gem5/arch/alpha/isa/decoder.isa

820 lines
32 KiB
Plaintext
Raw Normal View History

// -*- mode:c++ -*-
// Copyright (c) 2003-2006 The Regents of The University of Michigan
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
decode OPCODE default Unknown::unknown() {
format LoadAddress {
0x08: lda({{ Ra = Rb + disp; }});
0x09: ldah({{ Ra = Rb + (disp << 16); }});
}
format LoadOrNop {
0x0a: ldbu({{ Ra.uq = Mem.ub; }});
0x0c: ldwu({{ Ra.uq = Mem.uw; }});
0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }});
0x23: ldt({{ Fa = Mem.df; }});
0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED);
0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED);
Change how memory operands are handled in ISA descriptions. Should enable implementation of split-phase timing loads with new memory model. May create slight timing differences under FullCPU, as I believe we were not handling software prefetches correctly before when the split MemAcc/Exec model was used. I haven't looked into this in any detail though. arch/alpha/isa/decoder.isa: HwLoadStore format split into separate HwLoad and HwStore formats. Copy instructions now fall under MiscPrefetch format. Mem_write_result is now just write_result in store conditionals. arch/alpha/isa/mem.isa: Split MemAccExecute and LoadStoreExecute templates into separate templates for loads and stores; now that memory operands are handled differently from registers, it's impossible to have a single template serve both. Also unified the handling of "regular" prefetches (loads to r31) and "misc" prefetches (e.g., wh64) under the new scheme. It looks like SW prefetches were not handled correctly in FullCPU up til now, since we generated an execute() method for the outer instruction but didn't generate a proper method for MemAcc::execute() (instead getting a default no-op method for that). arch/alpha/isa/pal.isa: Split HwLoadStore into separate HwLoad and HwStore formats to select proper template (see change to mem.isa in this changeset). arch/isa_parser.py: Stop trying to treat memory operands like register operands, since we never used them in a uniform way anyway, and it made it impossible to do split-phase loads as needed for the new CPU model. Now there's no more 'op_mem_rd', 'op_nonmem_rd', etc.: 'op_rd' just does register operands, and the template code is responsible for formulating the call to the memory system. Right now the only thing exported by InstObjParams is a new attribute 'mem_acc_size' which gives the memory access size in bits, though more attributes can be added if needed. Also moved code in findOperands() method to OperandDescriptorList.__init__(), which is where it belongs. --HG-- extra : convert_revision : 6d53d07e0c5e828455834ded4395fa40f9146a34
2006-02-10 15:12:55 +01:00
0x20: MiscPrefetch::copy_load({{ EA = Ra; }},
{{ fault = xc->copySrcTranslate(EA); }},
inst_flags = [IsMemRef, IsLoad, IsCopy]);
}
format LoadOrPrefetch {
0x28: ldl({{ Ra.sl = Mem.sl; }});
0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT);
// IsFloating flag on lds gets the prefetch to disassemble
// using f31 instead of r31... funcitonally it's unnecessary
0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }},
pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating);
}
format Store {
0x0e: stb({{ Mem.ub = Ra<7:0>; }});
0x0d: stw({{ Mem.uw = Ra<15:0>; }});
0x2c: stl({{ Mem.ul = Ra<31:0>; }});
0x2d: stq({{ Mem.uq = Ra.uq; }});
0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }});
0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }});
0x27: stt({{ Mem.df = Fa; }});
Change how memory operands are handled in ISA descriptions. Should enable implementation of split-phase timing loads with new memory model. May create slight timing differences under FullCPU, as I believe we were not handling software prefetches correctly before when the split MemAcc/Exec model was used. I haven't looked into this in any detail though. arch/alpha/isa/decoder.isa: HwLoadStore format split into separate HwLoad and HwStore formats. Copy instructions now fall under MiscPrefetch format. Mem_write_result is now just write_result in store conditionals. arch/alpha/isa/mem.isa: Split MemAccExecute and LoadStoreExecute templates into separate templates for loads and stores; now that memory operands are handled differently from registers, it's impossible to have a single template serve both. Also unified the handling of "regular" prefetches (loads to r31) and "misc" prefetches (e.g., wh64) under the new scheme. It looks like SW prefetches were not handled correctly in FullCPU up til now, since we generated an execute() method for the outer instruction but didn't generate a proper method for MemAcc::execute() (instead getting a default no-op method for that). arch/alpha/isa/pal.isa: Split HwLoadStore into separate HwLoad and HwStore formats to select proper template (see change to mem.isa in this changeset). arch/isa_parser.py: Stop trying to treat memory operands like register operands, since we never used them in a uniform way anyway, and it made it impossible to do split-phase loads as needed for the new CPU model. Now there's no more 'op_mem_rd', 'op_nonmem_rd', etc.: 'op_rd' just does register operands, and the template code is responsible for formulating the call to the memory system. Right now the only thing exported by InstObjParams is a new attribute 'mem_acc_size' which gives the memory access size in bits, though more attributes can be added if needed. Also moved code in findOperands() method to OperandDescriptorList.__init__(), which is where it belongs. --HG-- extra : convert_revision : 6d53d07e0c5e828455834ded4395fa40f9146a34
2006-02-10 15:12:55 +01:00
0x24: MiscPrefetch::copy_store({{ EA = Rb; }},
{{ fault = xc->copy(EA); }},
inst_flags = [IsMemRef, IsStore, IsCopy]);
}
format StoreCond {
0x2e: stl_c({{ Mem.ul = Ra<31:0>; }},
{{
Change how memory operands are handled in ISA descriptions. Should enable implementation of split-phase timing loads with new memory model. May create slight timing differences under FullCPU, as I believe we were not handling software prefetches correctly before when the split MemAcc/Exec model was used. I haven't looked into this in any detail though. arch/alpha/isa/decoder.isa: HwLoadStore format split into separate HwLoad and HwStore formats. Copy instructions now fall under MiscPrefetch format. Mem_write_result is now just write_result in store conditionals. arch/alpha/isa/mem.isa: Split MemAccExecute and LoadStoreExecute templates into separate templates for loads and stores; now that memory operands are handled differently from registers, it's impossible to have a single template serve both. Also unified the handling of "regular" prefetches (loads to r31) and "misc" prefetches (e.g., wh64) under the new scheme. It looks like SW prefetches were not handled correctly in FullCPU up til now, since we generated an execute() method for the outer instruction but didn't generate a proper method for MemAcc::execute() (instead getting a default no-op method for that). arch/alpha/isa/pal.isa: Split HwLoadStore into separate HwLoad and HwStore formats to select proper template (see change to mem.isa in this changeset). arch/isa_parser.py: Stop trying to treat memory operands like register operands, since we never used them in a uniform way anyway, and it made it impossible to do split-phase loads as needed for the new CPU model. Now there's no more 'op_mem_rd', 'op_nonmem_rd', etc.: 'op_rd' just does register operands, and the template code is responsible for formulating the call to the memory system. Right now the only thing exported by InstObjParams is a new attribute 'mem_acc_size' which gives the memory access size in bits, though more attributes can be added if needed. Also moved code in findOperands() method to OperandDescriptorList.__init__(), which is where it belongs. --HG-- extra : convert_revision : 6d53d07e0c5e828455834ded4395fa40f9146a34
2006-02-10 15:12:55 +01:00
uint64_t tmp = write_result;
// see stq_c
Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
}}, mem_flags = LOCKED);
0x2f: stq_c({{ Mem.uq = Ra; }},
{{
Change how memory operands are handled in ISA descriptions. Should enable implementation of split-phase timing loads with new memory model. May create slight timing differences under FullCPU, as I believe we were not handling software prefetches correctly before when the split MemAcc/Exec model was used. I haven't looked into this in any detail though. arch/alpha/isa/decoder.isa: HwLoadStore format split into separate HwLoad and HwStore formats. Copy instructions now fall under MiscPrefetch format. Mem_write_result is now just write_result in store conditionals. arch/alpha/isa/mem.isa: Split MemAccExecute and LoadStoreExecute templates into separate templates for loads and stores; now that memory operands are handled differently from registers, it's impossible to have a single template serve both. Also unified the handling of "regular" prefetches (loads to r31) and "misc" prefetches (e.g., wh64) under the new scheme. It looks like SW prefetches were not handled correctly in FullCPU up til now, since we generated an execute() method for the outer instruction but didn't generate a proper method for MemAcc::execute() (instead getting a default no-op method for that). arch/alpha/isa/pal.isa: Split HwLoadStore into separate HwLoad and HwStore formats to select proper template (see change to mem.isa in this changeset). arch/isa_parser.py: Stop trying to treat memory operands like register operands, since we never used them in a uniform way anyway, and it made it impossible to do split-phase loads as needed for the new CPU model. Now there's no more 'op_mem_rd', 'op_nonmem_rd', etc.: 'op_rd' just does register operands, and the template code is responsible for formulating the call to the memory system. Right now the only thing exported by InstObjParams is a new attribute 'mem_acc_size' which gives the memory access size in bits, though more attributes can be added if needed. Also moved code in findOperands() method to OperandDescriptorList.__init__(), which is where it belongs. --HG-- extra : convert_revision : 6d53d07e0c5e828455834ded4395fa40f9146a34
2006-02-10 15:12:55 +01:00
uint64_t tmp = write_result;
// If the write operation returns 0 or 1, then
// this was a conventional store conditional,
// and the value indicates the success/failure
// of the operation. If another value is
// returned, then this was a Turbolaser
// mailbox access, and we don't update the
// result register at all.
Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
}}, mem_flags = LOCKED);
}
format IntegerOperate {
0x10: decode INTFUNC { // integer arithmetic operations
0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
0x40: addlv({{
uint32_t tmp = Ra.sl + Rb_or_imm.sl;
// signed overflow occurs when operands have same sign
// and sign of result does not match.
if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
Changed Fault from a FaultBase * to a RefCountingPtr, added "new"s where appropriate, and took away the constant examples of each fault which where for comparing to a fault to determine its type. arch/alpha/alpha_memory.cc: arch/alpha/isa/decoder.isa: Added news where faults are created. arch/alpha/ev5.cc: Changed places where a fault was compared to a fault type to use isA rather than == arch/alpha/faults.cc: arch/alpha/faults.hh: Changed Fault to be a RefCountingPtr arch/alpha/isa/fp.isa: Added a new where a FloatEnableFault was created. arch/alpha/isa/unimp.isa: arch/alpha/isa/unknown.isa: Added a new where an UnimplementedFault is created. base/refcnt.hh: Added include of stddef.h for the NULL macro cpu/base_dyn_inst.cc: Added a new where an UnimplementedOpcodeFault is created. cpu/o3/alpha_cpu_impl.hh: Changed places where a fault was compared to a fault type to use isA rather than ==. Also changed fault->name to fault->name() cpu/o3/regfile.hh: Added new where UnimplementedOpcodeFaults are created. cpu/simple/cpu.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Also added a new where an Interrupt fault is created. dev/alpha_console.cc: Added news where MachineCheckFaults are created. dev/pcidev.hh: Added news where MachineCheckFaults are generated. dev/sinic.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Added news where MachineCheckFaults are created. Fixed a problem where m5.fast had unused variables. kern/kernel_stats.cc: Commented out where _faults is initialized. This statistic will probably be moved elsewhere in the future. kern/kernel_stats.hh: Commented out the declaration of _fault. when fault() is called, the fault increments its own stat. sim/faults.cc: sim/faults.hh: Changed Fault from a FaultBase * to a RefCountingPtr. --HG-- extra : convert_revision : b40ccfc42482d5a115e111dd897fa378d23c6c7d
2006-02-24 07:51:45 +01:00
fault = new IntegerOverflowFault;
Rc.sl = tmp;
}});
0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
0x20: addq({{ Rc = Ra + Rb_or_imm; }});
0x60: addqv({{
uint64_t tmp = Ra + Rb_or_imm;
// signed overflow occurs when operands have same sign
// and sign of result does not match.
if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
Changed Fault from a FaultBase * to a RefCountingPtr, added "new"s where appropriate, and took away the constant examples of each fault which where for comparing to a fault to determine its type. arch/alpha/alpha_memory.cc: arch/alpha/isa/decoder.isa: Added news where faults are created. arch/alpha/ev5.cc: Changed places where a fault was compared to a fault type to use isA rather than == arch/alpha/faults.cc: arch/alpha/faults.hh: Changed Fault to be a RefCountingPtr arch/alpha/isa/fp.isa: Added a new where a FloatEnableFault was created. arch/alpha/isa/unimp.isa: arch/alpha/isa/unknown.isa: Added a new where an UnimplementedFault is created. base/refcnt.hh: Added include of stddef.h for the NULL macro cpu/base_dyn_inst.cc: Added a new where an UnimplementedOpcodeFault is created. cpu/o3/alpha_cpu_impl.hh: Changed places where a fault was compared to a fault type to use isA rather than ==. Also changed fault->name to fault->name() cpu/o3/regfile.hh: Added new where UnimplementedOpcodeFaults are created. cpu/simple/cpu.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Also added a new where an Interrupt fault is created. dev/alpha_console.cc: Added news where MachineCheckFaults are created. dev/pcidev.hh: Added news where MachineCheckFaults are generated. dev/sinic.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Added news where MachineCheckFaults are created. Fixed a problem where m5.fast had unused variables. kern/kernel_stats.cc: Commented out where _faults is initialized. This statistic will probably be moved elsewhere in the future. kern/kernel_stats.hh: Commented out the declaration of _fault. when fault() is called, the fault increments its own stat. sim/faults.cc: sim/faults.hh: Changed Fault from a FaultBase * to a RefCountingPtr. --HG-- extra : convert_revision : b40ccfc42482d5a115e111dd897fa378d23c6c7d
2006-02-24 07:51:45 +01:00
fault = new IntegerOverflowFault;
Rc = tmp;
}});
0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
0x49: sublv({{
uint32_t tmp = Ra.sl - Rb_or_imm.sl;
// signed overflow detection is same as for add,
// except we need to look at the *complemented*
// sign bit of the subtrahend (Rb), i.e., if the initial
// signs are the *same* then no overflow can occur
if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
Changed Fault from a FaultBase * to a RefCountingPtr, added "new"s where appropriate, and took away the constant examples of each fault which where for comparing to a fault to determine its type. arch/alpha/alpha_memory.cc: arch/alpha/isa/decoder.isa: Added news where faults are created. arch/alpha/ev5.cc: Changed places where a fault was compared to a fault type to use isA rather than == arch/alpha/faults.cc: arch/alpha/faults.hh: Changed Fault to be a RefCountingPtr arch/alpha/isa/fp.isa: Added a new where a FloatEnableFault was created. arch/alpha/isa/unimp.isa: arch/alpha/isa/unknown.isa: Added a new where an UnimplementedFault is created. base/refcnt.hh: Added include of stddef.h for the NULL macro cpu/base_dyn_inst.cc: Added a new where an UnimplementedOpcodeFault is created. cpu/o3/alpha_cpu_impl.hh: Changed places where a fault was compared to a fault type to use isA rather than ==. Also changed fault->name to fault->name() cpu/o3/regfile.hh: Added new where UnimplementedOpcodeFaults are created. cpu/simple/cpu.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Also added a new where an Interrupt fault is created. dev/alpha_console.cc: Added news where MachineCheckFaults are created. dev/pcidev.hh: Added news where MachineCheckFaults are generated. dev/sinic.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Added news where MachineCheckFaults are created. Fixed a problem where m5.fast had unused variables. kern/kernel_stats.cc: Commented out where _faults is initialized. This statistic will probably be moved elsewhere in the future. kern/kernel_stats.hh: Commented out the declaration of _fault. when fault() is called, the fault increments its own stat. sim/faults.cc: sim/faults.hh: Changed Fault from a FaultBase * to a RefCountingPtr. --HG-- extra : convert_revision : b40ccfc42482d5a115e111dd897fa378d23c6c7d
2006-02-24 07:51:45 +01:00
fault = new IntegerOverflowFault;
Rc.sl = tmp;
}});
0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
0x29: subq({{ Rc = Ra - Rb_or_imm; }});
0x69: subqv({{
uint64_t tmp = Ra - Rb_or_imm;
// signed overflow detection is same as for add,
// except we need to look at the *complemented*
// sign bit of the subtrahend (Rb), i.e., if the initial
// signs are the *same* then no overflow can occur
if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
Changed Fault from a FaultBase * to a RefCountingPtr, added "new"s where appropriate, and took away the constant examples of each fault which where for comparing to a fault to determine its type. arch/alpha/alpha_memory.cc: arch/alpha/isa/decoder.isa: Added news where faults are created. arch/alpha/ev5.cc: Changed places where a fault was compared to a fault type to use isA rather than == arch/alpha/faults.cc: arch/alpha/faults.hh: Changed Fault to be a RefCountingPtr arch/alpha/isa/fp.isa: Added a new where a FloatEnableFault was created. arch/alpha/isa/unimp.isa: arch/alpha/isa/unknown.isa: Added a new where an UnimplementedFault is created. base/refcnt.hh: Added include of stddef.h for the NULL macro cpu/base_dyn_inst.cc: Added a new where an UnimplementedOpcodeFault is created. cpu/o3/alpha_cpu_impl.hh: Changed places where a fault was compared to a fault type to use isA rather than ==. Also changed fault->name to fault->name() cpu/o3/regfile.hh: Added new where UnimplementedOpcodeFaults are created. cpu/simple/cpu.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Also added a new where an Interrupt fault is created. dev/alpha_console.cc: Added news where MachineCheckFaults are created. dev/pcidev.hh: Added news where MachineCheckFaults are generated. dev/sinic.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Added news where MachineCheckFaults are created. Fixed a problem where m5.fast had unused variables. kern/kernel_stats.cc: Commented out where _faults is initialized. This statistic will probably be moved elsewhere in the future. kern/kernel_stats.hh: Commented out the declaration of _fault. when fault() is called, the fault increments its own stat. sim/faults.cc: sim/faults.hh: Changed Fault from a FaultBase * to a RefCountingPtr. --HG-- extra : convert_revision : b40ccfc42482d5a115e111dd897fa378d23c6c7d
2006-02-24 07:51:45 +01:00
fault = new IntegerOverflowFault;
Rc = tmp;
}});
0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
0x0f: cmpbge({{
int hi = 7;
int lo = 0;
uint64_t tmp = 0;
for (int i = 0; i < 8; ++i) {
tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
hi += 8;
lo += 8;
}
Rc = tmp;
}});
}
0x11: decode INTFUNC { // integer logical operations
0x00: and({{ Rc = Ra & Rb_or_imm; }});
0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
0x20: bis({{ Rc = Ra | Rb_or_imm; }});
0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
// conditional moves
0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
// For AMASK, RA must be R31.
