0> << 29);
}});
// We treat the precise & imprecise trapping versions of
// cvtql identically.
0x130, 0x530: cvtqlv({{
// To avoid overflow, all the upper 32 bits must match
// the sign bit of the lower 32. We code this as
// checking the upper 33 bits for all 0s or all 1s.
uint64_t sign_bits = Fb_uq<63:31>;
if (sign_bits != 0 && sign_bits != mask(33))
fault = std::make_shared<IntegerOverflowFault>();
Fc_uq = (Fb_uq<31:30> << 62) | (Fb_uq<29:0> << 29);
}});
0x020: cpys({{ // copy sign
Fc_uq = (Fa_uq<63:> << 63) | Fb_uq<62:0>;
}});
0x021: cpysn({{ // copy sign negated
Fc_uq = (~Fa_uq<63:> << 63) | Fb_uq<62:0>;
}});
0x022: cpyse({{ // copy sign and exponent
Fc_uq = (Fa_uq<63:52> << 52) | Fb_uq<51:0>;
}});
0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
0x024: mt_fpcr({{ FPCR = Fa_uq; }}, IsIprAccess);
0x025: mf_fpcr({{ Fa_uq = FPCR; }}, IsIprAccess);
}
}
// miscellaneous mem-format ops
0x18: decode MEMFUNC {
format WarnUnimpl {
0x8000: fetch();
0xa000: fetch_m();
0xe800: ecb();
}
format MiscPrefetch {
0xf800: wh64({{ EA = Rb & ~ULL(63); }},
{{ ; }},
mem_flags = PREFETCH);
}
format BasicOperate {
0xc000: rpcc({{
/* Rb is a fake dependency so here is a fun way to get
* the parser to understand that.
*/
uint64_t unused_var M5_VAR_USED = Rb;
Ra = FullSystem ? xc->readMiscReg(IPR_CC) : curTick();
}}, IsUnverifiable);
// All of the barrier instructions below do nothing in
// their execute() methods (hence the empty code blocks).
// All of their functionality is hard-coded in the
// pipeline based on the flags IsSerializing,
// IsMemBarrier, and IsWriteBarrier. In the current
// detailed CPU model, the execute() function only gets
// called at fetch, so there's no way to generate pipeline
// behavior at any other stage. Once we go to an
// exec-in-exec CPU model we should be able to get rid of
// these flags and implement this behavior via the
// execute() methods.
// trapb is just a barrier on integer traps, where excb is
// a barrier on integer and FP traps. "EXCB is thus a
// superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
// them the same though.
0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
}
0xe000: decode FullSystemInt {
0: FailUnimpl::rc_se();
default: BasicOperate::rc({{
Ra = IntrFlag;
IntrFlag = 0;
}}, IsNonSpeculative, IsUnverifiable);
}
0xf000: decode FullSystemInt {
0: FailUnimpl::rs_se();
default: BasicOperate::rs({{
Ra = IntrFlag;
IntrFlag = 1;
}}, IsNonSpeculative, IsUnverifiable);
}
}
0x00: decode FullSystemInt {
0: decode PALFUNC {
format EmulatedCallPal {
0x00: halt ({{
exitSimLoop("halt instruction encountered");
}}, IsNonSpeculative);
0x83: callsys({{
syscall_emul: [patch 13/22] add system call retry capability This changeset adds functionality that allows system calls to retry without affecting thread context state such as the program counter or register values for the associated thread context (when system calls return with a retry fault). This functionality is needed to solve problems with blocking system calls in multi-process or multi-threaded simulations where information is passed between processes/threads. Blocking system calls can cause deadlock because the simulator itself is single threaded. There is only a single thread servicing the event queue which can cause deadlock if the thread hits a blocking system call instruction. To illustrate the problem, consider two processes using the producer/consumer sharing model. The processes can use file descriptors and the read and write calls to pass information to one another. If the consumer calls the blocking read system call before the producer has produced anything, the call will block the event queue (while executing the system call instruction) and deadlock the simulation. The solution implemented in this changeset is to recognize that the system calls will block and then generate a special retry fault. The fault will be sent back up through the function call chain until it is exposed to the cpu model's pipeline where the fault becomes visible. The fault will trigger the cpu model to replay the instruction at a future tick where the call has a chance to succeed without actually going into a blocking state. In subsequent patches, we recognize that a syscall will block by calling a non-blocking poll (from inside the system call implementation) and checking for events. When events show up during the poll, it signifies that the call would not have blocked and the syscall is allowed to proceed (calling an underlying host system call if necessary). If no events are returned from the poll, we generate the fault and try the instruction for the thread context at a distant tick. Note that retrying every tick is not efficient. As an aside, the simulator has some multi-threading support for the event queue, but it is not used by default and needs work. Even if the event queue was completely multi-threaded, meaning that there is a hardware thread on the host servicing a single simulator thread contexts with a 1:1 mapping between them, it's still possible to run into deadlock due to the event queue barriers on quantum boundaries. The solution of replaying at a later tick is the simplest solution and solves the problem generally.
