Split config.py into multiple files.

Some tweaking to deal with mutually recursive imports.

--HG--
rename : src/python/m5/config.py => src/python/m5/SimObject.py
extra : convert_revision : 166f7bfabfd20100e93d26a89382469465859988
This commit is contained in:
Steve Reinhardt 2006-09-04 10:52:26 -07:00
parent a658d25d42
commit 1233dbb998
6 changed files with 1833 additions and 1728 deletions

737
src/python/m5/SimObject.py Normal file
View file

@ -0,0 +1,737 @@
# Copyright (c) 2004-2006 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
# Nathan Binkert
import sys, types
import m5
from m5 import panic, cc_main
from convert import *
from multidict import multidict
noDot = False
try:
import pydot
except:
noDot = True
#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the desired simulation
# configuration. For now, the Python emits a .ini file that can be
# parsed by M5. In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name. The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class). To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object. The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements. For example:
#
# cache = BaseCache(size='64KB')
# cache.hit_latency = 3
# cache.assoc = 8
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications. This
# allows parameter validity checking in the Python code. Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively. This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file.
#
#####################################################################
# dict to look up SimObjects based on path
instanceDict = {}
# The metaclass for SimObject. This class controls how new classes
# that derive from SimObject are instantiated, and provides inherited
# class behavior (just like a class controls how instances of that
# class are instantiated, and provides inherited instance behavior).
class MetaSimObject(type):
# Attributes that can be set only at initialization time
init_keywords = { 'abstract' : types.BooleanType,
'type' : types.StringType }
# Attributes that can be set any time
keywords = { 'check' : types.FunctionType,
'cxx_type' : types.StringType,
'cxx_predecls' : types.ListType,
'swig_predecls' : types.ListType }
# __new__ is called before __init__, and is where the statements
# in the body of the class definition get loaded into the class's
# __dict__. We intercept this to filter out parameter & port assignments
# and only allow "private" attributes to be passed to the base
# __new__ (starting with underscore).
def __new__(mcls, name, bases, dict):
# Copy "private" attributes, functions, and classes to the
# official dict. Everything else goes in _init_dict to be
# filtered in __init__.
cls_dict = {}
value_dict = {}
for key,val in dict.items():
if key.startswith('_') or isinstance(val, (types.FunctionType,
types.TypeType)):
cls_dict[key] = val
else:
# must be a param/port setting
value_dict[key] = val
cls_dict['_value_dict'] = value_dict
return super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
# subclass initialization
def __init__(cls, name, bases, dict):
# calls type.__init__()... I think that's a no-op, but leave
# it here just in case it's not.
super(MetaSimObject, cls).__init__(name, bases, dict)
# initialize required attributes
# class-only attributes
cls._params = multidict() # param descriptions
cls._ports = multidict() # port descriptions
# class or instance attributes
cls._values = multidict() # param values
cls._port_map = multidict() # port bindings
cls._instantiated = False # really instantiated, cloned, or subclassed
# We don't support multiple inheritance. If you want to, you
# must fix multidict to deal with it properly.
if len(bases) > 1:
raise TypeError, "SimObjects do not support multiple inheritance"
base = bases[0]
# Set up general inheritance via multidicts. A subclass will
# inherit all its settings from the base class. The only time
# the following is not true is when we define the SimObject
# class itself (in which case the multidicts have no parent).
if isinstance(base, MetaSimObject):
cls._params.parent = base._params
cls._ports.parent = base._ports
cls._values.parent = base._values
cls._port_map.parent = base._port_map
# mark base as having been subclassed
base._instantiated = True
# Now process the _value_dict items. They could be defining
# new (or overriding existing) parameters or ports, setting
# class keywords (e.g., 'abstract'), or setting parameter
# values or port bindings. The first 3 can only be set when
# the class is defined, so we handle them here. The others
# can be set later too, so just emulate that by calling
# setattr().
for key,val in cls._value_dict.items():
# param descriptions
if isinstance(val, ParamDesc):
cls._new_param(key, val)
# port objects
elif isinstance(val, Port):
cls._ports[key] = val
# init-time-only keywords
elif cls.init_keywords.has_key(key):
cls._set_keyword(key, val, cls.init_keywords[key])
# default: use normal path (ends up in __setattr__)
else:
setattr(cls, key, val)
cls.cxx_type = cls.type + '*'
# A forward class declaration is sufficient since we are just
# declaring a pointer.
cls.cxx_predecls = ['class %s;' % cls.type]
cls.swig_predecls = cls.cxx_predecls
def _set_keyword(cls, keyword, val, kwtype):
if not isinstance(val, kwtype):
raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
(keyword, type(val), kwtype)
if isinstance(val, types.FunctionType):
val = classmethod(val)
type.__setattr__(cls, keyword, val)
def _new_param(cls, name, pdesc):
# each param desc should be uniquely assigned to one variable
assert(not hasattr(pdesc, 'name'))
pdesc.name = name
cls._params[name] = pdesc
if hasattr(pdesc, 'default'):
setattr(cls, name, pdesc.default)
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(cls, attr, value):
# normal processing for private attributes
if attr.startswith('_'):
type.__setattr__(cls, attr, value)
return
if cls.keywords.has_key(attr):
cls._set_keyword(attr, value, cls.keywords[attr])
return
if cls._ports.has_key(attr):
self._ports[attr].connect(self, attr, value)
return
if isSimObjectOrSequence(value) and cls._instantiated:
raise RuntimeError, \
"cannot set SimObject parameter '%s' after\n" \
" class %s has been instantiated or subclassed" \
% (attr, cls.__name__)
# check for param
param = cls._params.get(attr, None)
if param:
try:
cls._values[attr] = param.convert(value)
except Exception, e:
msg = "%s\nError setting param %s.%s to %s\n" % \
(e, cls.__name__, attr, value)
e.args = (msg, )
raise
elif isSimObjectOrSequence(value):
# if RHS is a SimObject, it's an implicit child assignment
cls._values[attr] = value
else:
raise AttributeError, \
"Class %s has no parameter \'%s\'" % (cls.__name__, attr)
def __getattr__(cls, attr):
if cls._values.has_key(attr):
return cls._values[attr]
raise AttributeError, \
"object '%s' has no attribute '%s'" % (cls.__name__, attr)
def __str__(cls):
return cls.__name__
def cxx_decl(cls):
code = "#ifndef __PARAMS__%s\n#define __PARAMS__%s\n\n" % (cls, cls)
if str(cls) != 'SimObject':
base = cls.__bases__[0].type
else:
base = None
# The 'dict' attribute restricts us to the params declared in
# the object itself, not including inherited params (which
# will also be inherited from the base class's param struct
# here).
params = cls._params.dict.values()
try:
ptypes = [p.ptype for p in params]
except:
print cls, p, p.ptype_str
print params
raise
# get a list of lists of predeclaration lines
predecls = [p.cxx_predecls() for p in params]
# flatten
predecls = reduce(lambda x,y:x+y, predecls, [])
# remove redundant lines
predecls2 = []
for pd in predecls:
if pd not in predecls2:
predecls2.append(pd)
predecls2.sort()
code += "\n".join(predecls2)
code += "\n\n";
if base:
code += '#include "params/%s.hh"\n\n' % base
# Generate declarations for locally defined enumerations.
enum_ptypes = [t for t in ptypes if issubclass(t, Enum)]
if enum_ptypes:
code += "\n".join([t.cxx_decl() for t in enum_ptypes])
code += "\n\n"
# now generate the actual param struct
code += "struct %sParams" % cls
if base:
code += " : public %sParams" % base
code += " {\n"
decls = [p.cxx_decl() for p in params]
decls.sort()
code += "".join([" %s\n" % d for d in decls])
code += "};\n"
# close #ifndef __PARAMS__* guard
code += "\n#endif\n"
return code
def swig_decl(cls):
code = '%%module %sParams\n' % cls
if str(cls) != 'SimObject':
base = cls.__bases__[0].type
else:
base = None
# The 'dict' attribute restricts us to the params declared in
# the object itself, not including inherited params (which
# will also be inherited from the base class's param struct
# here).
params = cls._params.dict.values()
ptypes = [p.ptype for p in params]
# get a list of lists of predeclaration lines
predecls = [p.swig_predecls() for p in params]
# flatten
predecls = reduce(lambda x,y:x+y, predecls, [])
# remove redundant lines
predecls2 = []
for pd in predecls:
if pd not in predecls2:
predecls2.append(pd)
predecls2.sort()
code += "\n".join(predecls2)
code += "\n\n";
if base:
code += '%%import "python/m5/swig/%sParams.i"\n\n' % base
code += '%{\n'
code += '#include "params/%s.hh"\n' % cls
code += '%}\n\n'
code += '%%include "params/%s.hh"\n\n' % cls
return code
# The SimObject class is the root of the special hierarchy. Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class SimObject(object):
# Specify metaclass. Any class inheriting from SimObject will
# get this metaclass.
__metaclass__ = MetaSimObject
type = 'SimObject'
name = Param.String("Object name")
# Initialize new instance. For objects with SimObject-valued
# children, we need to recursively clone the classes represented
# by those param values as well in a consistent "deep copy"-style
# fashion. That is, we want to make sure that each instance is
# cloned only once, and that if there are multiple references to
# the same original object, we end up with the corresponding
# cloned references all pointing to the same cloned instance.
def __init__(self, **kwargs):
ancestor = kwargs.get('_ancestor')
memo_dict = kwargs.get('_memo')
if memo_dict is None:
# prepare to memoize any recursively instantiated objects
memo_dict = {}
elif ancestor:
# memoize me now to avoid problems with recursive calls
memo_dict[ancestor] = self
if not ancestor:
ancestor = self.__class__
ancestor._instantiated = True
# initialize required attributes
self._parent = None
self._children = {}
self._ccObject = None # pointer to C++ object
self._instantiated = False # really "cloned"
# Inherit parameter values from class using multidict so
# individual value settings can be overridden.
self._values = multidict(ancestor._values)
# clone SimObject-valued parameters
for key,val in ancestor._values.iteritems():
if isSimObject(val):
setattr(self, key, val(_memo=memo_dict))
elif isSimObjectSequence(val) and len(val):
setattr(self, key, [ v(_memo=memo_dict) for v in val ])
# clone port references. no need to use a multidict here
# since we will be creating new references for all ports.
self._port_map = {}
for key,val in ancestor._port_map.iteritems():
self._port_map[key] = applyOrMap(val, 'clone', memo_dict)
# apply attribute assignments from keyword args, if any
for key,val in kwargs.iteritems():
setattr(self, key, val)
# "Clone" the current instance by creating another instance of
# this instance's class, but that inherits its parameter values
# and port mappings from the current instance. If we're in a
# "deep copy" recursive clone, check the _memo dict to see if
# we've already cloned this instance.
def __call__(self, **kwargs):
memo_dict = kwargs.get('_memo')
if memo_dict is None:
# no memo_dict: must be top-level clone operation.
# this is only allowed at the root of a hierarchy
if self._parent:
raise RuntimeError, "attempt to clone object %s " \
"not at the root of a tree (parent = %s)" \
% (self, self._parent)