0x61: decode RA {
31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
}
// For IMPLVER, RA must be R31 and the B operand
// must be the immediate value 1.
0x6c: decode RA {
31: decode IMM {
1: decode INTIMM {
// return EV5 for FULL_SYSTEM and EV6 otherwise
1: implver({{
#if FULL_SYSTEM
Rc = 1;
#else
Rc = 2;
#endif
}});
}
}
}
#if FULL_SYSTEM
// The mysterious 11.25...
0x25: WarnUnimpl::eleven25();
#endif
}
0x12: decode INTFUNC {
0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
0x52: mskwh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
}});
0x62: msklh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
}});
0x72: mskqh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
}});
0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
0x5a: extwh({{
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
0x6a: extlh({{
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
0x7a: extqh({{
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
0x57: inswh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
}});
0x67: inslh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
}});
0x77: insqh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
}});
0x30: zap({{
uint64_t zapmask = 0;
for (int i = 0; i < 8; ++i) {
if (Rb_or_imm<i:>)
zapmask |= (mask(8) << (i * 8));
}
Rc = Ra & ~zapmask;
}});
0x31: zapnot({{
uint64_t zapmask = 0;
for (int i = 0; i < 8; ++i) {
if (!Rb_or_imm<i:>)
zapmask |= (mask(8) << (i * 8));
}
Rc = Ra & ~zapmask;
}});
}
0x13: decode INTFUNC { // integer multiplies
0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
0x30: umulh({{
uint64_t hi, lo;
mul128(Ra, Rb_or_imm, hi, lo);
Rc = hi;
}}, IntMultOp);
0x40: mullv({{
// 32-bit multiply with trap on overflow
int64_t Rax = Ra.sl; // sign extended version of Ra.sl
int64_t Rbx = Rb_or_imm.sl;
int64_t tmp = Rax * Rbx;
// To avoid overflow, all the upper 32 bits must match
// the sign bit of the lower 32. We code this as
// checking the upper 33 bits for all 0s or all 1s.
uint64_t sign_bits = tmp<63:31>;
if (sign_bits != 0 && sign_bits != mask(33))
Changed Fault from a FaultBase * to a RefCountingPtr, added "new"s where appropriate, and took away the constant examples of each fault which where for comparing to a fault to determine its type. arch/alpha/alpha_memory.cc: arch/alpha/isa/decoder.isa: Added news where faults are created. arch/alpha/ev5.cc: Changed places where a fault was compared to a fault type to use isA rather than == arch/alpha/faults.cc: arch/alpha/faults.hh: Changed Fault to be a RefCountingPtr arch/alpha/isa/fp.isa: Added a new where a FloatEnableFault was created. arch/alpha/isa/unimp.isa: arch/alpha/isa/unknown.isa: Added a new where an UnimplementedFault is created. base/refcnt.hh: Added include of stddef.h for the NULL macro cpu/base_dyn_inst.cc: Added a new where an UnimplementedOpcodeFault is created. cpu/o3/alpha_cpu_impl.hh: Changed places where a fault was compared to a fault type to use isA rather than ==. Also changed fault->name to fault->name() cpu/o3/regfile.hh: Added new where UnimplementedOpcodeFaults are created. cpu/simple/cpu.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Also added a new where an Interrupt fault is created. dev/alpha_console.cc: Added news where MachineCheckFaults are created. dev/pcidev.hh: Added news where MachineCheckFaults are generated. dev/sinic.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Added news where MachineCheckFaults are created. Fixed a problem where m5.fast had unused variables. kern/kernel_stats.cc: Commented out where _faults is initialized. This statistic will probably be moved elsewhere in the future. kern/kernel_stats.hh: Commented out the declaration of _fault. when fault() is called, the fault increments its own stat. sim/faults.cc: sim/faults.hh: Changed Fault from a FaultBase * to a RefCountingPtr. --HG-- extra : convert_revision : b40ccfc42482d5a115e111dd897fa378d23c6c7d
2006-02-24 07:51:45 +01:00
fault = new IntegerOverflowFault;
Rc.sl = tmp<31:0>;
}}, IntMultOp);
0x60: mulqv({{
// 64-bit multiply with trap on overflow
uint64_t hi, lo;
mul128(Ra, Rb_or_imm, hi, lo);
// all the upper 64 bits must match the sign bit of
// the lower 64
if (!((hi == 0 && lo<63:> == 0) ||
(hi == mask(64) && lo<63:> == 1)))
Changed Fault from a FaultBase * to a RefCountingPtr, added "new"s where appropriate, and took away the constant examples of each fault which where for comparing to a fault to determine its type. arch/alpha/alpha_memory.cc: arch/alpha/isa/decoder.isa: Added news where faults are created. arch/alpha/ev5.cc: Changed places where a fault was compared to a fault type to use isA rather than == arch/alpha/faults.cc: arch/alpha/faults.hh: Changed Fault to be a RefCountingPtr arch/alpha/isa/fp.isa: Added a new where a FloatEnableFault was created. arch/alpha/isa/unimp.isa: arch/alpha/isa/unknown.isa: Added a new where an UnimplementedFault is created. base/refcnt.hh: Added include of stddef.h for the NULL macro cpu/base_dyn_inst.cc: Added a new where an UnimplementedOpcodeFault is created. cpu/o3/alpha_cpu_impl.hh: Changed places where a fault was compared to a fault type to use isA rather than ==. Also changed fault->name to fault->name() cpu/o3/regfile.hh: Added new where UnimplementedOpcodeFaults are created. cpu/simple/cpu.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Also added a new where an Interrupt fault is created. dev/alpha_console.cc: Added news where MachineCheckFaults are created. dev/pcidev.hh: Added news where MachineCheckFaults are generated. dev/sinic.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Added news where MachineCheckFaults are created. Fixed a problem where m5.fast had unused variables. kern/kernel_stats.cc: Commented out where _faults is initialized. This statistic will probably be moved elsewhere in the future. kern/kernel_stats.hh: Commented out the declaration of _fault. when fault() is called, the fault increments its own stat. sim/faults.cc: sim/faults.hh: Changed Fault from a FaultBase * to a RefCountingPtr. --HG-- extra : convert_revision : b40ccfc42482d5a115e111dd897fa378d23c6c7d
2006-02-24 07:51:45 +01:00
fault = new IntegerOverflowFault;
Rc = lo;
}}, IntMultOp);
}
0x1c: decode INTFUNC {
0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
0x32: ctlz({{
uint64_t count = 0;
uint64_t temp = Rb;
if (temp<63:32>) temp >>= 32; else count += 32;
if (temp<31:16>) temp >>= 16; else count += 16;
if (temp<15:8>) temp >>= 8; else count += 8;
if (temp<7:4>) temp >>= 4; else count += 4;
if (temp<3:2>) temp >>= 2; else count += 2;
if (temp<1:1>) temp >>= 1; else count += 1;
if ((temp<0:0>) != 0x1) count += 1;
Rc = count;
}}, IntAluOp);
0x33: cttz({{
uint64_t count = 0;
uint64_t temp = Rb;
if (!(temp<31:0>)) { temp >>= 32; count += 32; }
if (!(temp<15:0>)) { temp >>= 16; count += 16; }
if (!(temp<7:0>)) { temp >>= 8; count += 8; }
if (!(temp<3:0>)) { temp >>= 4; count += 4; }
if (!(temp<1:0>)) { temp >>= 2; count += 2; }
if (!(temp<0:0> & ULL(0x1))) count += 1;
Rc = count;
}}, IntAluOp);
format FailUnimpl {
0x30: ctpop();
0x31: perr();
0x34: unpkbw();
0x35: unpkbl();
0x36: pkwb();
0x37: pklb();
0x38: minsb8();
0x39: minsw4();
0x3a: minub8();
0x3b: minuw4();
0x3c: maxub8();
0x3d: maxuw4();
0x3e: maxsb8();
0x3f: maxsw4();
}
format BasicOperateWithNopCheck {
0x70: decode RB {
31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
}
0x78: decode RB {
31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
FloatCvtOp);
}
}
}
}
// Conditional branches.
