gem5/src/python/m5/SimObject.py

1141 lines
42 KiB
Python
Raw Normal View History

# Copyright (c) 2012 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2004-2006 The Regents of The University of Michigan
# Copyright (c) 2010-20013 Advanced Micro Devices, Inc.
# Copyright (c) 2013 Mark D. Hill and David A. Wood
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
# Nathan Binkert
# Andreas Hansson
import sys
from types import FunctionType, MethodType, ModuleType
import m5
from m5.util import *
# Have to import params up top since Param is referenced on initial
# load (when SimObject class references Param to create a class
# variable, the 'name' param)...
from m5.params import *
# There are a few things we need that aren't in params.__all__ since
# normal users don't need them
from m5.params import ParamDesc, VectorParamDesc, \
isNullPointer, SimObjectVector, Port
from m5.proxy import *
from m5.proxy import isproxy
#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the desired simulation
# configuration. For now, the Python emits a .ini file that can be
# parsed by M5. In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name. The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class). To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object. The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements. For example:
#
# cache = BaseCache(size='64KB')
# cache.hit_latency = 3
# cache.assoc = 8
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications. This
# allows parameter validity checking in the Python code. Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively. This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file.
#
#####################################################################
# list of all SimObject classes
allClasses = {}
# dict to look up SimObjects based on path
instanceDict = {}
# Did any of the SimObjects lack a header file?
noCxxHeader = False
def public_value(key, value):
return key.startswith('_') or \
isinstance(value, (FunctionType, MethodType, ModuleType,
classmethod, type))
# The metaclass for SimObject. This class controls how new classes
# that derive from SimObject are instantiated, and provides inherited
# class behavior (just like a class controls how instances of that
# class are instantiated, and provides inherited instance behavior).
class MetaSimObject(type):
# Attributes that can be set only at initialization time
init_keywords = { 'abstract' : bool,
'cxx_class' : str,
'cxx_type' : str,
'cxx_header' : str,
'type' : str,
'cxx_bases' : list }
# Attributes that can be set any time
keywords = { 'check' : FunctionType }
# __new__ is called before __init__, and is where the statements
# in the body of the class definition get loaded into the class's
# __dict__. We intercept this to filter out parameter & port assignments
# and only allow "private" attributes to be passed to the base
# __new__ (starting with underscore).
def __new__(mcls, name, bases, dict):
assert name not in allClasses, "SimObject %s already present" % name
# Copy "private" attributes, functions, and classes to the
# official dict. Everything else goes in _init_dict to be
# filtered in __init__.
cls_dict = {}
value_dict = {}
for key,val in dict.items():
if public_value(key, val):
cls_dict[key] = val
else:
# must be a param/port setting
value_dict[key] = val
if 'abstract' not in value_dict:
value_dict['abstract'] = False
if 'cxx_bases' not in value_dict:
value_dict['cxx_bases'] = []
cls_dict['_value_dict'] = value_dict
cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
if 'type' in value_dict:
allClasses[name] = cls
return cls
# subclass initialization
def __init__(cls, name, bases, dict):
# calls type.__init__()... I think that's a no-op, but leave
# it here just in case it's not.
super(MetaSimObject, cls).__init__(name, bases, dict)
# initialize required attributes
# class-only attributes
cls._params = multidict() # param descriptions
cls._ports = multidict() # port descriptions
# class or instance attributes
cls._values = multidict() # param values
cls._children = multidict() # SimObject children
cls._port_refs = multidict() # port ref objects
cls._instantiated = False # really instantiated, cloned, or subclassed
# We don't support multiple inheritance of sim objects. If you want
# to, you must fix multidict to deal with it properly. Non sim-objects
# are ok, though
bTotal = 0
for c in bases:
if isinstance(c, MetaSimObject):
bTotal += 1
if bTotal > 1:
raise TypeError, "SimObjects do not support multiple inheritance"
base = bases[0]
# Set up general inheritance via multidicts. A subclass will
# inherit all its settings from the base class. The only time
# the following is not true is when we define the SimObject
# class itself (in which case the multidicts have no parent).
if isinstance(base, MetaSimObject):
cls._base = base
cls._params.parent = base._params
cls._ports.parent = base._ports
cls._values.parent = base._values
cls._children.parent = base._children
cls._port_refs.parent = base._port_refs
# mark base as having been subclassed
base._instantiated = True
else:
cls._base = None
# default keyword values
if 'type' in cls._value_dict:
if 'cxx_class' not in cls._value_dict:
cls._value_dict['cxx_class'] = cls._value_dict['type']
cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
if 'cxx_header' not in cls._value_dict:
global noCxxHeader
noCxxHeader = True
warn("No header file specified for SimObject: %s", name)
# Export methods are automatically inherited via C++, so we
# don't want the method declarations to get inherited on the
# python side (and thus end up getting repeated in the wrapped
# versions of derived classes). The code below basicallly
# suppresses inheritance by substituting in the base (null)
# versions of these methods unless a different version is
# explicitly supplied.
for method_name in ('export_methods', 'export_method_cxx_predecls',
'export_method_swig_predecls'):
if method_name not in cls.__dict__:
base_method = getattr(MetaSimObject, method_name)
m = MethodType(base_method, cls, MetaSimObject)
setattr(cls, method_name, m)