2015-07-20 16:15:21 +02:00
xc->syscall(R0, &fault);
}}, IsSerializeAfter, IsNonSpeculative, IsSyscall);
// Read uniq reg into ABI return value register (r0)
0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess);
// Write uniq reg with value from ABI arg register (r16)
0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess);
}
}
default: CallPal::call_pal({{
if (!palValid ||
(palPriv
&& xc->readMiscReg(IPR_ICM) != mode_kernel)) {
// invalid pal function code, or attempt to do privileged
// PAL call in non-kernel mode
fault = std::make_shared<UnimplementedOpcodeFault>();
} else {
// check to see if simulator wants to do something special
// on this PAL call (including maybe suppress it)
bool dopal = xc->simPalCheck(palFunc);
if (dopal) {
xc->setMiscReg(IPR_EXC_ADDR, NPC);
NPC = xc->readMiscReg(IPR_PAL_BASE) + palOffset;
}
}
}}, IsNonSpeculative);
}
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
0x1b: decode PALMODE {
0: OpcdecFault::hw_st_quad();
1: decode HW_LDST_QUAD {
format HwLoad {
0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem_ul; }},
L, IsSerializing, IsSerializeBefore);
1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem_uq; }},
Q, IsSerializing, IsSerializeBefore);
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
}
}
Change how memory operands are handled in ISA descriptions. Should enable implementation of split-phase timing loads with new memory model. May create slight timing differences under FullCPU, as I believe we were not handling software prefetches correctly before when the split MemAcc/Exec model was used. I haven't looked into this in any detail though. arch/alpha/isa/decoder.isa: HwLoadStore format split into separate HwLoad and HwStore formats. Copy instructions now fall under MiscPrefetch format. Mem_write_result is now just write_result in store conditionals. arch/alpha/isa/mem.isa: Split MemAccExecute and LoadStoreExecute templates into separate templates for loads and stores; now that memory operands are handled differently from registers, it's impossible to have a single template serve both. Also unified the handling of "regular" prefetches (loads to r31) and "misc" prefetches (e.g., wh64) under the new scheme. It looks like SW prefetches were not handled correctly in FullCPU up til now, since we generated an execute() method for the outer instruction but didn't generate a proper method for MemAcc::execute() (instead getting a default no-op method for that). arch/alpha/isa/pal.isa: Split HwLoadStore into separate HwLoad and HwStore formats to select proper template (see change to mem.isa in this changeset). arch/isa_parser.py: Stop trying to treat memory operands like register operands, since we never used them in a uniform way anyway, and it made it impossible to do split-phase loads as needed for the new CPU model. Now there's no more 'op_mem_rd', 'op_nonmem_rd', etc.: 'op_rd' just does register operands, and the template code is responsible for formulating the call to the memory system. Right now the only thing exported by InstObjParams is a new attribute 'mem_acc_size' which gives the memory access size in bits, though more attributes can be added if needed. Also moved code in findOperands() method to OperandDescriptorList.__init__(), which is where it belongs. --HG-- extra : convert_revision : 6d53d07e0c5e828455834ded4395fa40f9146a34
2006-02-10 15:12:55 +01:00
}
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
0x1f: decode PALMODE {
0: OpcdecFault::hw_st_cond();
format HwStore {
1: decode HW_LDST_COND {
0: decode HW_LDST_QUAD {
0: hw_st({{ EA = (Rb + disp) & ~3; }},
{{ Mem_ul = Ra<31:0>; }}, L, IsSerializing, IsSerializeBefore);
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
1: hw_st({{ EA = (Rb + disp) & ~7; }},
{{ Mem_uq = Ra_uq; }}, Q, IsSerializing, IsSerializeBefore);
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
}
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
1: FailUnimpl::hw_st_cond();
}
}
}
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
0x19: decode PALMODE {
0: OpcdecFault::hw_mfpr();
format HwMoveIPR {
1: hw_mfpr({{
int miscRegIndex = (ipr_index < MaxInternalProcRegs) ?