format CondBranch {
0x39: beq({{ cond = (Ra == 0); }});
0x3d: bne({{ cond = (Ra != 0); }});
0x3e: bge({{ cond = (Ra.sq >= 0); }});
0x3f: bgt({{ cond = (Ra.sq > 0); }});
0x3b: ble({{ cond = (Ra.sq <= 0); }});
0x3a: blt({{ cond = (Ra.sq < 0); }});
0x38: blbc({{ cond = ((Ra & 1) == 0); }});
0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
0x31: fbeq({{ cond = (Fa == 0); }});
0x35: fbne({{ cond = (Fa != 0); }});
0x36: fbge({{ cond = (Fa >= 0); }});
0x37: fbgt({{ cond = (Fa > 0); }});
0x33: fble({{ cond = (Fa <= 0); }});
0x32: fblt({{ cond = (Fa < 0); }});
}
// unconditional branches
format UncondBranch {
0x30: br();
0x34: bsr(IsCall);
}
// indirect branches
0x1a: decode JMPFUNC {
format Jump {
0: jmp();
1: jsr(IsCall);
2: ret(IsReturn);
3: jsr_coroutine(IsCall, IsReturn);
}
}
// Square root and integer-to-FP moves
0x14: decode FP_SHORTFUNC {
// Integer to FP register moves must have RB == 31
0x4: decode RB {
31: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
0x014: FailUnimpl::itoff(); // VAX-format conversion
}
}
}
// Square root instructions must have FA == 31
0xb: decode FA {
31: decode FP_TYPEFUNC {
format FloatingPointOperate {
#if SS_COMPATIBLE_FP
0x0b: sqrts({{
if (Fb < 0.0)
Changed Fault from a FaultBase * to a RefCountingPtr, added "new"s where appropriate, and took away the constant examples of each fault which where for comparing to a fault to determine its type. arch/alpha/alpha_memory.cc: arch/alpha/isa/decoder.isa: Added news where faults are created. arch/alpha/ev5.cc: Changed places where a fault was compared to a fault type to use isA rather than == arch/alpha/faults.cc: arch/alpha/faults.hh: Changed Fault to be a RefCountingPtr arch/alpha/isa/fp.isa: Added a new where a FloatEnableFault was created. arch/alpha/isa/unimp.isa: arch/alpha/isa/unknown.isa: Added a new where an UnimplementedFault is created. base/refcnt.hh: Added include of stddef.h for the NULL macro cpu/base_dyn_inst.cc: Added a new where an UnimplementedOpcodeFault is created. cpu/o3/alpha_cpu_impl.hh: Changed places where a fault was compared to a fault type to use isA rather than ==. Also changed fault->name to fault->name() cpu/o3/regfile.hh: Added new where UnimplementedOpcodeFaults are created. cpu/simple/cpu.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Also added a new where an Interrupt fault is created. dev/alpha_console.cc: Added news where MachineCheckFaults are created. dev/pcidev.hh: Added news where MachineCheckFaults are generated. dev/sinic.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Added news where MachineCheckFaults are created. Fixed a problem where m5.fast had unused variables. kern/kernel_stats.cc: Commented out where _faults is initialized. This statistic will probably be moved elsewhere in the future. kern/kernel_stats.hh: Commented out the declaration of _fault. when fault() is called, the fault increments its own stat. sim/faults.cc: sim/faults.hh: Changed Fault from a FaultBase * to a RefCountingPtr. --HG-- extra : convert_revision : b40ccfc42482d5a115e111dd897fa378d23c6c7d
2006-02-24 07:51:45 +01:00
fault = new ArithmeticFault;
Fc = sqrt(Fb);
}}, FloatSqrtOp);
#else
0x0b: sqrts({{
if (Fb.sf < 0.0)
Changed Fault from a FaultBase * to a RefCountingPtr, added "new"s where appropriate, and took away the constant examples of each fault which where for comparing to a fault to determine its type. arch/alpha/alpha_memory.cc: arch/alpha/isa/decoder.isa: Added news where faults are created. arch/alpha/ev5.cc: Changed places where a fault was compared to a fault type to use isA rather than == arch/alpha/faults.cc: arch/alpha/faults.hh: Changed Fault to be a RefCountingPtr arch/alpha/isa/fp.isa: Added a new where a FloatEnableFault was created. arch/alpha/isa/unimp.isa: arch/alpha/isa/unknown.isa: Added a new where an UnimplementedFault is created. base/refcnt.hh: Added include of stddef.h for the NULL macro cpu/base_dyn_inst.cc: Added a new where an UnimplementedOpcodeFault is created. cpu/o3/alpha_cpu_impl.hh: Changed places where a fault was compared to a fault type to use isA rather than ==. Also changed fault->name to fault->name() cpu/o3/regfile.hh: Added new where UnimplementedOpcodeFaults are created. cpu/simple/cpu.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Also added a new where an Interrupt fault is created. dev/alpha_console.cc: Added news where MachineCheckFaults are created. dev/pcidev.hh: Added news where MachineCheckFaults are generated. dev/sinic.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Added news where MachineCheckFaults are created. Fixed a problem where m5.fast had unused variables. kern/kernel_stats.cc: Commented out where _faults is initialized. This statistic will probably be moved elsewhere in the future. kern/kernel_stats.hh: Commented out the declaration of _fault. when fault() is called, the fault increments its own stat. sim/faults.cc: sim/faults.hh: Changed Fault from a FaultBase * to a RefCountingPtr. --HG-- extra : convert_revision : b40ccfc42482d5a115e111dd897fa378d23c6c7d
2006-02-24 07:51:45 +01:00
fault = new ArithmeticFault;
Fc.sf = sqrt(Fb.sf);
}}, FloatSqrtOp);
#endif
0x2b: sqrtt({{
if (Fb < 0.0)
Changed Fault from a FaultBase * to a RefCountingPtr, added "new"s where appropriate, and took away the constant examples of each fault which where for comparing to a fault to determine its type. arch/alpha/alpha_memory.cc: arch/alpha/isa/decoder.isa: Added news where faults are created. arch/alpha/ev5.cc: Changed places where a fault was compared to a fault type to use isA rather than == arch/alpha/faults.cc: arch/alpha/faults.hh: Changed Fault to be a RefCountingPtr arch/alpha/isa/fp.isa: Added a new where a FloatEnableFault was created. arch/alpha/isa/unimp.isa: arch/alpha/isa/unknown.isa: Added a new where an UnimplementedFault is created. base/refcnt.hh: Added include of stddef.h for the NULL macro cpu/base_dyn_inst.cc: Added a new where an UnimplementedOpcodeFault is created. cpu/o3/alpha_cpu_impl.hh: Changed places where a fault was compared to a fault type to use isA rather than ==. Also changed fault->name to fault->name() cpu/o3/regfile.hh: Added new where UnimplementedOpcodeFaults are created. cpu/simple/cpu.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Also added a new where an Interrupt fault is created. dev/alpha_console.cc: Added news where MachineCheckFaults are created. dev/pcidev.hh: Added news where MachineCheckFaults are generated. dev/sinic.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Added news where MachineCheckFaults are created. Fixed a problem where m5.fast had unused variables. kern/kernel_stats.cc: Commented out where _faults is initialized. This statistic will probably be moved elsewhere in the future. kern/kernel_stats.hh: Commented out the declaration of _fault. when fault() is called, the fault increments its own stat. sim/faults.cc: sim/faults.hh: Changed Fault from a FaultBase * to a RefCountingPtr. --HG-- extra : convert_revision : b40ccfc42482d5a115e111dd897fa378d23c6c7d
2006-02-24 07:51:45 +01:00
fault = new ArithmeticFault;
Fc = sqrt(Fb);
}}, FloatSqrtOp);
}
}
}
// VAX-format sqrtf and sqrtg are not implemented
0xa: FailUnimpl::sqrtfg();
}
// IEEE floating point
0x16: decode FP_SHORTFUNC_TOP2 {
// The top two bits of the short function code break this
// space into four groups: binary ops, compares, reserved, and
// conversions. See Table 4-12 of AHB. There are different
// special cases in these different groups, so we decode on
// these top two bits first just to select a decode strategy.
// Most of these instructions may have various trapping and
// rounding mode flags set; these are decoded in the
// FloatingPointDecode template used by the
// FloatingPointOperate format.
// add/sub/mul/div: just decode on the short function code
// and source type. All valid trapping and rounding modes apply.
0: decode FP_TRAPMODE {
// check for valid trapping modes here
0,1,5,7: decode FP_TYPEFUNC {
format FloatingPointOperate {
#if SS_COMPATIBLE_FP
0x00: adds({{ Fc = Fa + Fb; }});
0x01: subs({{ Fc = Fa - Fb; }});
0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
#else
0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
#endif
0x20: addt({{ Fc = Fa + Fb; }});
0x21: subt({{ Fc = Fa - Fb; }});
0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
}
}
}
// Floating-point compare instructions must have the default
// rounding mode, and may use the default trapping mode or
// /SU. Both trapping modes are treated the same by M5; the
// only difference on the real hardware (as far a I can tell)
// is that without /SU you'd get an imprecise trap if you
// tried to compare a NaN with something else (instead of an
// "unordered" result).