# create a new dict and use that.
memo_dict = {}
kwargs['_memo'] = memo_dict
elif memo_dict.has_key(self):
# clone already done & memoized
return memo_dict[self]
return self.__class__(_ancestor = self, **kwargs)
def __getattr__(self, attr):
if self._ports.has_key(attr):
# return reference that can be assigned to another port
# via __setattr__
return self._ports[attr].makeRef(self, attr)
if self._values.has_key(attr):
return self._values[attr]
raise AttributeError, "object '%s' has no attribute '%s'" \
% (self.__class__.__name__, attr)
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(self, attr, value):
# normal processing for private attributes
if attr.startswith('_'):
object.__setattr__(self, attr, value)
return
if self._ports.has_key(attr):
# set up port connection
self._ports[attr].connect(self, attr, value)
return
if isSimObjectOrSequence(value) and self._instantiated:
raise RuntimeError, \
"cannot set SimObject parameter '%s' after\n" \
" instance been cloned %s" % (attr, `self`)
# must be SimObject param
param = self._params.get(attr, None)
if param:
try:
value = param.convert(value)
except Exception, e:
msg = "%s\nError setting param %s.%s to %s\n" % \
(e, self.__class__.__name__, attr, value)
e.args = (msg, )
raise
elif isSimObjectOrSequence(value):
pass
else:
raise AttributeError, "Class %s has no parameter %s" \
% (self.__class__.__name__, attr)
# clear out old child with this name, if any
self.clear_child(attr)
if isSimObject(value):
value.set_path(self, attr)
elif isSimObjectSequence(value):
value = SimObjVector(value)
[v.set_path(self, "%s%d" % (attr, i)) for i,v in enumerate(value)]
self._values[attr] = value
# this hack allows tacking a '[0]' onto parameters that may or may
# not be vectors, and always getting the first element (e.g. cpus)
def __getitem__(self, key):
if key == 0:
return self
raise TypeError, "Non-zero index '%s' to SimObject" % key
# clear out children with given name, even if it's a vector
def clear_child(self, name):
if not self._children.has_key(name):
return
child = self._children[name]
if isinstance(child, SimObjVector):
for i in xrange(len(child)):
del self._children["s%d" % (name, i)]
del self._children[name]
def add_child(self, name, value):
self._children[name] = value
def set_path(self, parent, name):
if not self._parent:
self._parent = parent
self._name = name
parent.add_child(name, self)
def path(self):
if not self._parent:
return 'root'
ppath = self._parent.path()
if ppath == 'root':
return self._name
return ppath + "." + self._name
def __str__(self):
return self.path()
def ini_str(self):
return self.path()
def find_any(self, ptype):
if isinstance(self, ptype):
return self, True
found_obj = None
for child in self._children.itervalues():
if isinstance(child, ptype):
if found_obj != None and child != found_obj:
raise AttributeError, \
'parent.any matched more than one: %s %s' % \
(found_obj.path, child.path)
found_obj = child
# search param space
for pname,pdesc in self._params.iteritems():
if issubclass(pdesc.ptype, ptype):
match_obj = self._values[pname]
if found_obj != None and found_obj != match_obj:
raise AttributeError, \
'parent.any matched more than one: %s' % obj.path
found_obj = match_obj
return found_obj, found_obj != None
def unproxy(self, base):
return self
def print_ini(self):
print '[' + self.path() + ']' # .ini section header
instanceDict[self.path()] = self
if hasattr(self, 'type') and not isinstance(self, ParamContext):
print 'type=%s' % self.type
child_names = self._children.keys()
child_names.sort()
np_child_names = [c for c in child_names \
if not isinstance(self._children[c], ParamContext)]
if len(np_child_names):
print 'children=%s' % ' '.join(np_child_names)
param_names = self._params.keys()
param_names.sort()
for param in param_names:
value = self._values.get(param, None)
if value != None:
if isproxy(value):
try:
value = value.unproxy(self)
except:
print >> sys.stderr, \
"Error in unproxying param '%s' of %s" % \
(param, self.path())
raise
setattr(self, param, value)
print '%s=%s' % (param, self._values[param].ini_str())
print # blank line between objects
for child in child_names:
self._children[child].print_ini()
# Call C++ to create C++ object corresponding to this object and
# (recursively) all its children
def createCCObject(self):
self.getCCObject() # force creation
for child in self._children.itervalues():
child.createCCObject()
# Get C++ object corresponding to this object, calling C++ if
# necessary to construct it. Does *not* recursively create
# children.
def getCCObject(self):
if not self._ccObject:
self._ccObject = -1 # flag to catch cycles in recursion
self._ccObject = cc_main.createSimObject(self.path())
elif self._ccObject == -1:
raise RuntimeError, "%s: recursive call to getCCObject()" \
% self.path()
return self._ccObject
# Create C++ port connections corresponding to the connections in
# _port_map (& recursively for all children)
def connectPorts(self):
for portRef in self._port_map.itervalues():
applyOrMap(portRef, 'ccConnect')
for child in self._children.itervalues():
child.connectPorts()
def startDrain(self, drain_event, recursive):
count = 0
# ParamContexts don't serialize
if isinstance(self, SimObject) and not isinstance(self, ParamContext):
count += self._ccObject.drain(drain_event)
if recursive:
for child in self._children.itervalues():
count += child.startDrain(drain_event, True)
return count
def resume(self):
if isinstance(self, SimObject) and not isinstance(self, ParamContext):
self._ccObject.resume()
for child in self._children.itervalues():
child.resume()
def changeTiming(self, mode):
if isinstance(self, System):
self._ccObject.setMemoryMode(mode)
for child in self._children.itervalues():
child.changeTiming(mode)
def takeOverFrom(self, old_cpu):
cpu_ptr = cc_main.convertToBaseCPUPtr(old_cpu._ccObject)
self._ccObject.takeOverFrom(cpu_ptr)
# generate output file for 'dot' to display as a pretty graph.
# this code is currently broken.
def outputDot(self, dot):
label = "{%s|" % self.path
if isSimObject(self.realtype):
label += '%s|' % self.type
if self.children:
# instantiate children in same order they were added for
# backward compatibility (else we can end up with cpu1
# before cpu0).
for c in self.children:
dot.add_edge(pydot.Edge(self.path,c.path, style="bold"))
simobjs = []
for param in self.params:
try:
if param.value is None:
raise AttributeError, 'Parameter with no value'
value = param.value
string = param.string(value)
except Exception, e:
msg = 'exception in %s:%s\n%s' % (self.name, param.name, e)
e.args = (msg, )
raise
if isSimObject(param.ptype) and string != "Null":
simobjs.append(string)
else:
label += '%s = %s\\n' % (param.name, string)
for so in simobjs:
label += "|<%s> %s" % (so, so)
dot.add_edge(pydot.Edge("%s:%s" % (self.path, so), so,
tailport="w"))
label += '}'
dot.add_node(pydot.Node(self.path,shape="Mrecord",label=label))
# recursively dump out children
for c in self.children:
c.outputDot(dot)
class ParamContext(SimObject):
pass
# Special class for NULL pointers. Note the special check in
# make_param_value() above that lets these be assigned where a
# SimObject is required.
# only one copy of a particular node
class NullSimObject(object):
__metaclass__ = Singleton
def __call__(cls):
return cls
def _instantiate(self, parent = None, path = ''):
pass
def ini_str(self):
return 'Null'
def unproxy(self, base):
return self
def set_path(self, parent, name):
pass
def __str__(self):
return 'Null'
# The only instance you'll ever need...
Null = NULL = NullSimObject()
def isSimObject(value):
return isinstance(value, SimObject)
def isNullPointer(value):
return isinstance(value, NullSimObject)
def isSimObjectSequence(value):
if not isinstance(value, (list, tuple)) or len(value) == 0:
return False
for val in value:
if not isNullPointer(val) and not isSimObject(val):
return False
return True
def isSimObjectOrSequence(value):
return isSimObject(value) or isSimObjectSequence(value)
# Function to provide to C++ so it can look up instances based on paths
def resolveSimObject(name):
obj = instanceDict[name]
return obj.getCCObject()
