gem5/src/mem/bus.hh

495 lines
16 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2011 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Ali Saidi
* Andreas Hansson
* William Wang
*/
/**
* @file
* Declaration of a bus object.
*/
#ifndef __MEM_BUS_HH__
#define __MEM_BUS_HH__
#include <list>
2011-04-15 19:44:06 +02:00
#include <set>
#include <string>
2009-05-17 23:34:52 +02:00
#include "base/range.hh"
#include "base/range_map.hh"
#include "base/types.hh"
#include "mem/mem_object.hh"
#include "mem/packet.hh"
#include "mem/port.hh"
#include "params/Bus.hh"
2009-05-17 23:34:52 +02:00
#include "sim/eventq.hh"
class Bus : public MemObject
{
/**
* Declaration of the bus slave port type, one will be
* instantiated for each of the master interfaces connecting to
* the bus.
*/
class BusSlavePort : public SlavePort
{
private:
/** A pointer to the bus to which this port belongs. */
Bus *bus;
public:
/** Constructor for the BusSlavePort.*/
BusSlavePort(const std::string &_name, Bus *_bus, Port::PortId _id)
: SlavePort(_name, _bus, _id), bus(_bus)
{ }
protected:
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/**
* When receiving a timing request, pass it to the bus.
*/
MEM: Separate requests and responses for timing accesses This patch moves send/recvTiming and send/recvTimingSnoop from the Port base class to the MasterPort and SlavePort, and also splits them into separate member functions for requests and responses: send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq, send/recvTimingSnoopResp. A master port sends requests and receives responses, and also receives snoop requests and sends snoop responses. A slave port has the reciprocal behaviour as it receives requests and sends responses, and sends snoop requests and receives snoop responses. For all MemObjects that have only master ports or slave ports (but not both), e.g. a CPU, or a PIO device, this patch merely adds more clarity to what kind of access is taking place. For example, a CPU port used to call sendTiming, and will now call sendTimingReq. Similarly, a response previously came back through recvTiming, which is now recvTimingResp. For the modules that have both master and slave ports, e.g. the bus, the behaviour was previously relying on branches based on pkt->isRequest(), and this is now replaced with a direct call to the apprioriate member function depending on the type of access. Please note that send/recvRetry is still shared by all the timing accessors and remains in the Port base class for now (to maintain the current bus functionality and avoid changing the statistics of all regressions). The packet queue is split into a MasterPort and SlavePort version to facilitate the use of the new timing accessors. All uses of the PacketQueue are updated accordingly. With this patch, the type of packet (request or response) is now well defined for each type of access, and asserts on pkt->isRequest() and pkt->isResponse() are now moved to the appropriate send member functions. It is also worth noting that sendTimingSnoopReq no longer returns a boolean, as the semantics do not alow snoop requests to be rejected or stalled. All these assumptions are now excplicitly part of the port interface itself.
2012-05-01 19:40:42 +02:00
virtual bool recvTimingReq(PacketPtr pkt)
{ pkt->setSrc(id); return bus->recvTimingReq(pkt); }
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/**
* When receiving a timing snoop response, pass it to the bus.
*/
MEM: Separate requests and responses for timing accesses This patch moves send/recvTiming and send/recvTimingSnoop from the Port base class to the MasterPort and SlavePort, and also splits them into separate member functions for requests and responses: send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq, send/recvTimingSnoopResp. A master port sends requests and receives responses, and also receives snoop requests and sends snoop responses. A slave port has the reciprocal behaviour as it receives requests and sends responses, and sends snoop requests and receives snoop responses. For all MemObjects that have only master ports or slave ports (but not both), e.g. a CPU, or a PIO device, this patch merely adds more clarity to what kind of access is taking place. For example, a CPU port used to call sendTiming, and will now call sendTimingReq. Similarly, a response previously came back through recvTiming, which is now recvTimingResp. For the modules that have both master and slave ports, e.g. the bus, the behaviour was previously relying on branches based on pkt->isRequest(), and this is now replaced with a direct call to the apprioriate member function depending on the type of access. Please note that send/recvRetry is still shared by all the timing accessors and remains in the Port base class for now (to maintain the current bus functionality and avoid changing the statistics of all regressions). The packet queue is split into a MasterPort and SlavePort version to facilitate the use of the new timing accessors. All uses of the PacketQueue are updated accordingly. With this patch, the type of packet (request or response) is now well defined for each type of access, and asserts on pkt->isRequest() and pkt->isResponse() are now moved to the appropriate send member functions. It is also worth noting that sendTimingSnoopReq no longer returns a boolean, as the semantics do not alow snoop requests to be rejected or stalled. All these assumptions are now excplicitly part of the port interface itself.