1: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
FloatCmpOp);
0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
FloatCmpOp);
0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
FloatCmpOp);
0x0a4, 0x5a4: cmptun({{ // unordered
Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
}}, FloatCmpOp);
}
}
// The FP-to-integer and integer-to-FP conversion insts
// require that FA be 31.
3: decode FA {
31: decode FP_TYPEFUNC {
format FloatingPointOperate {
0x2f: decode FP_ROUNDMODE {
format FPFixedRounding {
// "chopped" i.e. round toward zero
0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
Chopped);
// round to minus infinity
1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
MinusInfinity);
}
default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
}
// The cvtts opcode is overloaded to be cvtst if the trap
// mode is 2 or 6 (which are not valid otherwise)
0x2c: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
// trap on denorm version "cvtst/s" is
// simulated same as cvtst
0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
}
default: cvtts({{ Fc.sf = Fb; }});
}
// The trapping mode for integer-to-FP conversions
// must be /SUI or nothing; /U and /SU are not
// allowed. The full set of rounding modes are
// supported though.
0x3c: decode FP_TRAPMODE {
0,7: cvtqs({{ Fc.sf = Fb.sq; }});
}
0x3e: decode FP_TRAPMODE {
0,7: cvtqt({{ Fc = Fb.sq; }});
}
}
}
}
}
// misc FP operate
0x17: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
0x010: cvtlq({{
Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
}});
0x030: cvtql({{
Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
}});
// We treat the precise & imprecise trapping versions of
// cvtql identically.
0x130, 0x530: cvtqlv({{
// To avoid overflow, all the upper 32 bits must match
// the sign bit of the lower 32. We code this as
// checking the upper 33 bits for all 0s or all 1s.
uint64_t sign_bits = Fb.uq<63:31>;
if (sign_bits != 0 && sign_bits != mask(33))
Changed Fault from a FaultBase * to a RefCountingPtr, added "new"s where appropriate, and took away the constant examples of each fault which where for comparing to a fault to determine its type. arch/alpha/alpha_memory.cc: arch/alpha/isa/decoder.isa: Added news where faults are created. arch/alpha/ev5.cc: Changed places where a fault was compared to a fault type to use isA rather than == arch/alpha/faults.cc: arch/alpha/faults.hh: Changed Fault to be a RefCountingPtr arch/alpha/isa/fp.isa: Added a new where a FloatEnableFault was created. arch/alpha/isa/unimp.isa: arch/alpha/isa/unknown.isa: Added a new where an UnimplementedFault is created. base/refcnt.hh: Added include of stddef.h for the NULL macro cpu/base_dyn_inst.cc: Added a new where an UnimplementedOpcodeFault is created. cpu/o3/alpha_cpu_impl.hh: Changed places where a fault was compared to a fault type to use isA rather than ==. Also changed fault->name to fault->name() cpu/o3/regfile.hh: Added new where UnimplementedOpcodeFaults are created. cpu/simple/cpu.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Also added a new where an Interrupt fault is created. dev/alpha_console.cc: Added news where MachineCheckFaults are created. dev/pcidev.hh: Added news where MachineCheckFaults are generated. dev/sinic.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Added news where MachineCheckFaults are created. Fixed a problem where m5.fast had unused variables. kern/kernel_stats.cc: Commented out where _faults is initialized. This statistic will probably be moved elsewhere in the future. kern/kernel_stats.hh: Commented out the declaration of _fault. when fault() is called, the fault increments its own stat. sim/faults.cc: sim/faults.hh: Changed Fault from a FaultBase * to a RefCountingPtr. --HG-- extra : convert_revision : b40ccfc42482d5a115e111dd897fa378d23c6c7d
2006-02-24 07:51:45 +01:00
fault = new IntegerOverflowFault;
Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
}});
0x020: cpys({{ // copy sign
Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
}});
0x021: cpysn({{ // copy sign negated
Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
}});
0x022: cpyse({{ // copy sign and exponent
Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
}});
0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
0x024: mt_fpcr({{ FPCR = Fa.uq; }});
0x025: mf_fpcr({{ Fa.uq = FPCR; }});
}
}
// miscellaneous mem-format ops
0x18: decode MEMFUNC {
format WarnUnimpl {
0x8000: fetch();
0xa000: fetch_m();
0xe800: ecb();
}
format MiscPrefetch {
0xf800: wh64({{ EA = Rb & ~ULL(63); }},
{{ xc->writeHint(EA, 64, memAccessFlags); }},
mem_flags = NO_FAULT,
inst_flags = [IsMemRef, IsDataPrefetch,
IsStore, MemWriteOp]);
}
format BasicOperate {
0xc000: rpcc({{
#if FULL_SYSTEM
/* Rb is a fake dependency so here is a fun way to get
* the parser to understand that.
*/
Changes to put all the misc regs within the misc reg file. This includes the FPCR, Uniq, lock flag, lock addr, and IPRs. They are now accessed by calling readMiscReg()/setMiscReg() on the XC. Old IPR accesses are supported by using readMiscRegWithEffect() and setMiscRegWithEffect() (names may change in the future). arch/alpha/alpha_memory.cc: Change accesses to IPR to go through the XC. arch/alpha/ev5.cc: Change accesses for IPRs to go through the misc regs. arch/alpha/isa/decoder.isa: Change accesses to IPRs to go through the misc regs. readIpr() and setIpr() are now changed to calls to readMiscRegWithEffect() and setMiscRegWithEffect(). arch/alpha/isa/fp.isa: Change accesses to IPRs and Fpcr to go through the misc regs. arch/alpha/isa/main.isa: Add support for all misc regs being accessed through readMiscReg() and setMiscReg(). Instead of readUniq and readFpcr, they are replaced by calls with Uniq_DepTag and Fpcr_DepTag passed in as the register index. arch/alpha/isa_traits.hh: Change the MiscRegFile to a class that handles all accesses to MiscRegs, which in Alpha include the FPCR, Uniq, Lock Addr, Lock Flag, and IPRs. Two flavors of accesses are supported: normal register reads/writes, and reads/writes with effect. The latter are basically the original read/write IPR functions, while the former are normal reads/writes. The lock flag and lock addr registers are added to the dependence tags in order to support being accessed through the misc regs. arch/alpha/stacktrace.cc: cpu/simple/cpu.cc: dev/sinic.cc: Change accesses to the IPRs to go through the XC. arch/alpha/vtophys.cc: Change access to the IPR to go through the XC. arch/isa_parser.py: Change generation of code for control registers to use the readMiscReg and setMiscReg functions. base/remote_gdb.cc: Change accesses to the IPR to go through the XC. cpu/exec_context.hh: Use the miscRegs to access the lock addr, lock flag, and other misc registers. cpu/o3/alpha_cpu.hh: cpu/simple/cpu.hh: Support interface for reading and writing misc registers, which replaces readUniq, readFpcr, readIpr, and their set functions. cpu/o3/alpha_cpu_impl.hh: Change accesses to the IPRs to go through the miscRegs. For now comment out some of the accesses to the misc regs until the proxy exec context is completed. cpu/o3/alpha_dyn_inst.hh: Change accesses to misc regs to use readMiscReg and setMiscReg. cpu/o3/alpha_dyn_inst_impl.hh: Remove old misc reg accessors. cpu/o3/cpu.cc: Comment out old misc reg accesses until the proxy exec context is completed. cpu/o3/cpu.hh: Change accesses to the misc regs. cpu/o3/regfile.hh: Remove old access methods for the misc regs, replace them with readMiscReg and setMiscReg. They are dummy functions for now until the proxy exec context is completed. kern/kernel_stats.cc: kern/system_events.cc: Have accesses to the IPRs go through the XC. kern/tru64/tru64.hh: Have accesses to the misc regs use the new access methods. --HG-- extra : convert_revision : e32e0a3fe99522e17294bbe106ff5591cb1a9d76
2006-02-27 17:44:35 +01:00
Ra = xc->readMiscRegWithEffect(AlphaISA::IPR_CC, fault) + (Rb & 0);
#else
Ra = curTick;
#endif
}}, IsUnverifiable);
// All of the barrier instructions below do nothing in
// their execute() methods (hence the empty code blocks).
// All of their functionality is hard-coded in the
// pipeline based on the flags IsSerializing,
// IsMemBarrier, and IsWriteBarrier. In the current
// detailed CPU model, the execute() function only gets
// called at fetch, so there's no way to generate pipeline
// behavior at any other stage. Once we go to an
// exec-in-exec CPU model we should be able to get rid of
// these flags and implement this behavior via the
// execute() methods.
// trapb is just a barrier on integer traps, where excb is
// a barrier on integer and FP traps. "EXCB is thus a
// superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
// them the same though.