# __all__ defines the list of symbols that get exported when
# 'from config import *' is invoked. Try to keep this reasonably
# short to avoid polluting other namespaces.
__all__ = ['SimObject', 'ParamContext']

View file

@ -71,17 +71,12 @@ build_env.update(defines.m5_build_env)
env = smartdict.SmartDict()
env.update(os.environ)
# Function to provide to C++ so it can look up instances based on paths
def resolveSimObject(name):
obj = config.instanceDict[name]
return obj.getCCObject()
from main import options, arguments, main
# The final hook to generate .ini files. Called from the user script
# once the config is built.
def instantiate(root):
config.ticks_per_sec = float(root.clock.frequency)
params.ticks_per_sec = float(root.clock.frequency)
# ugly temporary hack to get output to config.ini
sys.stdout = file(os.path.join(options.outdir, 'config.ini'), 'w')
root.print_ini()
@ -109,11 +104,6 @@ def curTick():
# register our C++ exit callback function with Python
atexit.register(cc_main.doExitCleanup)
# This import allows user scripts to reference 'm5.objects.Foo' after
# just doing an 'import m5' (without an 'import m5.objects'). May not
# matter since most scripts will probably 'from m5.objects import *'.
import objects
# This loops until all objects have been fully drained.
def doDrain(root):
all_drained = drain(root)
@ -206,3 +196,15 @@ def switchCpus(cpuList):
new_cpu.takeOverFrom(old_cpus[index])
new_cpu._ccObject.resume()
index += 1
# Since we have so many mutual imports in this package, we should:
# 1. Put all intra-package imports at the *bottom* of the file, unless
# they're absolutely needed before that (for top-level statements
# or class attributes). Imports of "trivial" packages that don't
# import other packages (e.g., 'smartdict') can be at the top.
# 2. Never use 'from foo import *' on an intra-package import since
# you can get the wrong result if foo is only partially imported
# at the point you do that (i.e., because foo is in the middle of
# importing *you*).
import objects
import params

File diff suppressed because it is too large Load diff

831
src/python/m5/params.py Normal file
View file

@ -0,0 +1,831 @@
# Copyright (c) 2004-2006 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
# Nathan Binkert
#####################################################################
#
# Parameter description classes
#
# The _params dictionary in each class maps parameter names to either
# a Param or a VectorParam object. These objects contain the
# parameter description string, the parameter type, and the default
# value (if any). The convert() method on these objects is used to
# force whatever value is assigned to the parameter to the appropriate
# type.
#
# Note that the default values are loaded into the class's attribute
# space when the parameter dictionary is initialized (in
# MetaSimObject._new_param()); after that point they aren't used.
#
#####################################################################
import sys, inspect, copy
import convert
# Dummy base class to identify types that are legitimate for SimObject
# parameters.
class ParamValue(object):
cxx_predecls = []
swig_predecls = []
# default for printing to .ini file is regular string conversion.
# will be overridden in some cases
def ini_str(self):
return str(self)
# allows us to blithely call unproxy() on things without checking
# if they're really proxies or not
def unproxy(self, base):
return self
# Regular parameter description.
class ParamDesc(object):
def __init__(self, ptype_str, ptype, *args, **kwargs):
self.ptype_str = ptype_str
# remember ptype only if it is provided
if ptype != None:
self.ptype = ptype
if args:
if len(args) == 1:
self.desc = args[0]
elif len(args) == 2:
self.default = args[0]
self.desc = args[1]
else:
raise TypeError, 'too many arguments'
if kwargs.has_key('desc'):
assert(not hasattr(self, 'desc'))
self.desc = kwargs['desc']
del kwargs['desc']
if kwargs.has_key('default'):
assert(not hasattr(self, 'default'))
self.default = kwargs['default']
del kwargs['default']
if kwargs:
raise TypeError, 'extra unknown kwargs %s' % kwargs
if not hasattr(self, 'desc'):
raise TypeError, 'desc attribute missing'
def __getattr__(self, attr):
if attr == 'ptype':
try:
ptype = eval(self.ptype_str, m5.objects.__dict__)
if not isinstance(ptype, type):
panic("Param qualifier is not a type: %s" % self.ptype)
self.ptype = ptype
return ptype
except NameError:
pass
raise AttributeError, "'%s' object has no attribute '%s'" % \
(type(self).__name__, attr)
def convert(self, value):
if isinstance(value, proxy.BaseProxy):
value.set_param_desc(self)
return value
if not hasattr(self, 'ptype') and isNullPointer(value):
# deferred evaluation of SimObject; continue to defer if
# we're just assigning a null pointer
return value
if isinstance(value, self.ptype):
return value
if isNullPointer(value) and issubclass(self.ptype, SimObject):
return value
return self.ptype(value)
def cxx_predecls(self):
return self.ptype.cxx_predecls
def swig_predecls(self):
return self.ptype.swig_predecls
def cxx_decl(self):
return '%s %s;' % (self.ptype.cxx_type, self.name)
# Vector-valued parameter description. Just like ParamDesc, except
# that the value is a vector (list) of the specified type instead of a
# single value.
class VectorParamValue(list):
def ini_str(self):
return ' '.join([v.ini_str() for v in self])
def unproxy(self, base):
return [v.unproxy(base) for v in self]
class SimObjVector(VectorParamValue):
def print_ini(self):
for v in self:
v.print_ini()
class VectorParamDesc(ParamDesc):
# Convert assigned value to appropriate type. If the RHS is not a
# list or tuple, it generates a single-element list.
def convert(self, value):
if isinstance(value, (list, tuple)):
# list: coerce each element into new list
tmp_list = [ ParamDesc.convert(self, v) for v in value ]
if isSimObjectSequence(tmp_list):
return SimObjVector(tmp_list)
else:
return VectorParamValue(tmp_list)
else:
# singleton: leave it be (could coerce to a single-element
# list here, but for some historical reason we don't...
return ParamDesc.convert(self, value)
def cxx_predecls(self):
return ['#include <vector>'] + self.ptype.cxx_predecls
def swig_predecls(self):
return ['%include "std_vector.i"'] + self.ptype.swig_predecls
def cxx_decl(self):
return 'std::vector< %s > %s;' % (self.ptype.cxx_type, self.name)
class ParamFactory(object):
def __init__(self, param_desc_class, ptype_str = None):
self.param_desc_class = param_desc_class
self.ptype_str = ptype_str
def __getattr__(self, attr):
if self.ptype_str:
attr = self.ptype_str + '.' + attr
return ParamFactory(self.param_desc_class, attr)
# E.g., Param.Int(5, "number of widgets")
def __call__(self, *args, **kwargs):
caller_frame = inspect.currentframe().f_back
ptype = None
try:
ptype = eval(self.ptype_str,
caller_frame.f_globals, caller_frame.f_locals)
if not isinstance(ptype, type):
raise TypeError, \
"Param qualifier is not a type: %s" % ptype
except NameError:
# if name isn't defined yet, assume it's a SimObject, and
# try to resolve it later
pass
return self.param_desc_class(self.ptype_str, ptype, *args, **kwargs)
Param = ParamFactory(ParamDesc)
VectorParam = ParamFactory(VectorParamDesc)
#####################################################################
#
# Parameter Types
#
# Though native Python types could be used to specify parameter types
# (the 'ptype' field of the Param and VectorParam classes), it's more
# flexible to define our own set of types. This gives us more control
# over how Python expressions are converted to values (via the
# __init__() constructor) and how these values are printed out (via
# the __str__() conversion method).
#
#####################################################################
# String-valued parameter. Just mixin the ParamValue class with the
# built-in str class.
class String(ParamValue,str):
cxx_type = 'std::string'
cxx_predecls = ['#include <string>']
swig_predecls = ['%include "std_string.i"\n' +
'%apply const std::string& {std::string *};']
pass
# superclass for "numeric" parameter values, to emulate math
# operations in a type-safe way. e.g., a Latency times an int returns
# a new Latency object.
class NumericParamValue(ParamValue):
def __str__(self):
return str(self.value)
def __float__(self):
return float(self.value)
# hook for bounds checking
def _check(self):
return
def __mul__(self, other):
newobj = self.__class__(self)
newobj.value *= other
newobj._check()
return newobj
__rmul__ = __mul__
def __div__(self, other):
newobj = self.__class__(self)
newobj.value /= other
newobj._check()
return newobj
def __sub__(self, other):
newobj = self.__class__(self)
newobj.value -= other
newobj._check()
return newobj
# Metaclass for bounds-checked integer parameters. See CheckedInt.
class CheckedIntType(type):
def __init__(cls, name, bases, dict):
super(CheckedIntType, cls).__init__(name, bases, dict)
# CheckedInt is an abstract base class, so we actually don't
# want to do any processing on it... the rest of this code is
# just for classes that derive from CheckedInt.
if name == 'CheckedInt':
return
if not cls.cxx_predecls:
# most derived types require this, so we just do it here once
cls.cxx_predecls = ['#include "sim/host.hh"']
if not cls.swig_predecls:
# most derived types require this, so we just do it here once
cls.swig_predecls = ['%import "python/m5/swig/stdint.i"\n' +
'%import "sim/host.hh"']
if not (hasattr(cls, 'min') and hasattr(cls, 'max')):
if not (hasattr(cls, 'size') and hasattr(cls, 'unsigned')):
panic("CheckedInt subclass %s must define either\n" \
" 'min' and 'max' or 'size' and 'unsigned'\n" \
% name);
if cls.unsigned:
cls.min = 0
cls.max = 2 ** cls.size - 1
else:
cls.min = -(2 ** (cls.size - 1))
cls.max = (2 ** (cls.size - 1)) - 1
# Abstract superclass for bounds-checked integer parameters. This
# class is subclassed to generate parameter classes with specific
# bounds. Initialization of the min and max bounds is done in the
# metaclass CheckedIntType.__init__.
class CheckedInt(NumericParamValue):
__metaclass__ = CheckedIntType
def _check(self):
if not self.min <= self.value <= self.max:
raise TypeError, 'Integer param out of bounds %d < %d < %d' % \
(self.min, self.value, self.max)
def __init__(self, value):
if isinstance(value, str):
self.value = toInteger(value)
elif isinstance(value, (int, long, float)):
self.value = long(value)
self._check()
class Int(CheckedInt): cxx_type = 'int'; size = 32; unsigned = False
class Unsigned(CheckedInt): cxx_type = 'unsigned'; size = 32; unsigned = True
class Int8(CheckedInt): cxx_type = 'int8_t'; size = 8; unsigned = False
class UInt8(CheckedInt): cxx_type = 'uint8_t'; size = 8; unsigned = True
class Int16(CheckedInt): cxx_type = 'int16_t'; size = 16; unsigned = False
class UInt16(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True
class Int32(CheckedInt): cxx_type = 'int32_t'; size = 32; unsigned = False
class UInt32(CheckedInt): cxx_type = 'uint32_t'; size = 32; unsigned = True
class Int64(CheckedInt): cxx_type = 'int64_t'; size = 64; unsigned = False
class UInt64(CheckedInt): cxx_type = 'uint64_t'; size = 64; unsigned = True
class Counter(CheckedInt): cxx_type = 'Counter'; size = 64; unsigned = True
class Tick(CheckedInt): cxx_type = 'Tick'; size = 64; unsigned = True
class TcpPort(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True
class UdpPort(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True
class Percent(CheckedInt): cxx_type = 'int'; min = 0; max = 100
class Float(ParamValue, float):
pass
class MemorySize(CheckedInt):
cxx_type = 'uint64_t'
size = 64
unsigned = True
def __init__(self, value):
if isinstance(value, MemorySize):
self.value = value.value
else:
self.value = toMemorySize(value)
self._check()
class MemorySize32(CheckedInt):
size = 32
unsigned = True
def __init__(self, value):
if isinstance(value, MemorySize):
self.value = value.value
else:
self.value = toMemorySize(value)
self._check()
class Addr(CheckedInt):
cxx_type = 'Addr'
cxx_predecls = ['#include "targetarch/isa_traits.hh"']
size = 64
unsigned = True
def __init__(self, value):
if isinstance(value, Addr):
self.value = value.value
else:
try:
self.value = toMemorySize(value)
except TypeError:
self.value = long(value)
self._check()
class MetaRange(type):
def __init__(cls, name, bases, dict):
super(MetaRange, cls).__init__(name, bases, dict)
if name == 'Range':
return
cls.cxx_type = 'Range< %s >' % cls.type.cxx_type
cls.cxx_predecls = \
['#include "base/range.hh"'] + cls.type.cxx_predecls
class Range(ParamValue):
__metaclass__ = MetaRange
type = Int # default; can be overridden in subclasses
def __init__(self, *args, **kwargs):
def handle_kwargs(self, kwargs):
if 'end' in kwargs:
self.second = self.type(kwargs.pop('end'))
elif 'size' in kwargs:
self.second = self.first + self.type(kwargs.pop('size')) - 1
else:
raise TypeError, "Either end or size must be specified"
if len(args) == 0:
self.first = self.type(kwargs.pop('start'))
handle_kwargs(self, kwargs)
elif len(args) == 1:
if kwargs:
self.first = self.type(args[0])
handle_kwargs(self, kwargs)
elif isinstance(args[0], Range):
self.first = self.type(args[0].first)
self.second = self.type(args[0].second)
else:
self.first = self.type(0)
self.second = self.type(args[0]) - 1
elif len(args) == 2:
self.first = self.type(args[0])
self.second = self.type(args[1])
else:
raise TypeError, "Too many arguments specified"
if kwargs:
raise TypeError, "too many keywords: %s" % kwargs.keys()
def __str__(self):
return '%s:%s' % (self.first, self.second)
class AddrRange(Range):
type = Addr
class TickRange(Range):