# Now process the _value_dict items. They could be defining
# new (or overriding existing) parameters or ports, setting
# class keywords (e.g., 'abstract'), or setting parameter
# values or port bindings. The first 3 can only be set when
# the class is defined, so we handle them here. The others
# can be set later too, so just emulate that by calling
# setattr().
for key,val in cls._value_dict.items():
# param descriptions
if isinstance(val, ParamDesc):
cls._new_param(key, val)
# port objects
elif isinstance(val, Port):
cls._new_port(key, val)
# init-time-only keywords
elif cls.init_keywords.has_key(key):
cls._set_keyword(key, val, cls.init_keywords[key])
# default: use normal path (ends up in __setattr__)
else:
setattr(cls, key, val)
def _set_keyword(cls, keyword, val, kwtype):
if not isinstance(val, kwtype):
raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
(keyword, type(val), kwtype)
if isinstance(val, FunctionType):
val = classmethod(val)
type.__setattr__(cls, keyword, val)
def _new_param(cls, name, pdesc):
# each param desc should be uniquely assigned to one variable
assert(not hasattr(pdesc, 'name'))
pdesc.name = name
cls._params[name] = pdesc
if hasattr(pdesc, 'default'):
cls._set_param(name, pdesc.default, pdesc)
def _set_param(cls, name, value, param):
assert(param.name == name)
try:
config: reinstate implicit parenting on parameter assignment Last summer's big rewrite of the initialization code (in particular cset 6efc3672733b) got rid of the implicit parenting that used to occur when an unparented SimObject was assigned as a parameter value to another SimObject. The idea was that the new adoptOrphanParams() step would catch these anyway so it was unnecessary. Unfortunately it turns out that adoptOrphanParams() has some inherent instability in that the parent that does the adoption depends on the config tree traversal order. Even making this order deterministic (e.g., by traversing children in alphabetical order) can introduce unwanted and unexpected hierarchy changes between similar configs (e.g., when adding a switch_cpu in place of a cpu), causing problems when trying to restore checkpoints across similar configs. The hierarchy created by implicit parenting is more stable and more controllable, so this patch turns that behavior back on. This patch also cleans up some long-standing holes regarding parenting of SimObjects that are created in class definitions (either in the body of the class, or as default parameters). To avoid breaking some existing config files, this necessitated changing the error on reparenting children to a warning. This change fixes another bug where attempting to print the prior error message would fail on reparenting SimObjectVectors because they lack a _parent attribute. Some further issues with SimObjectVectors were cleaned up by getting rid of the get_parent() call (which could cause errors with some SimObjectVectors where there was no single parent to return) with has_parent() (since all the uses of get_parent() were just boolean tests anyway). Finally, since the adoptOrphanParam() step turned out to be so problematic, we now issue a warning when it actually has to do an adoption. Future cleanup of config files will get rid of current warnings.
2011-05-23 23:29:08 +02:00
value = param.convert(value)
except Exception, e:
msg = "%s\nError setting param %s.%s to %s\n" % \
(e, cls.__name__, name, value)
e.args = (msg, )
raise
config: reinstate implicit parenting on parameter assignment Last summer's big rewrite of the initialization code (in particular cset 6efc3672733b) got rid of the implicit parenting that used to occur when an unparented SimObject was assigned as a parameter value to another SimObject. The idea was that the new adoptOrphanParams() step would catch these anyway so it was unnecessary. Unfortunately it turns out that adoptOrphanParams() has some inherent instability in that the parent that does the adoption depends on the config tree traversal order. Even making this order deterministic (e.g., by traversing children in alphabetical order) can introduce unwanted and unexpected hierarchy changes between similar configs (e.g., when adding a switch_cpu in place of a cpu), causing problems when trying to restore checkpoints across similar configs. The hierarchy created by implicit parenting is more stable and more controllable, so this patch turns that behavior back on. This patch also cleans up some long-standing holes regarding parenting of SimObjects that are created in class definitions (either in the body of the class, or as default parameters). To avoid breaking some existing config files, this necessitated changing the error on reparenting children to a warning. This change fixes another bug where attempting to print the prior error message would fail on reparenting SimObjectVectors because they lack a _parent attribute. Some further issues with SimObjectVectors were cleaned up by getting rid of the get_parent() call (which could cause errors with some SimObjectVectors where there was no single parent to return) with has_parent() (since all the uses of get_parent() were just boolean tests anyway). Finally, since the adoptOrphanParam() step turned out to be so problematic, we now issue a warning when it actually has to do an adoption. Future cleanup of config files will get rid of current warnings.
2011-05-23 23:29:08 +02:00
cls._values[name] = value
# if param value is a SimObject, make it a child too, so that
# it gets cloned properly when the class is instantiated
if isSimObjectOrVector(value) and not value.has_parent():
cls._add_cls_child(name, value)
def _add_cls_child(cls, name, child):
# It's a little funky to have a class as a parent, but these
# objects should never be instantiated (only cloned, which
# clears the parent pointer), and this makes it clear that the
# object is not an orphan and can provide better error
# messages.
child.set_parent(cls, name)
cls._children[name] = child
def _new_port(cls, name, port):
# each port should be uniquely assigned to one variable
assert(not hasattr(port, 'name'))
port.name = name
cls._ports[name] = port
# same as _get_port_ref, effectively, but for classes
def _cls_get_port_ref(cls, attr):
# Return reference that can be assigned to another port
# via __setattr__. There is only ever one reference
# object per port, but we create them lazily here.
ref = cls._port_refs.get(attr)
if not ref:
ref = cls._ports[attr].makeRef(cls)
cls._port_refs[attr] = ref
return ref
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(cls, attr, value):
# normal processing for private attributes
if public_value(attr, value):
type.__setattr__(cls, attr, value)
return
if cls.keywords.has_key(attr):
cls._set_keyword(attr, value, cls.keywords[attr])
return
if cls._ports.has_key(attr):
cls._cls_get_port_ref(attr).connect(value)
return
if isSimObjectOrSequence(value) and cls._instantiated:
raise RuntimeError, \
"cannot set SimObject parameter '%s' after\n" \
" class %s has been instantiated or subclassed" \
% (attr, cls.__name__)
# check for param
param = cls._params.get(attr)
if param:
cls._set_param(attr, value, param)
return
if isSimObjectOrSequence(value):