0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
}
#if FULL_SYSTEM
format BasicOperate {
0xe000: rc({{
Ra = xc->readIntrFlag();
xc->setIntrFlag(0);
}}, IsNonSpeculative);
0xf000: rs({{
Ra = xc->readIntrFlag();
xc->setIntrFlag(1);
}}, IsNonSpeculative);
}
#else
format FailUnimpl {
0xe000: rc();
0xf000: rs();
}
#endif
}
#if FULL_SYSTEM
0x00: CallPal::call_pal({{
if (!palValid ||
(palPriv
Changes to put all the misc regs within the misc reg file. This includes the FPCR, Uniq, lock flag, lock addr, and IPRs. They are now accessed by calling readMiscReg()/setMiscReg() on the XC. Old IPR accesses are supported by using readMiscRegWithEffect() and setMiscRegWithEffect() (names may change in the future). arch/alpha/alpha_memory.cc: Change accesses to IPR to go through the XC. arch/alpha/ev5.cc: Change accesses for IPRs to go through the misc regs. arch/alpha/isa/decoder.isa: Change accesses to IPRs to go through the misc regs. readIpr() and setIpr() are now changed to calls to readMiscRegWithEffect() and setMiscRegWithEffect(). arch/alpha/isa/fp.isa: Change accesses to IPRs and Fpcr to go through the misc regs. arch/alpha/isa/main.isa: Add support for all misc regs being accessed through readMiscReg() and setMiscReg(). Instead of readUniq and readFpcr, they are replaced by calls with Uniq_DepTag and Fpcr_DepTag passed in as the register index. arch/alpha/isa_traits.hh: Change the MiscRegFile to a class that handles all accesses to MiscRegs, which in Alpha include the FPCR, Uniq, Lock Addr, Lock Flag, and IPRs. Two flavors of accesses are supported: normal register reads/writes, and reads/writes with effect. The latter are basically the original read/write IPR functions, while the former are normal reads/writes. The lock flag and lock addr registers are added to the dependence tags in order to support being accessed through the misc regs. arch/alpha/stacktrace.cc: cpu/simple/cpu.cc: dev/sinic.cc: Change accesses to the IPRs to go through the XC. arch/alpha/vtophys.cc: Change access to the IPR to go through the XC. arch/isa_parser.py: Change generation of code for control registers to use the readMiscReg and setMiscReg functions. base/remote_gdb.cc: Change accesses to the IPR to go through the XC. cpu/exec_context.hh: Use the miscRegs to access the lock addr, lock flag, and other misc registers. cpu/o3/alpha_cpu.hh: cpu/simple/cpu.hh: Support interface for reading and writing misc registers, which replaces readUniq, readFpcr, readIpr, and their set functions. cpu/o3/alpha_cpu_impl.hh: Change accesses to the IPRs to go through the miscRegs. For now comment out some of the accesses to the misc regs until the proxy exec context is completed. cpu/o3/alpha_dyn_inst.hh: Change accesses to misc regs to use readMiscReg and setMiscReg. cpu/o3/alpha_dyn_inst_impl.hh: Remove old misc reg accessors. cpu/o3/cpu.cc: Comment out old misc reg accesses until the proxy exec context is completed. cpu/o3/cpu.hh: Change accesses to the misc regs. cpu/o3/regfile.hh: Remove old access methods for the misc regs, replace them with readMiscReg and setMiscReg. They are dummy functions for now until the proxy exec context is completed. kern/kernel_stats.cc: kern/system_events.cc: Have accesses to the IPRs go through the XC. kern/tru64/tru64.hh: Have accesses to the misc regs use the new access methods. --HG-- extra : convert_revision : e32e0a3fe99522e17294bbe106ff5591cb1a9d76
2006-02-27 17:44:35 +01:00
&& xc->readMiscRegWithEffect(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
// invalid pal function code, or attempt to do privileged
// PAL call in non-kernel mode
Changed Fault from a FaultBase * to a RefCountingPtr, added "new"s where appropriate, and took away the constant examples of each fault which where for comparing to a fault to determine its type. arch/alpha/alpha_memory.cc: arch/alpha/isa/decoder.isa: Added news where faults are created. arch/alpha/ev5.cc: Changed places where a fault was compared to a fault type to use isA rather than == arch/alpha/faults.cc: arch/alpha/faults.hh: Changed Fault to be a RefCountingPtr arch/alpha/isa/fp.isa: Added a new where a FloatEnableFault was created. arch/alpha/isa/unimp.isa: arch/alpha/isa/unknown.isa: Added a new where an UnimplementedFault is created. base/refcnt.hh: Added include of stddef.h for the NULL macro cpu/base_dyn_inst.cc: Added a new where an UnimplementedOpcodeFault is created. cpu/o3/alpha_cpu_impl.hh: Changed places where a fault was compared to a fault type to use isA rather than ==. Also changed fault->name to fault->name() cpu/o3/regfile.hh: Added new where UnimplementedOpcodeFaults are created. cpu/simple/cpu.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Also added a new where an Interrupt fault is created. dev/alpha_console.cc: Added news where MachineCheckFaults are created. dev/pcidev.hh: Added news where MachineCheckFaults are generated. dev/sinic.cc: Changed places where a fault was compared to a fault type to use isA rather than ==. Added news where MachineCheckFaults are created. Fixed a problem where m5.fast had unused variables. kern/kernel_stats.cc: Commented out where _faults is initialized. This statistic will probably be moved elsewhere in the future. kern/kernel_stats.hh: Commented out the declaration of _fault. when fault() is called, the fault increments its own stat. sim/faults.cc: sim/faults.hh: Changed Fault from a FaultBase * to a RefCountingPtr. --HG-- extra : convert_revision : b40ccfc42482d5a115e111dd897fa378d23c6c7d
2006-02-24 07:51:45 +01:00
fault = new UnimplementedOpcodeFault;
}
else {
// check to see if simulator wants to do something special
// on this PAL call (including maybe suppress it)
bool dopal = xc->simPalCheck(palFunc);
if (dopal) {
Changes to put all the misc regs within the misc reg file. This includes the FPCR, Uniq, lock flag, lock addr, and IPRs. They are now accessed by calling readMiscReg()/setMiscReg() on the XC. Old IPR accesses are supported by using readMiscRegWithEffect() and setMiscRegWithEffect() (names may change in the future). arch/alpha/alpha_memory.cc: Change accesses to IPR to go through the XC. arch/alpha/ev5.cc: Change accesses for IPRs to go through the misc regs. arch/alpha/isa/decoder.isa: Change accesses to IPRs to go through the misc regs. readIpr() and setIpr() are now changed to calls to readMiscRegWithEffect() and setMiscRegWithEffect(). arch/alpha/isa/fp.isa: Change accesses to IPRs and Fpcr to go through the misc regs. arch/alpha/isa/main.isa: Add support for all misc regs being accessed through readMiscReg() and setMiscReg(). Instead of readUniq and readFpcr, they are replaced by calls with Uniq_DepTag and Fpcr_DepTag passed in as the register index. arch/alpha/isa_traits.hh: Change the MiscRegFile to a class that handles all accesses to MiscRegs, which in Alpha include the FPCR, Uniq, Lock Addr, Lock Flag, and IPRs. Two flavors of accesses are supported: normal register reads/writes, and reads/writes with effect. The latter are basically the original read/write IPR functions, while the former are normal reads/writes. The lock flag and lock addr registers are added to the dependence tags in order to support being accessed through the misc regs. arch/alpha/stacktrace.cc: cpu/simple/cpu.cc: dev/sinic.cc: Change accesses to the IPRs to go through the XC. arch/alpha/vtophys.cc: Change access to the IPR to go through the XC. arch/isa_parser.py: Change generation of code for control registers to use the readMiscReg and setMiscReg functions. base/remote_gdb.cc: Change accesses to the IPR to go through the XC. cpu/exec_context.hh: Use the miscRegs to access the lock addr, lock flag, and other misc registers. cpu/o3/alpha_cpu.hh: cpu/simple/cpu.hh: Support interface for reading and writing misc registers, which replaces readUniq, readFpcr, readIpr, and their set functions. cpu/o3/alpha_cpu_impl.hh: Change accesses to the IPRs to go through the miscRegs. For now comment out some of the accesses to the misc regs until the proxy exec context is completed. cpu/o3/alpha_dyn_inst.hh: Change accesses to misc regs to use readMiscReg and setMiscReg. cpu/o3/alpha_dyn_inst_impl.hh: Remove old misc reg accessors. cpu/o3/cpu.cc: Comment out old misc reg accesses until the proxy exec context is completed. cpu/o3/cpu.hh: Change accesses to the misc regs. cpu/o3/regfile.hh: Remove old access methods for the misc regs, replace them with readMiscReg and setMiscReg. They are dummy functions for now until the proxy exec context is completed. kern/kernel_stats.cc: kern/system_events.cc: Have accesses to the IPRs go through the XC. kern/tru64/tru64.hh: Have accesses to the misc regs use the new access methods. --HG-- extra : convert_revision : e32e0a3fe99522e17294bbe106ff5591cb1a9d76
2006-02-27 17:44:35 +01:00