type = Tick
# Boolean parameter type. Python doesn't let you subclass bool, since
# it doesn't want to let you create multiple instances of True and
# False. Thus this is a little more complicated than String.
class Bool(ParamValue):
cxx_type = 'bool'
def __init__(self, value):
try:
self.value = toBool(value)
except TypeError:
self.value = bool(value)
def __str__(self):
return str(self.value)
def ini_str(self):
if self.value:
return 'true'
return 'false'
def IncEthernetAddr(addr, val = 1):
bytes = map(lambda x: int(x, 16), addr.split(':'))
bytes[5] += val
for i in (5, 4, 3, 2, 1):
val,rem = divmod(bytes[i], 256)
bytes[i] = rem
if val == 0:
break
bytes[i - 1] += val
assert(bytes[0] <= 255)
return ':'.join(map(lambda x: '%02x' % x, bytes))
class NextEthernetAddr(object):
addr = "00:90:00:00:00:01"
def __init__(self, inc = 1):
self.value = NextEthernetAddr.addr
NextEthernetAddr.addr = IncEthernetAddr(NextEthernetAddr.addr, inc)
class EthernetAddr(ParamValue):
cxx_type = 'Net::EthAddr'
cxx_predecls = ['#include "base/inet.hh"']
swig_predecls = ['class Net::EthAddr;']
def __init__(self, value):
if value == NextEthernetAddr:
self.value = value
return
if not isinstance(value, str):
raise TypeError, "expected an ethernet address and didn't get one"
bytes = value.split(':')
if len(bytes) != 6:
raise TypeError, 'invalid ethernet address %s' % value
for byte in bytes:
if not 0 <= int(byte) <= 256:
raise TypeError, 'invalid ethernet address %s' % value
self.value = value
def unproxy(self, base):
if self.value == NextEthernetAddr:
self.addr = self.value().value
return self
def __str__(self):
if self.value == NextEthernetAddr:
if hasattr(self, 'addr'):
return self.addr
else:
return "NextEthernetAddr (unresolved)"
else:
return self.value
# Enumerated types are a little more complex. The user specifies the
# type as Enum(foo) where foo is either a list or dictionary of
# alternatives (typically strings, but not necessarily so). (In the
# long run, the integer value of the parameter will be the list index
# or the corresponding dictionary value. For now, since we only check
# that the alternative is valid and then spit it into a .ini file,
# there's not much point in using the dictionary.)
# What Enum() must do is generate a new type encapsulating the
# provided list/dictionary so that specific values of the parameter
# can be instances of that type. We define two hidden internal
# classes (_ListEnum and _DictEnum) to serve as base classes, then
# derive the new type from the appropriate base class on the fly.
# Metaclass for Enum types
class MetaEnum(type):
def __init__(cls, name, bases, init_dict):
if init_dict.has_key('map'):
if not isinstance(cls.map, dict):
raise TypeError, "Enum-derived class attribute 'map' " \
"must be of type dict"
# build list of value strings from map
cls.vals = cls.map.keys()
cls.vals.sort()
elif init_dict.has_key('vals'):
if not isinstance(cls.vals, list):
raise TypeError, "Enum-derived class attribute 'vals' " \
"must be of type list"
# build string->value map from vals sequence
cls.map = {}
for idx,val in enumerate(cls.vals):
cls.map[val] = idx
else:
raise TypeError, "Enum-derived class must define "\
"attribute 'map' or 'vals'"
cls.cxx_type = name + '::Enum'
super(MetaEnum, cls).__init__(name, bases, init_dict)
# Generate C++ class declaration for this enum type.
# Note that we wrap the enum in a class/struct to act as a namespace,
# so that the enum strings can be brief w/o worrying about collisions.
def cxx_decl(cls):
s = 'struct %s {\n enum Enum {\n ' % cls.__name__
s += ',\n '.join(['%s = %d' % (v,cls.map[v]) for v in cls.vals])
s += '\n };\n};\n'
return s
# Base class for enum types.
class Enum(ParamValue):
__metaclass__ = MetaEnum
vals = []
def __init__(self, value):
if value not in self.map:
raise TypeError, "Enum param got bad value '%s' (not in %s)" \
% (value, self.vals)
self.value = value
def __str__(self):