# If RHS is a SimObject, it's an implicit child assignment.
config: reinstate implicit parenting on parameter assignment Last summer's big rewrite of the initialization code (in particular cset 6efc3672733b) got rid of the implicit parenting that used to occur when an unparented SimObject was assigned as a parameter value to another SimObject. The idea was that the new adoptOrphanParams() step would catch these anyway so it was unnecessary. Unfortunately it turns out that adoptOrphanParams() has some inherent instability in that the parent that does the adoption depends on the config tree traversal order. Even making this order deterministic (e.g., by traversing children in alphabetical order) can introduce unwanted and unexpected hierarchy changes between similar configs (e.g., when adding a switch_cpu in place of a cpu), causing problems when trying to restore checkpoints across similar configs. The hierarchy created by implicit parenting is more stable and more controllable, so this patch turns that behavior back on. This patch also cleans up some long-standing holes regarding parenting of SimObjects that are created in class definitions (either in the body of the class, or as default parameters). To avoid breaking some existing config files, this necessitated changing the error on reparenting children to a warning. This change fixes another bug where attempting to print the prior error message would fail on reparenting SimObjectVectors because they lack a _parent attribute. Some further issues with SimObjectVectors were cleaned up by getting rid of the get_parent() call (which could cause errors with some SimObjectVectors where there was no single parent to return) with has_parent() (since all the uses of get_parent() were just boolean tests anyway). Finally, since the adoptOrphanParam() step turned out to be so problematic, we now issue a warning when it actually has to do an adoption. Future cleanup of config files will get rid of current warnings.
2011-05-23 23:29:08 +02:00
cls._add_cls_child(attr, coerceSimObjectOrVector(value))
return
# no valid assignment... raise exception
raise AttributeError, \
"Class %s has no parameter \'%s\'" % (cls.__name__, attr)
def __getattr__(cls, attr):
if attr == 'cxx_class_path':
return cls.cxx_class.split('::')
if attr == 'cxx_class_name':
return cls.cxx_class_path[-1]
if attr == 'cxx_namespaces':
return cls.cxx_class_path[:-1]
if cls._values.has_key(attr):
return cls._values[attr]
if cls._children.has_key(attr):
return cls._children[attr]
raise AttributeError, \
"object '%s' has no attribute '%s'" % (cls.__name__, attr)
def __str__(cls):
return cls.__name__
# See ParamValue.cxx_predecls for description.
def cxx_predecls(cls, code):
code('#include "params/$cls.hh"')
# See ParamValue.swig_predecls for description.
def swig_predecls(cls, code):
code('%import "python/m5/internal/param_$cls.i"')
# Hook for exporting additional C++ methods to Python via SWIG.
# Default is none, override using @classmethod in class definition.
def export_methods(cls, code):
pass
# Generate the code needed as a prerequisite for the C++ methods
# exported via export_methods() to be compiled in the _wrap.cc
# file. Typically generates one or more #include statements. If
# any methods are exported, typically at least the C++ header
# declaring the relevant SimObject class must be included.
def export_method_cxx_predecls(cls, code):
pass
# Generate the code needed as a prerequisite for the C++ methods
# exported via export_methods() to be processed by SWIG.
# Typically generates one or more %include or %import statements.
# If any methods are exported, typically at least the C++ header
# declaring the relevant SimObject class must be included.
def export_method_swig_predecls(cls, code):
pass
# Generate the declaration for this object for wrapping with SWIG.
# Generates code that goes into a SWIG .i file. Called from
# src/SConscript.
def swig_decl(cls, code):
class_path = cls.cxx_class.split('::')
classname = class_path[-1]
namespaces = class_path[:-1]
# The 'local' attribute restricts us to the params declared in
# the object itself, not including inherited params (which
# will also be inherited from the base class's param struct
# here).
params = cls._params.local.values()
ports = cls._ports.local
code('%module(package="m5.internal") param_$cls')
code()
code('%{')
code('#include "sim/sim_object.hh"')
code('#include "params/$cls.hh"')
for param in params:
param.cxx_predecls(code)
code('#include "${{cls.cxx_header}}"')
cls.export_method_cxx_predecls(code)
code('''\
/**
* This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
* headers like vector, string, etc. used to automatically pull in
* the cstddef header but starting with gcc 4.6.1 they no longer do.
* This leads to swig generated a file that does not compile so we
* explicitly include cstddef. Additionally, including version 2.0.4,
* swig uses ptrdiff_t without the std:: namespace prefix which is
* required with gcc 4.6.1. We explicitly provide access to it.
*/
#include <cstddef>
using std::ptrdiff_t;
''')
code('%}')
code()
for param in params:
param.swig_predecls(code)
cls.export_method_swig_predecls(code)
code()
if cls._base:
code('%import "python/m5/internal/param_${{cls._base}}.i"')
code()
for ns in namespaces:
code('namespace $ns {')
if namespaces:
code('// avoid name conflicts')
sep_string = '_COLONS_'
flat_name = sep_string.join(class_path)
code('%rename($flat_name) $classname;')
code()
code('// stop swig from creating/wrapping default ctor/dtor')
code('%nodefault $classname;')
code('class $classname')
if cls._base:
bases = [ cls._base.cxx_class ] + cls.cxx_bases
else:
bases = cls.cxx_bases
base_first = True
for base in bases:
if base_first:
code(' : public ${{base}}')
base_first = False
else:
code(' , public ${{base}}')
code('{')
code(' public:')
cls.export_methods(code)
code('};')
for ns in reversed(namespaces):
code('} // namespace $ns')
code()
code('%include "params/$cls.hh"')
# Generate the C++ declaration (.hh file) for this SimObject's
# param struct. Called from src/SConscript.
def cxx_param_decl(cls, code):
# The 'local' attribute restricts us to the params declared in
# the object itself, not including inherited params (which
# will also be inherited from the base class's param struct
# here).
params = cls._params.local.values()
ports = cls._ports.local
try:
ptypes = [p.ptype for p in params]
except:
print cls, p, p.ptype_str
print params
raise
class_path = cls._value_dict['cxx_class'].split('::')
code('''\
#ifndef __PARAMS__${cls}__
#define __PARAMS__${cls}__
''')