2012-05-01 19:40:42 +02:00
virtual bool recvTimingSnoopResp(PacketPtr pkt)
{ pkt->setSrc(id); return bus->recvTimingSnoopResp(pkt); }
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/**
* When receiving an atomic request, pass it to the bus.
*/
virtual Tick recvAtomic(PacketPtr pkt)
{ pkt->setSrc(id); return bus->recvAtomic(pkt); }
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/**
* When receiving a functional request, pass it to the bus.
*/
virtual void recvFunctional(PacketPtr pkt)
{ pkt->setSrc(id); bus->recvFunctional(pkt); }
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/**
* When receiving a retry, pass it to the bus.
*/
virtual void recvRetry()
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
{ panic("Bus slave ports always succeed and should never retry.\n"); }
// This should return all the 'owned' addresses that are
// downstream from this bus, yes? That is, the union of all
// the 'owned' address ranges of all the other interfaces on
// this bus...
virtual AddrRangeList getAddrRanges()
{ return bus->getAddrRanges(id); }
// Ask the bus to ask everyone on the bus what their block size is and
// take the max of it. This might need to be changed a bit if we ever
// support multiple block sizes.
virtual unsigned deviceBlockSize() const
{ return bus->findBlockSize(id); }
};
/**
* Declaration of the bus master port type, one will be
* instantiated for each of the slave interfaces connecting to the
* bus.
*/
class BusMasterPort : public MasterPort
{
private:
/** A pointer to the bus to which this port belongs. */
Bus *bus;
public:
/** Constructor for the BusMasterPort.*/
BusMasterPort(const std::string &_name, Bus *_bus, Port::PortId _id)
: MasterPort(_name, _bus, _id), bus(_bus)
{ }
/**
* Determine if this port should be considered a snooper. This
* is determined by the bus.
*
* @return a boolean that is true if this port is snooping
*/
virtual bool isSnooping() const
{ return bus->isSnooping(id); }
protected:
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/**
* When receiving a timing response, pass it to the bus.
*/
MEM: Separate requests and responses for timing accesses This patch moves send/recvTiming and send/recvTimingSnoop from the Port base class to the MasterPort and SlavePort, and also splits them into separate member functions for requests and responses: send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq, send/recvTimingSnoopResp. A master port sends requests and receives responses, and also receives snoop requests and sends snoop responses. A slave port has the reciprocal behaviour as it receives requests and sends responses, and sends snoop requests and receives snoop responses. For all MemObjects that have only master ports or slave ports (but not both), e.g. a CPU, or a PIO device, this patch merely adds more clarity to what kind of access is taking place. For example, a CPU port used to call sendTiming, and will now call sendTimingReq. Similarly, a response previously came back through recvTiming, which is now recvTimingResp. For the modules that have both master and slave ports, e.g. the bus, the behaviour was previously relying on branches based on pkt->isRequest(), and this is now replaced with a direct call to the apprioriate member function depending on the type of access. Please note that send/recvRetry is still shared by all the timing accessors and remains in the Port base class for now (to maintain the current bus functionality and avoid changing the statistics of all regressions). The packet queue is split into a MasterPort and SlavePort version to facilitate the use of the new timing accessors. All uses of the PacketQueue are updated accordingly. With this patch, the type of packet (request or response) is now well defined for each type of access, and asserts on pkt->isRequest() and pkt->isResponse() are now moved to the appropriate send member functions. It is also worth noting that sendTimingSnoopReq no longer returns a boolean, as the semantics do not alow snoop requests to be rejected or stalled. All these assumptions are now excplicitly part of the port interface itself.
2012-05-01 19:40:42 +02:00
virtual bool recvTimingResp(PacketPtr pkt)
{ pkt->setSrc(id); return bus->recvTimingResp(pkt); }
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/**
* When receiving a timing snoop request, pass it to the bus.