xc->setMiscRegWithEffect(AlphaISA::IPR_EXC_ADDR, NPC);
NPC = xc->readMiscRegWithEffect(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
}
}
}}, IsNonSpeculative);
#else
0x00: decode PALFUNC {
format EmulatedCallPal {
0x00: halt ({{
SimExit(curTick, "halt instruction encountered");
}}, IsNonSpeculative);
0x83: callsys({{
xc->syscall();
}}, IsNonSpeculative);
// Read uniq reg into ABI return value register (r0)
0x9e: rduniq({{ R0 = Runiq; }});
// Write uniq reg with value from ABI arg register (r16)
0x9f: wruniq({{ Runiq = R16; }});
}
}
#endif
#if FULL_SYSTEM
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
0x1b: decode PALMODE {
0: OpcdecFault::hw_st_quad();
1: decode HW_LDST_QUAD {
format HwLoad {
0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
}
}
Change how memory operands are handled in ISA descriptions. Should enable implementation of split-phase timing loads with new memory model. May create slight timing differences under FullCPU, as I believe we were not handling software prefetches correctly before when the split MemAcc/Exec model was used. I haven't looked into this in any detail though. arch/alpha/isa/decoder.isa: HwLoadStore format split into separate HwLoad and HwStore formats. Copy instructions now fall under MiscPrefetch format. Mem_write_result is now just write_result in store conditionals. arch/alpha/isa/mem.isa: Split MemAccExecute and LoadStoreExecute templates into separate templates for loads and stores; now that memory operands are handled differently from registers, it's impossible to have a single template serve both. Also unified the handling of "regular" prefetches (loads to r31) and "misc" prefetches (e.g., wh64) under the new scheme. It looks like SW prefetches were not handled correctly in FullCPU up til now, since we generated an execute() method for the outer instruction but didn't generate a proper method for MemAcc::execute() (instead getting a default no-op method for that). arch/alpha/isa/pal.isa: Split HwLoadStore into separate HwLoad and HwStore formats to select proper template (see change to mem.isa in this changeset). arch/isa_parser.py: Stop trying to treat memory operands like register operands, since we never used them in a uniform way anyway, and it made it impossible to do split-phase loads as needed for the new CPU model. Now there's no more 'op_mem_rd', 'op_nonmem_rd', etc.: 'op_rd' just does register operands, and the template code is responsible for formulating the call to the memory system. Right now the only thing exported by InstObjParams is a new attribute 'mem_acc_size' which gives the memory access size in bits, though more attributes can be added if needed. Also moved code in findOperands() method to OperandDescriptorList.__init__(), which is where it belongs. --HG-- extra : convert_revision : 6d53d07e0c5e828455834ded4395fa40f9146a34
2006-02-10 15:12:55 +01:00
}
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
0x1f: decode PALMODE {
0: OpcdecFault::hw_st_cond();
format HwStore {
1: decode HW_LDST_COND {
0: decode HW_LDST_QUAD {
0: hw_st({{ EA = (Rb + disp) & ~3; }},
{{ Mem.ul = Ra<31:0>; }}, L);
1: hw_st({{ EA = (Rb + disp) & ~7; }},
{{ Mem.uq = Ra.uq; }}, Q);
}
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
1: FailUnimpl::hw_st_cond();
}
}
}
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
0x19: decode PALMODE {
0: OpcdecFault::hw_mfpr();
format HwMoveIPR {
1: hw_mfpr({{
Changes to put all the misc regs within the misc reg file. This includes the FPCR, Uniq, lock flag, lock addr, and IPRs. They are now accessed by calling readMiscReg()/setMiscReg() on the XC. Old IPR accesses are supported by using readMiscRegWithEffect() and setMiscRegWithEffect() (names may change in the future). arch/alpha/alpha_memory.cc: Change accesses to IPR to go through the XC. arch/alpha/ev5.cc: Change accesses for IPRs to go through the misc regs. arch/alpha/isa/decoder.isa: Change accesses to IPRs to go through the misc regs. readIpr() and setIpr() are now changed to calls to readMiscRegWithEffect() and setMiscRegWithEffect(). arch/alpha/isa/fp.isa: Change accesses to IPRs and Fpcr to go through the misc regs. arch/alpha/isa/main.isa: Add support for all misc regs being accessed through readMiscReg() and setMiscReg(). Instead of readUniq and readFpcr, they are replaced by calls with Uniq_DepTag and Fpcr_DepTag passed in as the register index. arch/alpha/isa_traits.hh: Change the MiscRegFile to a class that handles all accesses to MiscRegs, which in Alpha include the FPCR, Uniq, Lock Addr, Lock Flag, and IPRs. Two flavors of accesses are supported: normal register reads/writes, and reads/writes with effect. The latter are basically the original read/write IPR functions, while the former are normal reads/writes. The lock flag and lock addr registers are added to the dependence tags in order to support being accessed through the misc regs. arch/alpha/stacktrace.cc: cpu/simple/cpu.cc: dev/sinic.cc: Change accesses to the IPRs to go through the XC. arch/alpha/vtophys.cc: Change access to the IPR to go through the XC. arch/isa_parser.py: Change generation of code for control registers to use the readMiscReg and setMiscReg functions. base/remote_gdb.cc: Change accesses to the IPR to go through the XC. cpu/exec_context.hh: Use the miscRegs to access the lock addr, lock flag, and other misc registers. cpu/o3/alpha_cpu.hh: cpu/simple/cpu.hh: Support interface for reading and writing misc registers, which replaces readUniq, readFpcr, readIpr, and their set functions. cpu/o3/alpha_cpu_impl.hh: Change accesses to the IPRs to go through the miscRegs. For now comment out some of the accesses to the misc regs until the proxy exec context is completed. cpu/o3/alpha_dyn_inst.hh: Change accesses to misc regs to use readMiscReg and setMiscReg. cpu/o3/alpha_dyn_inst_impl.hh: Remove old misc reg accessors. cpu/o3/cpu.cc: Comment out old misc reg accesses until the proxy exec context is completed. cpu/o3/cpu.hh: Change accesses to the misc regs. cpu/o3/regfile.hh: Remove old access methods for the misc regs, replace them with readMiscReg and setMiscReg. They are dummy functions for now until the proxy exec context is completed. kern/kernel_stats.cc: kern/system_events.cc: Have accesses to the IPRs go through the XC. kern/tru64/tru64.hh: Have accesses to the misc regs use the new access methods. --HG-- extra : convert_revision : e32e0a3fe99522e17294bbe106ff5591cb1a9d76
2006-02-27 17:44:35 +01:00
Ra = xc->readMiscRegWithEffect(ipr_index, fault);
}});
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
}
}
0x1d: decode PALMODE {
0: OpcdecFault::hw_mtpr();
format HwMoveIPR {
1: hw_mtpr({{
Changes to put all the misc regs within the misc reg file. This includes the FPCR, Uniq, lock flag, lock addr, and IPRs. They are now accessed by calling readMiscReg()/setMiscReg() on the XC. Old IPR accesses are supported by using readMiscRegWithEffect() and setMiscRegWithEffect() (names may change in the future). arch/alpha/alpha_memory.cc: Change accesses to IPR to go through the XC. arch/alpha/ev5.cc: Change accesses for IPRs to go through the misc regs. arch/alpha/isa/decoder.isa: Change accesses to IPRs to go through the misc regs. readIpr() and setIpr() are now changed to calls to readMiscRegWithEffect() and setMiscRegWithEffect(). arch/alpha/isa/fp.isa: Change accesses to IPRs and Fpcr to go through the misc regs. arch/alpha/isa/main.isa: Add support for all misc regs being accessed through readMiscReg() and setMiscReg(). Instead of readUniq and readFpcr, they are replaced by calls with Uniq_DepTag and Fpcr_DepTag passed in as the register index. arch/alpha/isa_traits.hh: Change the MiscRegFile to a class that handles all accesses to MiscRegs, which in Alpha include the FPCR, Uniq, Lock Addr, Lock Flag, and IPRs. Two flavors of accesses are supported: normal register reads/writes, and reads/writes with effect. The latter are basically the original read/write IPR functions, while the former are normal reads/writes. The lock flag and lock addr registers are added to the dependence tags in order to support being accessed through the misc regs. arch/alpha/stacktrace.cc: cpu/simple/cpu.cc: dev/sinic.cc: Change accesses to the IPRs to go through the XC. arch/alpha/vtophys.cc: Change access to the IPR to go through the XC. arch/isa_parser.py: Change generation of code for control registers to use the readMiscReg and setMiscReg functions. base/remote_gdb.cc: Change accesses to the IPR to go through the XC. cpu/exec_context.hh: Use the miscRegs to access the lock addr, lock flag, and other misc registers. cpu/o3/alpha_cpu.hh: cpu/simple/cpu.hh: Support interface for reading and writing misc registers, which replaces readUniq, readFpcr, readIpr, and their set functions. cpu/o3/alpha_cpu_impl.hh: Change accesses to the IPRs to go through the miscRegs. For now comment out some of the accesses to the misc regs until the proxy exec context is completed. cpu/o3/alpha_dyn_inst.hh: Change accesses to misc regs to use readMiscReg and setMiscReg. cpu/o3/alpha_dyn_inst_impl.hh: Remove old misc reg accessors. cpu/o3/cpu.cc: Comment out old misc reg accesses until the proxy exec context is completed. cpu/o3/cpu.hh: Change accesses to the misc regs. cpu/o3/regfile.hh: Remove old access methods for the misc regs, replace them with readMiscReg and setMiscReg. They are dummy functions for now until the proxy exec context is completed. kern/kernel_stats.cc: kern/system_events.cc: Have accesses to the IPRs go through the XC. kern/tru64/tru64.hh: Have accesses to the misc regs use the new access methods. --HG-- extra : convert_revision : e32e0a3fe99522e17294bbe106ff5591cb1a9d76