# A forward class declaration is sufficient since we are just
# declaring a pointer.
for ns in class_path[:-1]:
code('namespace $ns {')
code('class $0;', class_path[-1])
for ns in reversed(class_path[:-1]):
code('} // namespace $ns')
code()
# The base SimObject has a couple of params that get
# automatically set from Python without being declared through
# the normal Param mechanism; we slip them in here (needed
# predecls now, actual declarations below)
if cls == SimObject:
code('''
#ifndef PY_VERSION
struct PyObject;
#endif
#include <string>
''')
for param in params:
param.cxx_predecls(code)
for port in ports.itervalues():
port.cxx_predecls(code)
code()
if cls._base:
code('#include "params/${{cls._base.type}}.hh"')
code()
for ptype in ptypes:
if issubclass(ptype, Enum):
code('#include "enums/${{ptype.__name__}}.hh"')
code()
# now generate the actual param struct
code("struct ${cls}Params")
if cls._base:
code(" : public ${{cls._base.type}}Params")
code("{")
if not hasattr(cls, 'abstract') or not cls.abstract:
if 'type' in cls.__dict__:
code(" ${{cls.cxx_type}} create();")
code.indent()
2008-06-18 21:07:15 +02:00
if cls == SimObject:
code('''
SimObjectParams() {}
virtual ~SimObjectParams() {}
std::string name;
PyObject *pyobj;
''')
for param in params:
param.cxx_decl(code)
for port in ports.itervalues():
port.cxx_decl(code)
code.dedent()
code('};')
code()
code('#endif // __PARAMS__${cls}__')
return code
# This *temporary* definition is required to support calls from the
# SimObject class definition to the MetaSimObject methods (in
# particular _set_param, which gets called for parameters with default
# values defined on the SimObject class itself). It will get
# overridden by the permanent definition (which requires that
# SimObject be defined) lower in this file.
def isSimObjectOrVector(value):
return False
# The SimObject class is the root of the special hierarchy. Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class SimObject(object):
# Specify metaclass. Any class inheriting from SimObject will
# get this metaclass.
__metaclass__ = MetaSimObject
type = 'SimObject'
abstract = True
cxx_header = "sim/sim_object.hh"
cxx_bases = [ "Drainable", "Serializable" ]
eventq_index = Param.UInt32(Parent.eventq_index, "Event Queue Index")
@classmethod
def export_method_swig_predecls(cls, code):
code('''
%include <std_string.i>
%import "python/swig/drain.i"
%import "python/swig/serialize.i"
''')
@classmethod
def export_methods(cls, code):
code('''
void init();
void loadState(Checkpoint *cp);
void initState();
void regStats();
void resetStats();
base: add support for probe points and common probes The probe patch is motivated by the desire to move analytical and trace code away from functional code. This is achieved by the probe interface which is essentially a glorified observer model. What this means to users: * add a probe point and a "notify" call at the source of an "event" * add an isolated module, that is being used to carry out *your* analysis (e.g. generate a trace) * register that module as a probe listener Note: an example is given for reference in src/cpu/o3/simple_trace.[hh|cc] and src/cpu/SimpleTrace.py What is happening under the hood: * every SimObject maintains has a ProbeManager. * during initialization (src/python/m5/simulate.py) first regProbePoints and the regProbeListeners is called on each SimObject. this hooks up the probe point notify calls with the listeners. FAQs: Why did you develop probe points: * to remove trace, stats gathering, analytical code out of the functional code. * the belief that probes could be generically useful. What is a probe point: * a probe point is used to notify upon a given event (e.g. cpu commits an instruction) What is a probe listener: * a class that handles whatever the user wishes to do when they are notified about an event. What can be passed on notify: * probe points are templates, and so the user can generate probes that pass any type of argument (by const reference) to a listener. What relationships can be generated (1:1, 1:N, N:M etc): * there isn't a restriction. You can hook probe points and listeners up in a 1:1, 1:N, N:M relationship. They become useful when a number of modules listen to the same probe points. The idea being that you can add a small number of probes into the source code and develop a larger number of useful analysis modules that use information passed by the probes. Can you give examples: * adding a probe point to the cpu's commit method allows you to build a trace module (outputting assembler), you could re-use this to gather instruction distribution (arithmetic, load/store, conditional, control flow) stats. Why is the probe interface currently restricted to passing a const reference: * the desire, initially at least, is to allow an interface to observe functionality, but not to change functionality. * of course this can be subverted by const-casting. What is the performance impact of adding probes: * when nothing is actively listening to the probes they should have a relatively minor impact. Profiling has suggested even with a large number of probes (60) the impact of them (when not active) is very minimal (<1%).
2014-01-24 22:29:30 +01:00
void regProbePoints();
void regProbeListeners();
void startup();
''')