return self.value
ticks_per_sec = None
# how big does a rounding error need to be before we warn about it?
frequency_tolerance = 0.001 # 0.1%
# convert a floting-point # of ticks to integer, and warn if rounding
# discards too much precision
def tick_check(float_ticks):
if float_ticks == 0:
return 0
int_ticks = int(round(float_ticks))
err = (float_ticks - int_ticks) / float_ticks
if err > frequency_tolerance:
print >> sys.stderr, "Warning: rounding error > tolerance"
print >> sys.stderr, " %f rounded to %d" % (float_ticks, int_ticks)
#raise ValueError
return int_ticks
def getLatency(value):
if isinstance(value, Latency) or isinstance(value, Clock):
return value.value
elif isinstance(value, Frequency) or isinstance(value, RootClock):
return 1 / value.value
elif isinstance(value, str):
try:
return toLatency(value)
except ValueError:
try:
return 1 / toFrequency(value)
except ValueError:
pass # fall through
raise ValueError, "Invalid Frequency/Latency value '%s'" % value
class Latency(NumericParamValue):
cxx_type = 'Tick'
cxx_predecls = ['#include "sim/host.hh"']
swig_predecls = ['%import "python/m5/swig/stdint.i"\n' +
'%import "sim/host.hh"']
def __init__(self, value):
self.value = getLatency(value)
def __getattr__(self, attr):
if attr in ('latency', 'period'):
return self
if attr == 'frequency':
return Frequency(self)
raise AttributeError, "Latency object has no attribute '%s'" % attr
# convert latency to ticks
def ini_str(self):
return str(tick_check(self.value * ticks_per_sec))
class Frequency(NumericParamValue):
cxx_type = 'Tick'
cxx_predecls = ['#include "sim/host.hh"']
swig_predecls = ['%import "python/m5/swig/stdint.i"\n' +
'%import "sim/host.hh"']
def __init__(self, value):
self.value = 1 / getLatency(value)
def __getattr__(self, attr):
if attr == 'frequency':
return self
if attr in ('latency', 'period'):
return Latency(self)
raise AttributeError, "Frequency object has no attribute '%s'" % attr
# convert frequency to ticks per period
def ini_str(self):
return self.period.ini_str()
# Just like Frequency, except ini_str() is absolute # of ticks per sec (Hz).
# We can't inherit from Frequency because we don't want it to be directly
# assignable to a regular Frequency parameter.
class RootClock(ParamValue):
cxx_type = 'Tick'
cxx_predecls = ['#include "sim/host.hh"']
swig_predecls = ['%import "python/m5/swig/stdint.i"\n' +
'%import "sim/host.hh"']
def __init__(self, value):
self.value = 1 / getLatency(value)
def __getattr__(self, attr):
if attr == 'frequency':
return Frequency(self)
if attr in ('latency', 'period'):
return Latency(self)
raise AttributeError, "Frequency object has no attribute '%s'" % attr
def ini_str(self):
return str(tick_check(self.value))
# A generic frequency and/or Latency value. Value is stored as a latency,
# but to avoid ambiguity this object does not support numeric ops (* or /).
# An explicit conversion to a Latency or Frequency must be made first.
class Clock(ParamValue):
cxx_type = 'Tick'
cxx_predecls = ['#include "sim/host.hh"']
swig_predecls = ['%import "python/m5/swig/stdint.i"\n' +
'%import "sim/host.hh"']
def __init__(self, value):
self.value = getLatency(value)
def __getattr__(self, attr):
if attr == 'frequency':
return Frequency(self)
if attr in ('latency', 'period'):
return Latency(self)
raise AttributeError, "Frequency object has no attribute '%s'" % attr
def ini_str(self):
return self.period.ini_str()
class NetworkBandwidth(float,ParamValue):
cxx_type = 'float'
def __new__(cls, value):
val = toNetworkBandwidth(value) / 8.0
return super(cls, NetworkBandwidth).__new__(cls, val)
def __str__(self):
return str(self.val)
def ini_str(self):
return '%f' % (ticks_per_sec / float(self))
class MemoryBandwidth(float,ParamValue):
cxx_type = 'float'
def __new__(self, value):
val = toMemoryBandwidth(value)
return super(cls, MemoryBandwidth).__new__(cls, val)
def __str__(self):
return str(self.val)
def ini_str(self):
return '%f' % (ticks_per_sec / float(self))
#
# "Constants"... handy aliases for various values.
#
# Some memory range specifications use this as a default upper bound.
MaxAddr = Addr.max
MaxTick = Tick.max
AllMemory = AddrRange(0, MaxAddr)
#####################################################################
#
# Port objects
#
# Ports are used to interconnect objects in the memory system.
#
#####################################################################
# Port reference: encapsulates a reference to a particular port on a
# particular SimObject.
class PortRef(object):
def __init__(self, simobj, name, isVec):
assert(isSimObject(simobj))
self.simobj = simobj
self.name = name
self.index = -1
self.isVec = isVec # is this a vector port?
self.peer = None # not associated with another port yet
self.ccConnected = False # C++ port connection done?
# Set peer port reference. Called via __setattr__ as a result of
# a port assignment, e.g., "obj1.port1 = obj2.port2".
def setPeer(self, other):
if self.isVec:
curMap = self.simobj._port_map.get(self.name, [])
self.index = len(curMap)
curMap.append(other)
else:
curMap = self.simobj._port_map.get(self.name)
if curMap and not self.isVec:
print "warning: overwriting port", self.simobj, self.name
curMap = other
self.simobj._port_map[self.name] = curMap
self.peer = other
def clone(self, memo):
newRef = copy.copy(self)
assert(isSimObject(newRef.simobj))
newRef.simobj = newRef.simobj(_memo=memo)
# Tricky: if I'm the *second* PortRef in the pair to be
# cloned, then my peer is still in the middle of its clone
# method, and thus hasn't returned to its owner's
# SimObject.__init__ to get installed in _port_map. As a
# result I have no way of finding the *new* peer object. So I
# mark myself as "waiting" for my peer, and I let the *first*
# PortRef clone call set up both peer pointers after I return.
newPeer = newRef.simobj._port_map.get(self.name)
if newPeer:
if self.isVec:
assert(self.index != -1)
newPeer = newPeer[self.index]
# other guy is all set up except for his peer pointer
assert(newPeer.peer == -1) # peer must be waiting for handshake
newPeer.peer = newRef
newRef.peer = newPeer
else:
# other guy is in clone; just wait for him to do the work
newRef.peer = -1 # mark as waiting for handshake
return newRef
# Call C++ to create corresponding port connection between C++ objects
def ccConnect(self):
if self.ccConnected: # already done this
return
peer = self.peer
cc_main.connectPorts(self.simobj.getCCObject(), self.name, self.index,
peer.simobj.getCCObject(), peer.name, peer.index)
self.ccConnected = True
peer.ccConnected = True
# Port description object. Like a ParamDesc object, this represents a
# logical port in the SimObject class, not a particular port on a
# SimObject instance. The latter are represented by PortRef objects.
class Port(object):
def __init__(self, desc):
self.desc = desc
self.isVec = False
# Generate a PortRef for this port on the given SimObject with the
# given name
def makeRef(self, simobj, name):
return PortRef(simobj, name, self.isVec)
# Connect an instance of this port (on the given SimObject with
# the given name) with the port described by the supplied PortRef
def connect(self, simobj, name, ref):
if not isinstance(ref, PortRef):
raise TypeError, \
"assigning non-port reference port '%s'" % name
myRef = self.makeRef(simobj, name)
myRef.setPeer(ref)
ref.setPeer(myRef)