2006-02-27 17:44:35 +01:00
xc->setMiscRegWithEffect(ipr_index, Ra);
if (traceData) { traceData->setData(Ra); }
}});
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
}
}
format BasicOperate {
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
0x1e: decode PALMODE {
0: OpcdecFault::hw_rei();
1:hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore);
Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included. The shadow registers are folded into the normal integer registers to ease renaming indexing. Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode. arch/alpha/ev5.cc: Changes to automatically map the shadow registers if the instruction is in PAL mode. arch/alpha/isa/branch.isa: arch/alpha/isa/decoder.isa: arch/alpha/isa/fp.isa: arch/alpha/isa/int.isa: arch/alpha/isa/mem.isa: arch/alpha/isa/pal.isa: arch/alpha/isa/unimp.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. arch/alpha/isa/main.isa: Changes for automatically using the shadow registers. Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits. The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode. If it is, then it refers to the reg_redir table to determine the true index of the register it is using. Also include the opcdec instruction definition. arch/alpha/isa_traits.hh: Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not. Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers). Change the dependence tags to reflect the integer registers include the 8 shadow registers. Define function to make an ExtMachInst. Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU. arch/isa_parser.py: Have static insts decode on the ExtMachInst. base/remote_gdb.cc: Support the automatic remapping of shadow registers. Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices. cpu/o3/regfile.hh: Comment out the pal registers; they are now a part of the integer registers. cpu/simple/cpu.cc: Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin. cpu/static_inst.hh: Change from MachInst to ExtMachInst to support shadow register renaming. --HG-- extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 21:28:25 +01:00
}
// M5 special opcodes use the reserved 0x01 opcode space
0x01: decode M5FUNC {
0x00: arm({{
AlphaPseudo::arm(xc->xcBase());
}}, IsNonSpeculative);
0x01: quiesce({{
AlphaPseudo::quiesce(xc->xcBase());
}}, IsNonSpeculative, IsQuiesce);
0x02: quiesceNs({{
AlphaPseudo::quiesceNs(xc->xcBase(), R16);
}}, IsNonSpeculative, IsQuiesce);
0x03: quiesceCycles({{
AlphaPseudo::quiesceCycles(xc->xcBase(), R16);
}}, IsNonSpeculative, IsQuiesce);
0x04: quiesceTime({{
R0 = AlphaPseudo::quiesceTime(xc->xcBase());
}}, IsNonSpeculative);
0x10: ivlb({{
AlphaPseudo::ivlb(xc->xcBase());
}}, No_OpClass, IsNonSpeculative);
0x11: ivle({{
AlphaPseudo::ivle(xc->xcBase());
}}, No_OpClass, IsNonSpeculative);
0x20: m5exit_old({{
AlphaPseudo::m5exit_old(xc->xcBase());
}}, No_OpClass, IsNonSpeculative);
0x21: m5exit({{
AlphaPseudo::m5exit(xc->xcBase(), R16);
}}, No_OpClass, IsNonSpeculative);
Steps towards setting up the infrastructure to allow the new CPU model to work in full system mode. The major change is renaming the old ExecContext to CPUExecContext, and creating two new classes, ExecContext (an abstract class), and ProxyExecContext (a templated class that derives from ExecContext). Code outside of the CPU continues to use ExecContext as normal (other than not being able to access variables within the XC). The CPU uses the CPUExecContext, or however else it stores its own state. It then creates a ProxyExecContext, templated on the class used to hold its state. This proxy is passed to any code outside of the CPU that needs to access the XC. This allows code outside of the CPU to use the ExecContext interface to access any state needed, without knowledge of how that state is laid out. Note that these changes will not compile without the accompanying revision to automatically rename the shadow registers. SConscript: Include new file, cpu_exec_context.cc. arch/alpha/alpha_linux_process.cc: arch/alpha/alpha_memory.cc: arch/alpha/alpha_tru64_process.cc: arch/alpha/arguments.cc: arch/alpha/isa/decoder.isa: arch/alpha/stacktrace.cc: arch/alpha/vtophys.cc: base/remote_gdb.cc: cpu/intr_control.cc: Avoid directly accessing objects within the XC. arch/alpha/ev5.cc: Avoid directly accessing objects within the XC. KernelStats have been moved to the BaseCPU instead of the XC. arch/alpha/isa_traits.hh: Remove clearIprs(). It wasn't used very often and it did not work well with the proxy ExecContext. cpu/base.cc: Place kernel stats within the BaseCPU instead of the ExecContext. For now comment out the profiling code sampling until its exact location is decided upon. cpu/base.hh: Kernel stats are now in the BaseCPU instead of the ExecContext. cpu/base_dyn_inst.cc: cpu/base_dyn_inst.hh: cpu/memtest/memtest.cc: cpu/memtest/memtest.hh: Changes to support rename of old ExecContext to CPUExecContext. See changeset for more details. cpu/exetrace.cc: Remove unneeded include of exec_context.hh. cpu/intr_control.hh: cpu/o3/alpha_cpu_builder.cc: Remove unneeded include of exec_context.hh cpu/o3/alpha_cpu.hh: cpu/o3/alpha_cpu_impl.hh: cpu/o3/cpu.cc: cpu/o3/cpu.hh: cpu/simple/cpu.cc: cpu/simple/cpu.hh: Changes to support rename of old ExecContext to CPUExecContext. See changeset for more details. Also avoid accessing anything directly from the XC. cpu/pc_event.cc: Avoid accessing objects directly from the XC. dev/tsunami_cchip.cc: Avoid accessing objects directly within the XC> kern/freebsd/freebsd_system.cc: kern/linux/linux_system.cc: kern/linux/linux_threadinfo.hh: kern/tru64/dump_mbuf.cc: kern/tru64/tru64.hh: kern/tru64/tru64_events.cc: sim/syscall_emul.cc: sim/syscall_emul.hh: Avoid accessing objects directly within the XC. kern/kernel_stats.cc: kern/kernel_stats.hh: Kernel stats no longer exist within the XC. kern/system_events.cc: Avoid accessing objects directly within the XC. Also kernel stats are now in the BaseCPU. sim/process.cc: sim/process.hh: Avoid accessing regs directly within an ExecContext. Instead use a CPUExecContext to initialize the registers and copy them over. cpu/cpu_exec_context.cc: Rename old ExecContext to CPUExecContext. This is used by the old CPU models to store any necessary architectural state. Also include the ProxyExecContext, which is used to access the CPUExecContext's state in code outside of the CPU. cpu/cpu_exec_context.hh: Rename old ExecContext to CPUExecContext. This is used by the old CPU models to store any necessary architectural state. Also include the ProxyExecContext, which is used to access the CPUExecContext's state in code outside of the CPU. Remove kernel stats from the ExecContext. sim/pseudo_inst.cc: Kernel stats now live within the CPU. Avoid accessing objects directly within the XC. --HG-- rename : cpu/exec_context.cc => cpu/cpu_exec_context.cc rename : cpu/exec_context.hh => cpu/cpu_exec_context.hh extra : convert_revision : a75393a8945c80cca225b5e9d9c22a16609efb85
2006-03-04 21:18:40 +01:00
0x30: initparam({{ Ra = xc->xcBase()->getCpuPtr()->system->init_param; }});
0x40: resetstats({{
AlphaPseudo::resetstats(xc->xcBase(), R16, R17);
}}, IsNonSpeculative);
0x41: dumpstats({{
AlphaPseudo::dumpstats(xc->xcBase(), R16, R17);
}}, IsNonSpeculative);
0x42: dumpresetstats({{
AlphaPseudo::dumpresetstats(xc->xcBase(), R16, R17);
}}, IsNonSpeculative);
0x43: m5checkpoint({{
AlphaPseudo::m5checkpoint(xc->xcBase(), R16, R17);
}}, IsNonSpeculative);
0x50: m5readfile({{
R0 = AlphaPseudo::readfile(xc->xcBase(), R16, R17, R18);
}}, IsNonSpeculative);
0x51: m5break({{
AlphaPseudo::debugbreak(xc->xcBase());
}}, IsNonSpeculative);
0x52: m5switchcpu({{
AlphaPseudo::switchcpu(xc->xcBase());
}}, IsNonSpeculative);
0x53: m5addsymbol({{
AlphaPseudo::addsymbol(xc->xcBase(), R16, R17);
}}, IsNonSpeculative);
0x54: m5panic({{
panic("M5 panic instruction called at pc=%#x.", xc->readPC());
}}, IsNonSpeculative);
}
}
#endif
}