# Initialize new instance. For objects with SimObject-valued
# children, we need to recursively clone the classes represented
# by those param values as well in a consistent "deep copy"-style
# fashion. That is, we want to make sure that each instance is
# cloned only once, and that if there are multiple references to
# the same original object, we end up with the corresponding
# cloned references all pointing to the same cloned instance.
def __init__(self, **kwargs):
ancestor = kwargs.get('_ancestor')
memo_dict = kwargs.get('_memo')
if memo_dict is None:
# prepare to memoize any recursively instantiated objects
memo_dict = {}
elif ancestor:
# memoize me now to avoid problems with recursive calls
memo_dict[ancestor] = self
if not ancestor:
ancestor = self.__class__
ancestor._instantiated = True
# initialize required attributes
self._parent = None
self._name = None
self._ccObject = None # pointer to C++ object
self._ccParams = None
self._instantiated = False # really "cloned"
config: reinstate implicit parenting on parameter assignment Last summer's big rewrite of the initialization code (in particular cset 6efc3672733b) got rid of the implicit parenting that used to occur when an unparented SimObject was assigned as a parameter value to another SimObject. The idea was that the new adoptOrphanParams() step would catch these anyway so it was unnecessary. Unfortunately it turns out that adoptOrphanParams() has some inherent instability in that the parent that does the adoption depends on the config tree traversal order. Even making this order deterministic (e.g., by traversing children in alphabetical order) can introduce unwanted and unexpected hierarchy changes between similar configs (e.g., when adding a switch_cpu in place of a cpu), causing problems when trying to restore checkpoints across similar configs. The hierarchy created by implicit parenting is more stable and more controllable, so this patch turns that behavior back on. This patch also cleans up some long-standing holes regarding parenting of SimObjects that are created in class definitions (either in the body of the class, or as default parameters). To avoid breaking some existing config files, this necessitated changing the error on reparenting children to a warning. This change fixes another bug where attempting to print the prior error message would fail on reparenting SimObjectVectors because they lack a _parent attribute. Some further issues with SimObjectVectors were cleaned up by getting rid of the get_parent() call (which could cause errors with some SimObjectVectors where there was no single parent to return) with has_parent() (since all the uses of get_parent() were just boolean tests anyway). Finally, since the adoptOrphanParam() step turned out to be so problematic, we now issue a warning when it actually has to do an adoption. Future cleanup of config files will get rid of current warnings.
2011-05-23 23:29:08 +02:00
# Clone children specified at class level. No need for a
# multidict here since we will be cloning everything.
# Do children before parameter values so that children that
# are also param values get cloned properly.
self._children = {}
for key,val in ancestor._children.iteritems():
self.add_child(key, val(_memo=memo_dict))
# Inherit parameter values from class using multidict so
# individual value settings can be overridden but we still
# inherit late changes to non-overridden class values.
self._values = multidict(ancestor._values)
# clone SimObject-valued parameters
for key,val in ancestor._values.iteritems():
val = tryAsSimObjectOrVector(val)
if val is not None:
self._values[key] = val(_memo=memo_dict)
# clone port references. no need to use a multidict here
# since we will be creating new references for all ports.
self._port_refs = {}
for key,val in ancestor._port_refs.iteritems():
self._port_refs[key] = val.clone(self, memo_dict)
# apply attribute assignments from keyword args, if any
for key,val in kwargs.iteritems():
setattr(self, key, val)
# "Clone" the current instance by creating another instance of
# this instance's class, but that inherits its parameter values
# and port mappings from the current instance. If we're in a
# "deep copy" recursive clone, check the _memo dict to see if
# we've already cloned this instance.
def __call__(self, **kwargs):
memo_dict = kwargs.get('_memo')
if memo_dict is None:
# no memo_dict: must be top-level clone operation.
# this is only allowed at the root of a hierarchy
if self._parent:
raise RuntimeError, "attempt to clone object %s " \
"not at the root of a tree (parent = %s)" \
% (self, self._parent)
# create a new dict and use that.
memo_dict = {}
kwargs['_memo'] = memo_dict
elif memo_dict.has_key(self):
# clone already done & memoized
return memo_dict[self]
return self.__class__(_ancestor = self, **kwargs)
def _get_port_ref(self, attr):
# Return reference that can be assigned to another port
# via __setattr__. There is only ever one reference
# object per port, but we create them lazily here.
ref = self._port_refs.get(attr)
if ref == None:
ref = self._ports[attr].makeRef(self)
self._port_refs[attr] = ref
return ref
def __getattr__(self, attr):
if self._ports.has_key(attr):
return self._get_port_ref(attr)
if self._values.has_key(attr):
return self._values[attr]
if self._children.has_key(attr):
return self._children[attr]
# If the attribute exists on the C++ object, transparently
# forward the reference there. This is typically used for
# SWIG-wrapped methods such as init(), regStats(),
# resetStats(), startup(), drain(), and
# resume().
if self._ccObject and hasattr(self._ccObject, attr):
return getattr(self._ccObject, attr)
err_string = "object '%s' has no attribute '%s'" \
% (self.__class__.__name__, attr)
if not self._ccObject:
err_string += "\n (C++ object is not yet constructed," \
" so wrapped C++ methods are unavailable.)"
raise AttributeError, err_string
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(self, attr, value):
# normal processing for private attributes
if attr.startswith('_'):
object.__setattr__(self, attr, value)
return
if self._ports.has_key(attr):
# set up port connection
self._get_port_ref(attr).connect(value)
return
param = self._params.get(attr)
if param:
try:
value = param.convert(value)
except Exception, e:
msg = "%s\nError setting param %s.%s to %s\n" % \
(e, self.__class__.__name__, attr, value)
e.args = (msg, )
raise
self._values[attr] = value
config: reinstate implicit parenting on parameter assignment Last summer's big rewrite of the initialization code (in particular cset 6efc3672733b) got rid of the implicit parenting that used to occur when an unparented SimObject was assigned as a parameter value to another SimObject. The idea was that the new adoptOrphanParams() step would catch these anyway so it was unnecessary. Unfortunately it turns out that adoptOrphanParams() has some inherent instability in that the parent that does the adoption depends on the config tree traversal order. Even making this order deterministic (e.g., by traversing children in alphabetical order) can introduce unwanted and unexpected hierarchy changes between similar configs (e.g., when adding a switch_cpu in place of a cpu), causing problems when trying to restore checkpoints across similar configs. The hierarchy created by implicit parenting is more stable and more controllable, so this patch turns that behavior back on. This patch also cleans up some long-standing holes regarding parenting of SimObjects that are created in class definitions (either in the body of the class, or as default parameters). To avoid breaking some existing config files, this necessitated changing the error on reparenting children to a warning. This change fixes another bug where attempting to print the prior error message would fail on reparenting SimObjectVectors because they lack a _parent attribute. Some further issues with SimObjectVectors were cleaned up by getting rid of the get_parent() call (which could cause errors with some SimObjectVectors where there was no single parent to return) with has_parent() (since all the uses of get_parent() were just boolean tests anyway). Finally, since the adoptOrphanParam() step turned out to be so problematic, we now issue a warning when it actually has to do an adoption. Future cleanup of config files will get rid of current warnings.