# VectorPort description object. Like Port, but represents a vector
# of connections (e.g., as on a Bus).
class VectorPort(Port):
def __init__(self, desc):
Port.__init__(self, desc)
self.isVec = True
__all__ = ['Param', 'VectorParam',
'Enum', 'Bool', 'String', 'Float',
'Int', 'Unsigned', 'Int8', 'UInt8', 'Int16', 'UInt16',
'Int32', 'UInt32', 'Int64', 'UInt64',
'Counter', 'Addr', 'Tick', 'Percent',
'TcpPort', 'UdpPort', 'EthernetAddr',
'MemorySize', 'MemorySize32',
'Latency', 'Frequency', 'RootClock', 'Clock',
'NetworkBandwidth', 'MemoryBandwidth',
'Range', 'AddrRange', 'TickRange',
'MaxAddr', 'MaxTick', 'AllMemory',
'Null', 'NULL',
'NextEthernetAddr',
'Port', 'VectorPort']
# see comment on imports at end of __init__.py.
from SimObject import SimObject, isSimObject, isSimObjectSequence, \
isNullPointer
import proxy

193
src/python/m5/proxy.py Normal file
View file

@ -0,0 +1,193 @@
# Copyright (c) 2004-2006 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
# Nathan Binkert
#####################################################################
#
# Proxy object support.
#
#####################################################################
class BaseProxy(object):
def __init__(self, search_self, search_up):
self._search_self = search_self
self._search_up = search_up
self._multiplier = None
def __setattr__(self, attr, value):
if not attr.startswith('_'):
raise AttributeError, 'cannot set attribute on proxy object'
super(BaseProxy, self).__setattr__(attr, value)
# support multiplying proxies by constants
def __mul__(self, other):
if not isinstance(other, (int, long, float)):
raise TypeError, "Proxy multiplier must be integer"
if self._multiplier == None:
self._multiplier = other
else:
# support chained multipliers
self._multiplier *= other
return self
__rmul__ = __mul__
def _mulcheck(self, result):
if self._multiplier == None:
return result
return result * self._multiplier
def unproxy(self, base):
obj = base
done = False
if self._search_self:
result, done = self.find(obj)
if self._search_up:
while not done:
obj = obj._parent
if not obj:
break
result, done = self.find(obj)
if not done:
raise AttributeError, \
"Can't resolve proxy '%s' of type '%s' from '%s'" % \
(self.path(), self._pdesc.ptype_str, base.path())
if isinstance(result, BaseProxy):
if result == self:
raise RuntimeError, "Cycle in unproxy"
result = result.unproxy(obj)
return self._mulcheck(result)
def getindex(obj, index):
if index == None:
return obj
try:
obj = obj[index]
except TypeError:
if index != 0:
raise
# if index is 0 and item is not subscriptable, just
# use item itself (so cpu[0] works on uniprocessors)
return obj
getindex = staticmethod(getindex)
def set_param_desc(self, pdesc):
self._pdesc = pdesc
class AttrProxy(BaseProxy):
def __init__(self, search_self, search_up, attr):
super(AttrProxy, self).__init__(search_self, search_up)
self._attr = attr
self._modifiers = []
def __getattr__(self, attr):
# python uses __bases__ internally for inheritance
if attr.startswith('_'):
return super(AttrProxy, self).__getattr__(self, attr)
if hasattr(self, '_pdesc'):
raise AttributeError, "Attribute reference on bound proxy"
self._modifiers.append(attr)
return self
# support indexing on proxies (e.g., Self.cpu[0])
def __getitem__(self, key):
if not isinstance(key, int):
raise TypeError, "Proxy object requires integer index"
self._modifiers.append(key)
return self
def find(self, obj):
try:
val = getattr(obj, self._attr)
except:
return None, False
while isproxy(val):
val = val.unproxy(obj)
for m in self._modifiers:
if isinstance(m, str):
val = getattr(val, m)
elif isinstance(m, int):
val = val[m]
else:
assert("Item must be string or integer")
while isproxy(val):
val = val.unproxy(obj)
return val, True
def path(self):
p = self._attr
for m in self._modifiers:
if isinstance(m, str):
p += '.%s' % m
elif isinstance(m, int):
p += '[%d]' % m
else:
assert("Item must be string or integer")
return p
class AnyProxy(BaseProxy):
def find(self, obj):
return obj.find_any(self._pdesc.ptype)
def path(self):
return 'any'
def isproxy(obj):
if isinstance(obj, (BaseProxy, params.EthernetAddr)):
return True
elif isinstance(obj, (list, tuple)):
for v in obj:
if isproxy(v):
return True
return False
class ProxyFactory(object):
def __init__(self, search_self, search_up):
self.search_self = search_self
self.search_up = search_up
def __getattr__(self, attr):
if attr == 'any':
return AnyProxy(self.search_self, self.search_up)
else:
return AttrProxy(self.search_self, self.search_up, attr)
# global objects for handling proxies
Parent = ProxyFactory(search_self = False, search_up = True)
Self = ProxyFactory(search_self = True, search_up = False)
# limit exports on 'from proxy import *'
__all__ = ['Parent', 'Self']
# see comment on imports at end of __init__.py.
import params # for EthernetAddr

59
src/python/m5/util.py Normal file
View file

@ -0,0 +1,59 @@
# Copyright (c) 2004-2006 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
# Nathan Binkert
#############################
#
# Utility classes & methods
#
#############################
class Singleton(type):
def __call__(cls, *args, **kwargs):
if hasattr(cls, '_instance'):
return cls._instance
cls._instance = super(Singleton, cls).__call__(*args, **kwargs)
return cls._instance
# Apply method to object.
# applyMethod(obj, 'meth', <args>) is equivalent to obj.meth(<args>)
def applyMethod(obj, meth, *args, **kwargs):
return getattr(obj, meth)(*args, **kwargs)
# If the first argument is an (non-sequence) object, apply the named
# method with the given arguments. If the first argument is a
# sequence, apply the method to each element of the sequence (a la
# 'map').
def applyOrMap(objOrSeq, meth, *args, **kwargs):
if not isinstance(objOrSeq, (list, tuple)):
return applyMethod(objOrSeq, meth, *args, **kwargs)
else:
return [applyMethod(o, meth, *args, **kwargs) for o in objOrSeq]