IprToMiscRegIndex[ipr_index] : -1;
if(miscRegIndex < 0 || !IprIsReadable(miscRegIndex) ||
miscRegIndex >= NumInternalProcRegs)
fault = std::make_shared<UnimplementedOpcodeFault>();
else
Ra = xc->readMiscReg(miscRegIndex);
}}, IsIprAccess);
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
}
}
0x1d: decode PALMODE {
0: OpcdecFault::hw_mtpr();
format HwMoveIPR {
1: hw_mtpr({{
int miscRegIndex = (ipr_index < MaxInternalProcRegs) ?
IprToMiscRegIndex[ipr_index] : -1;
if(miscRegIndex < 0 || !IprIsWritable(miscRegIndex) ||
miscRegIndex >= NumInternalProcRegs)
fault = std::make_shared<UnimplementedOpcodeFault>();
else
xc->setMiscReg(miscRegIndex, Ra);
if (traceData) { traceData->setData(Ra); }
}}, IsIprAccess);
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
}
}
0x1e: decode PALMODE {
0: OpcdecFault::hw_rei();
format BasicOperate {
1: hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore);
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
}
}
format BasicOperate {
// M5 special opcodes use the reserved 0x01 opcode space
0x01: decode M5FUNC {
0x00: arm({{
PseudoInst::arm(xc->tcBase());
}}, IsNonSpeculative);
0x01: quiesce({{
// Don't sleep if (unmasked) interrupts are pending
Interrupts* interrupts =
xc->tcBase()->getCpuPtr()->getInterruptController(0);
if (interrupts->checkInterrupts(xc->tcBase())) {
PseudoInst::quiesceSkip(xc->tcBase());
} else {
PseudoInst::quiesce(xc->tcBase());
}
}}, IsNonSpeculative, IsQuiesce);
0x02: quiesceNs({{
PseudoInst::quiesceNs(xc->tcBase(), R16);
}}, IsNonSpeculative, IsQuiesce);
0x03: quiesceCycles({{
PseudoInst::quiesceCycles(xc->tcBase(), R16);
}}, IsNonSpeculative, IsQuiesce, IsUnverifiable);
0x04: quiesceTime({{
R0 = PseudoInst::quiesceTime(xc->tcBase());
}}, IsNonSpeculative, IsUnverifiable);
0x07: rpns({{
R0 = PseudoInst::rpns(xc->tcBase());
}}, IsNonSpeculative, IsUnverifiable);
0x09: wakeCPU({{
PseudoInst::wakeCPU(xc->tcBase(), R16);
}}, IsNonSpeculative, IsUnverifiable);
0x10: deprecated_ivlb({{
warn_once("Obsolete M5 ivlb instruction encountered.\n");
}});
0x11: deprecated_ivle({{
warn_once("Obsolete M5 ivlb instruction encountered.\n");
}});
0x20: deprecated_exit ({{
warn_once("deprecated M5 exit instruction encountered.\n");
PseudoInst::m5exit(xc->tcBase(), 0);
}}, No_OpClass, IsNonSpeculative);
0x21: m5exit({{
PseudoInst::m5exit(xc->tcBase(), R16);
}}, No_OpClass, IsNonSpeculative);
0x31: loadsymbol({{