2011-05-23 23:29:08 +02:00
# implicitly parent unparented objects assigned as params
if isSimObjectOrVector(value) and not value.has_parent():
self.add_child(attr, value)
return
# if RHS is a SimObject, it's an implicit child assignment
if isSimObjectOrSequence(value):
self.add_child(attr, value)
return
# no valid assignment... raise exception
raise AttributeError, "Class %s has no parameter %s" \
% (self.__class__.__name__, attr)
# this hack allows tacking a '[0]' onto parameters that may or may
# not be vectors, and always getting the first element (e.g. cpus)
def __getitem__(self, key):
if key == 0:
return self
raise TypeError, "Non-zero index '%s' to SimObject" % key
# Also implemented by SimObjectVector
def clear_parent(self, old_parent):
assert self._parent is old_parent
self._parent = None
# Also implemented by SimObjectVector
def set_parent(self, parent, name):
self._parent = parent
self._name = name
# Return parent object of this SimObject, not implemented by SimObjectVector
# because the elements in a SimObjectVector may not share the same parent
def get_parent(self):
return self._parent
# Also implemented by SimObjectVector
def get_name(self):
return self._name
config: reinstate implicit parenting on parameter assignment Last summer's big rewrite of the initialization code (in particular cset 6efc3672733b) got rid of the implicit parenting that used to occur when an unparented SimObject was assigned as a parameter value to another SimObject. The idea was that the new adoptOrphanParams() step would catch these anyway so it was unnecessary. Unfortunately it turns out that adoptOrphanParams() has some inherent instability in that the parent that does the adoption depends on the config tree traversal order. Even making this order deterministic (e.g., by traversing children in alphabetical order) can introduce unwanted and unexpected hierarchy changes between similar configs (e.g., when adding a switch_cpu in place of a cpu), causing problems when trying to restore checkpoints across similar configs. The hierarchy created by implicit parenting is more stable and more controllable, so this patch turns that behavior back on. This patch also cleans up some long-standing holes regarding parenting of SimObjects that are created in class definitions (either in the body of the class, or as default parameters). To avoid breaking some existing config files, this necessitated changing the error on reparenting children to a warning. This change fixes another bug where attempting to print the prior error message would fail on reparenting SimObjectVectors because they lack a _parent attribute. Some further issues with SimObjectVectors were cleaned up by getting rid of the get_parent() call (which could cause errors with some SimObjectVectors where there was no single parent to return) with has_parent() (since all the uses of get_parent() were just boolean tests anyway). Finally, since the adoptOrphanParam() step turned out to be so problematic, we now issue a warning when it actually has to do an adoption. Future cleanup of config files will get rid of current warnings.
2011-05-23 23:29:08 +02:00
# Also implemented by SimObjectVector
def has_parent(self):
return self._parent is not None
# clear out child with given name. This code is not likely to be exercised.
# See comment in add_child.
def clear_child(self, name):
child = self._children[name]
child.clear_parent(self)
del self._children[name]
# Add a new child to this object.
def add_child(self, name, child):
child = coerceSimObjectOrVector(child)
config: reinstate implicit parenting on parameter assignment Last summer's big rewrite of the initialization code (in particular cset 6efc3672733b) got rid of the implicit parenting that used to occur when an unparented SimObject was assigned as a parameter value to another SimObject. The idea was that the new adoptOrphanParams() step would catch these anyway so it was unnecessary. Unfortunately it turns out that adoptOrphanParams() has some inherent instability in that the parent that does the adoption depends on the config tree traversal order. Even making this order deterministic (e.g., by traversing children in alphabetical order) can introduce unwanted and unexpected hierarchy changes between similar configs (e.g., when adding a switch_cpu in place of a cpu), causing problems when trying to restore checkpoints across similar configs. The hierarchy created by implicit parenting is more stable and more controllable, so this patch turns that behavior back on. This patch also cleans up some long-standing holes regarding parenting of SimObjects that are created in class definitions (either in the body of the class, or as default parameters). To avoid breaking some existing config files, this necessitated changing the error on reparenting children to a warning. This change fixes another bug where attempting to print the prior error message would fail on reparenting SimObjectVectors because they lack a _parent attribute. Some further issues with SimObjectVectors were cleaned up by getting rid of the get_parent() call (which could cause errors with some SimObjectVectors where there was no single parent to return) with has_parent() (since all the uses of get_parent() were just boolean tests anyway). Finally, since the adoptOrphanParam() step turned out to be so problematic, we now issue a warning when it actually has to do an adoption. Future cleanup of config files will get rid of current warnings.
2011-05-23 23:29:08 +02:00
if child.has_parent():
warn("add_child('%s'): child '%s' already has parent", name,
child.get_name())
if self._children.has_key(name):
# This code path had an undiscovered bug that would make it fail
# at runtime. It had been here for a long time and was only
# exposed by a buggy script. Changes here will probably not be
# exercised without specialized testing.
self.clear_child(name)
child.set_parent(self, name)
self._children[name] = child
# Take SimObject-valued parameters that haven't been explicitly
# assigned as children and make them children of the object that
# they were assigned to as a parameter value. This guarantees
# that when we instantiate all the parameter objects we're still
# inside the configuration hierarchy.
def adoptOrphanParams(self):
for key,val in self._values.iteritems():
if not isSimObjectVector(val) and isSimObjectSequence(val):
# need to convert raw SimObject sequences to
config: reinstate implicit parenting on parameter assignment Last summer's big rewrite of the initialization code (in particular cset 6efc3672733b) got rid of the implicit parenting that used to occur when an unparented SimObject was assigned as a parameter value to another SimObject. The idea was that the new adoptOrphanParams() step would catch these anyway so it was unnecessary. Unfortunately it turns out that adoptOrphanParams() has some inherent instability in that the parent that does the adoption depends on the config tree traversal order. Even making this order deterministic (e.g., by traversing children in alphabetical order) can introduce unwanted and unexpected hierarchy changes between similar configs (e.g., when adding a switch_cpu in place of a cpu), causing problems when trying to restore checkpoints across similar configs. The hierarchy created by implicit parenting is more stable and more controllable, so this patch turns that behavior back on. This patch also cleans up some long-standing holes regarding parenting of SimObjects that are created in class definitions (either in the body of the class, or as default parameters). To avoid breaking some existing config files, this necessitated changing the error on reparenting children to a warning. This change fixes another bug where attempting to print the prior error message would fail on reparenting SimObjectVectors because they lack a _parent attribute. Some further issues with SimObjectVectors were cleaned up by getting rid of the get_parent() call (which could cause errors with some SimObjectVectors where there was no single parent to return) with has_parent() (since all the uses of get_parent() were just boolean tests anyway). Finally, since the adoptOrphanParam() step turned out to be so problematic, we now issue a warning when it actually has to do an adoption. Future cleanup of config files will get rid of current warnings.
2011-05-23 23:29:08 +02:00
# SimObjectVector class so we can call has_parent()
val = SimObjectVector(val)
self._values[key] = val
config: reinstate implicit parenting on parameter assignment Last summer's big rewrite of the initialization code (in particular cset 6efc3672733b) got rid of the implicit parenting that used to occur when an unparented SimObject was assigned as a parameter value to another SimObject. The idea was that the new adoptOrphanParams() step would catch these anyway so it was unnecessary. Unfortunately it turns out that adoptOrphanParams() has some inherent instability in that the parent that does the adoption depends on the config tree traversal order. Even making this order deterministic (e.g., by traversing children in alphabetical order) can introduce unwanted and unexpected hierarchy changes between similar configs (e.g., when adding a switch_cpu in place of a cpu), causing problems when trying to restore checkpoints across similar configs. The hierarchy created by implicit parenting is more stable and more controllable, so this patch turns that behavior back on. This patch also cleans up some long-standing holes regarding parenting of SimObjects that are created in class definitions (either in the body of the class, or as default parameters). To avoid breaking some existing config files, this necessitated changing the error on reparenting children to a warning. This change fixes another bug where attempting to print the prior error message would fail on reparenting SimObjectVectors because they lack a _parent attribute. Some further issues with SimObjectVectors were cleaned up by getting rid of the get_parent() call (which could cause errors with some SimObjectVectors where there was no single parent to return) with has_parent() (since all the uses of get_parent() were just boolean tests anyway). Finally, since the adoptOrphanParam() step turned out to be so problematic, we now issue a warning when it actually has to do an adoption. Future cleanup of config files will get rid of current warnings.
2011-05-23 23:29:08 +02:00
if isSimObjectOrVector(val) and not val.has_parent():
warn("%s adopting orphan SimObject param '%s'", self, key)
self.add_child(key, val)
def path(self):
if not self._parent:
config: reinstate implicit parenting on parameter assignment Last summer's big rewrite of the initialization code (in particular cset 6efc3672733b) got rid of the implicit parenting that used to occur when an unparented SimObject was assigned as a parameter value to another SimObject. The idea was that the new adoptOrphanParams() step would catch these anyway so it was unnecessary. Unfortunately it turns out that adoptOrphanParams() has some inherent instability in that the parent that does the adoption depends on the config tree traversal order. Even making this order deterministic (e.g., by traversing children in alphabetical order) can introduce unwanted and unexpected hierarchy changes between similar configs (e.g., when adding a switch_cpu in place of a cpu), causing problems when trying to restore checkpoints across similar configs. The hierarchy created by implicit parenting is more stable and more controllable, so this patch turns that behavior back on. This patch also cleans up some long-standing holes regarding parenting of SimObjects that are created in class definitions (either in the body of the class, or as default parameters). To avoid breaking some existing config files, this necessitated changing the error on reparenting children to a warning. This change fixes another bug where attempting to print the prior error message would fail on reparenting SimObjectVectors because they lack a _parent attribute. Some further issues with SimObjectVectors were cleaned up by getting rid of the get_parent() call (which could cause errors with some SimObjectVectors where there was no single parent to return) with has_parent() (since all the uses of get_parent() were just boolean tests anyway). Finally, since the adoptOrphanParam() step turned out to be so problematic, we now issue a warning when it actually has to do an adoption. Future cleanup of config files will get rid of current warnings.
2011-05-23 23:29:08 +02:00
return '<orphan %s>' % self.__class__
ppath = self._parent.path()
if ppath == 'root':
return self._name
return ppath + "." + self._name
def __str__(self):
return self.path()
def ini_str(self):
return self.path()
def find_any(self, ptype):
if isinstance(self, ptype):
return self, True
found_obj = None
for child in self._children.itervalues():
if isinstance(child, ptype):
if found_obj != None and child != found_obj:
raise AttributeError, \
'parent.any matched more than one: %s %s' % \
(found_obj.path, child.path)
found_obj = child
# search param space
for pname,pdesc in self._params.iteritems():
if issubclass(pdesc.ptype, ptype):
match_obj = self._values[pname]
if found_obj != None and found_obj != match_obj:
raise AttributeError, \
'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
found_obj = match_obj
return found_obj, found_obj != None
def find_all(self, ptype):
all = {}
# search children
for child in self._children.itervalues():
# a child could be a list, so ensure we visit each item
if isinstance(child, list):
children = child
else:
children = [child]
for child in children:
if isinstance(child, ptype) and not isproxy(child) and \
not isNullPointer(child):
all[child] = True
if isSimObject(child):
# also add results from the child itself
child_all, done = child.find_all(ptype)
all.update(dict(zip(child_all, [done] * len(child_all))))
# search param space
for pname,pdesc in self._params.iteritems():
if issubclass(pdesc.ptype, ptype):
match_obj = self._values[pname]
if not isproxy(match_obj) and not isNullPointer(match_obj):
all[match_obj] = True
return all.keys(), True
def unproxy(self, base):
return self
def unproxyParams(self):
for param in self._params.iterkeys():
value = self._values.get(param)
if value != None and isproxy(value):
try:
value = value.unproxy(self)
except:
print "Error in unproxying param '%s' of %s" % \
(param, self.path())
raise
setattr(self, param, value)