PseudoInst::loadsymbol(xc->tcBase());
}}, No_OpClass, IsNonSpeculative);
0x30: initparam({{
Ra = PseudoInst::initParam(xc->tcBase(), R16, R17);
}});
0x40: resetstats({{
PseudoInst::resetstats(xc->tcBase(), R16, R17);
}}, IsNonSpeculative);
0x41: dumpstats({{
PseudoInst::dumpstats(xc->tcBase(), R16, R17);
}}, IsNonSpeculative);
0x42: dumpresetstats({{
PseudoInst::dumpresetstats(xc->tcBase(), R16, R17);
}}, IsNonSpeculative);
0x43: m5checkpoint({{
PseudoInst::m5checkpoint(xc->tcBase(), R16, R17);
}}, IsNonSpeculative);
0x50: m5readfile({{
R0 = PseudoInst::readfile(xc->tcBase(), R16, R17, R18);
}}, IsNonSpeculative);
0x51: m5break({{
PseudoInst::debugbreak(xc->tcBase());
}}, IsNonSpeculative);
0x52: m5switchcpu({{
PseudoInst::switchcpu(xc->tcBase());
}}, IsNonSpeculative);
0x53: m5addsymbol({{
PseudoInst::addsymbol(xc->tcBase(), R16, R17);
}}, IsNonSpeculative);
0x54: m5panic({{
panic("M5 panic instruction called at pc = %#x.", PC);
}}, IsNonSpeculative);
#define CPANN(lbl) CPA::cpa()->lbl(xc->tcBase())
0x55: decode RA {
0x00: m5a_old({{
panic("Deprecated M5 annotate instruction executed "
"at pc = %#x\n", PC);
}}, IsNonSpeculative);
0x01: m5a_bsm({{
CPANN(swSmBegin);
}}, IsNonSpeculative);
0x02: m5a_esm({{
CPANN(swSmEnd);
}}, IsNonSpeculative);
0x03: m5a_begin({{
CPANN(swExplictBegin);
}}, IsNonSpeculative);
0x04: m5a_end({{
CPANN(swEnd);
}}, IsNonSpeculative);
0x06: m5a_q({{
CPANN(swQ);
}}, IsNonSpeculative);
0x07: m5a_dq({{
CPANN(swDq);
}}, IsNonSpeculative);
0x08: m5a_wf({{
CPANN(swWf);
}}, IsNonSpeculative);
0x09: m5a_we({{
CPANN(swWe);
}}, IsNonSpeculative);
0x0C: m5a_sq({{
CPANN(swSq);
}}, IsNonSpeculative);
0x0D: m5a_aq({{
CPANN(swAq);
}}, IsNonSpeculative);
0x0E: m5a_pq({{
CPANN(swPq);
}}, IsNonSpeculative);
0x0F: m5a_l({{
CPANN(swLink);
}}, IsNonSpeculative);
0x10: m5a_identify({{
CPANN(swIdentify);
}}, IsNonSpeculative);
0x11: m5a_getid({{
R0 = CPANN(swGetId);
}}, IsNonSpeculative);
0x13: m5a_scl({{
CPANN(swSyscallLink);
}}, IsNonSpeculative);
0x14: m5a_rq({{
CPANN(swRq);
}}, IsNonSpeculative);
} // M5 Annotate Operations
#undef CPANN
0x56: m5reserved2({{
warn("M5 reserved opcode ignored");
}}, IsNonSpeculative);
0x57: m5reserved3({{
warn("M5 reserved opcode ignored");
}}, IsNonSpeculative);
0x58: m5reserved4({{
warn("M5 reserved opcode ignored");
}}, IsNonSpeculative);
0x59: m5reserved5({{
warn("M5 reserved opcode ignored");
}}, IsNonSpeculative);
}
}
}