# Unproxy ports in sorted order so that 'append' operations on
# vector ports are done in a deterministic fashion.
port_names = self._ports.keys()
port_names.sort()
for port_name in port_names:
port = self._port_refs.get(port_name)
if port != None:
port.unproxy(self)
def print_ini(self, ini_file):
print >>ini_file, '[' + self.path() + ']' # .ini section header
instanceDict[self.path()] = self
if hasattr(self, 'type'):
print >>ini_file, 'type=%s' % self.type
if len(self._children.keys()):
print >>ini_file, 'children=%s' % \
' '.join(self._children[n].get_name() \
for n in sorted(self._children.keys()))
for param in sorted(self._params.keys()):
value = self._values.get(param)
if value != None:
print >>ini_file, '%s=%s' % (param,
self._values[param].ini_str())
for port_name in sorted(self._ports.keys()):
port = self._port_refs.get(port_name, None)
if port != None:
print >>ini_file, '%s=%s' % (port_name, port.ini_str())
print >>ini_file # blank line between objects
# generate a tree of dictionaries expressing all the parameters in the
# instantiated system for use by scripts that want to do power, thermal
# visualization, and other similar tasks
def get_config_as_dict(self):
d = attrdict()
if hasattr(self, 'type'):
d.type = self.type
if hasattr(self, 'cxx_class'):
d.cxx_class = self.cxx_class
# Add the name and path of this object to be able to link to
# the stats
d.name = self.get_name()
d.path = self.path()
for param in sorted(self._params.keys()):
value = self._values.get(param)
if value != None:
try:
# Use native type for those supported by JSON and
# strings for everything else. skipkeys=True seems
# to not work as well as one would hope
if type(self._values[param].value) in \
[str, unicode, int, long, float, bool, None]:
d[param] = self._values[param].value
else:
d[param] = str(self._values[param])
except AttributeError:
pass
for n in sorted(self._children.keys()):
child = self._children[n]
# Use the name of the attribute (and not get_name()) as
# the key in the JSON dictionary to capture the hierarchy
# in the Python code that assembled this system
d[n] = child.get_config_as_dict()
for port_name in sorted(self._ports.keys()):
port = self._port_refs.get(port_name, None)
if port != None:
# Represent each port with a dictionary containing the
# prominent attributes
d[port_name] = port.get_config_as_dict()
return d
def getCCParams(self):
if self._ccParams:
return self._ccParams
cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
cc_params = cc_params_struct()
2008-06-18 21:07:15 +02:00
cc_params.pyobj = self
cc_params.name = str(self)
param_names = self._params.keys()
param_names.sort()
for param in param_names:
value = self._values.get(param)
if value is None:
fatal("%s.%s without default or user set value",
self.path(), param)
value = value.getValue()
if isinstance(self._params[param], VectorParamDesc):
assert isinstance(value, list)
vec = getattr(cc_params, param)
assert not len(vec)
for v in value:
vec.append(v)
else:
setattr(cc_params, param, value)
port_names = self._ports.keys()
port_names.sort()
for port_name in port_names:
port = self._port_refs.get(port_name, None)
if port != None:
port_count = len(port)
else:
port_count = 0
setattr(cc_params, 'port_' + port_name + '_connection_count',
port_count)
self._ccParams = cc_params
return self._ccParams
# Get C++ object corresponding to this object, calling C++ if
# necessary to construct it. Does *not* recursively create
# children.
def getCCObject(self):
if not self._ccObject:
# Make sure this object is in the configuration hierarchy
if not self._parent and not isRoot(self):
raise RuntimeError, "Attempt to instantiate orphan node"
# Cycles in the configuration hierarchy are not supported. This
# will catch the resulting recursion and stop.
self._ccObject = -1
params = self.getCCParams()
self._ccObject = params.create()
elif self._ccObject == -1:
raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
% self.path()
return self._ccObject
def descendants(self):
yield self
for child in self._children.itervalues():
for obj in child.descendants():
yield obj
# Call C++ to create C++ object corresponding to this object
def createCCObject(self):
self.getCCParams()
self.getCCObject() # force creation
def getValue(self):
return self.getCCObject()
# Create C++ port connections corresponding to the connections in
# _port_refs
def connectPorts(self):
for portRef in self._port_refs.itervalues():
portRef.ccConnect()
# Function to provide to C++ so it can look up instances based on paths
def resolveSimObject(name):
obj = instanceDict[name]
return obj.getCCObject()
def isSimObject(value):
return isinstance(value, SimObject)
def isSimObjectClass(value):
return issubclass(value, SimObject)
def isSimObjectVector(value):
return isinstance(value, SimObjectVector)
def isSimObjectSequence(value):
if not isinstance(value, (list, tuple)) or len(value) == 0:
return False
for val in value:
if not isNullPointer(val) and not isSimObject(val):
return False
return True
def isSimObjectOrSequence(value):
return isSimObject(value) or isSimObjectSequence(value)
def isRoot(obj):
from m5.objects import Root
return obj and obj is Root.getInstance()
def isSimObjectOrVector(value):
return isSimObject(value) or isSimObjectVector(value)
def tryAsSimObjectOrVector(value):
if isSimObjectOrVector(value):
return value
if isSimObjectSequence(value):
return SimObjectVector(value)
return None
def coerceSimObjectOrVector(value):
value = tryAsSimObjectOrVector(value)
if value is None:
raise TypeError, "SimObject or SimObjectVector expected"
return value
baseClasses = allClasses.copy()
baseInstances = instanceDict.copy()
def clear():
global allClasses, instanceDict, noCxxHeader
allClasses = baseClasses.copy()
instanceDict = baseInstances.copy()
noCxxHeader = False
# __all__ defines the list of symbols that get exported when
# 'from config import *' is invoked. Try to keep this reasonably
# short to avoid polluting other namespaces.
__all__ = [ 'SimObject' ]