*/
MEM: Separate requests and responses for timing accesses This patch moves send/recvTiming and send/recvTimingSnoop from the Port base class to the MasterPort and SlavePort, and also splits them into separate member functions for requests and responses: send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq, send/recvTimingSnoopResp. A master port sends requests and receives responses, and also receives snoop requests and sends snoop responses. A slave port has the reciprocal behaviour as it receives requests and sends responses, and sends snoop requests and receives snoop responses. For all MemObjects that have only master ports or slave ports (but not both), e.g. a CPU, or a PIO device, this patch merely adds more clarity to what kind of access is taking place. For example, a CPU port used to call sendTiming, and will now call sendTimingReq. Similarly, a response previously came back through recvTiming, which is now recvTimingResp. For the modules that have both master and slave ports, e.g. the bus, the behaviour was previously relying on branches based on pkt->isRequest(), and this is now replaced with a direct call to the apprioriate member function depending on the type of access. Please note that send/recvRetry is still shared by all the timing accessors and remains in the Port base class for now (to maintain the current bus functionality and avoid changing the statistics of all regressions). The packet queue is split into a MasterPort and SlavePort version to facilitate the use of the new timing accessors. All uses of the PacketQueue are updated accordingly. With this patch, the type of packet (request or response) is now well defined for each type of access, and asserts on pkt->isRequest() and pkt->isResponse() are now moved to the appropriate send member functions. It is also worth noting that sendTimingSnoopReq no longer returns a boolean, as the semantics do not alow snoop requests to be rejected or stalled. All these assumptions are now excplicitly part of the port interface itself.
2012-05-01 19:40:42 +02:00
virtual void recvTimingSnoopReq(PacketPtr pkt)
{ pkt->setSrc(id); return bus->recvTimingSnoopReq(pkt); }
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/**
* When receiving an atomic snoop request, pass it to the bus.
*/
virtual Tick recvAtomicSnoop(PacketPtr pkt)
{ pkt->setSrc(id); return bus->recvAtomicSnoop(pkt); }
/**
* When receiving a functional snoop request, pass it to the bus.
*/
virtual void recvFunctionalSnoop(PacketPtr pkt)
{ pkt->setSrc(id); bus->recvFunctionalSnoop(pkt); }
/** When reciving a range change from the peer port (at id),
pass it to the bus. */
virtual void recvRangeChange()
{ bus->recvRangeChange(id); }
Add a very poor implementation of dealing with retries on timing requests. It is especially slow with tracing on since it ends up being O(N^2). But it's probably going to have to change for the real bus anyway, so it should be rewritten then Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) Removed Port Blocked/Unblocked and replaced with sendRetry(). Remove possibility of packet mangling if packet is going to be refused anyway in bridge src/cpu/simple/atomic.cc: src/cpu/simple/atomic.hh: src/cpu/simple/timing.cc: src/cpu/simple/timing.hh: Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) src/dev/io_device.cc: src/dev/io_device.hh: Make DMA Timing requests/responses work. Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) src/mem/bridge.cc: src/mem/bridge.hh: Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) Removed Port Blocked/Unblocked and replaced with sendRetry(). Remove posibility of packet mangling if packet is going to be refused anyway. src/mem/bus.cc: src/mem/bus.hh: Add a very poor implementation of dealing with retries on timing requests. It is especially slow with tracing on since it ends up being O(N^2). But it's probably going to have to change for the real bus anyway, so it should be rewritten then src/mem/port.hh: Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) Removed Blocked/Unblocked port status, their functionality is really duplicated in the recvRetry() method --HG-- extra : convert_revision : fab613404be54bfa7a4c67572bae7b559169e573
2006-05-31 00:57:42 +02:00
/** When reciving a retry from the peer port (at id),
pass it to the bus. */
virtual void recvRetry()
{ bus->recvRetry(id); }
// Ask the bus to ask everyone on the bus what their block size is and
// take the max of it. This might need to be changed a bit if we ever
// support multiple block sizes.
virtual unsigned deviceBlockSize() const
{ return bus->findBlockSize(id); }
};
/** the clock speed for the bus */
int clock;
/** cycles of overhead per transaction */
int headerCycles;
/** the width of the bus in bytes */
int width;
/** the next tick at which the bus will be idle */
Tick tickNextIdle;
Event * drainEvent;
typedef range_map<Addr,int>::iterator PortIter;
range_map<Addr, int> portMap;
AddrRangeList defaultRange;
std::vector<SlavePort*> snoopPorts;
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/**
* Store the outstanding requests so we can determine which ones
* we generated and which ones were merely forwarded. This is used
* in the coherent bus when coherency responses come back.
*/
std::set<RequestPtr> outstandingReq;
/** Function called by the port when the bus is recieving a Timing
MEM: Separate requests and responses for timing accesses This patch moves send/recvTiming and send/recvTimingSnoop from the Port base class to the MasterPort and SlavePort, and also splits them into separate member functions for requests and responses: send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq, send/recvTimingSnoopResp. A master port sends requests and receives responses, and also receives snoop requests and sends snoop responses. A slave port has the reciprocal behaviour as it receives requests and sends responses, and sends snoop requests and receives snoop responses. For all MemObjects that have only master ports or slave ports (but not both), e.g. a CPU, or a PIO device, this patch merely adds more clarity to what kind of access is taking place. For example, a CPU port used to call sendTiming, and will now call sendTimingReq. Similarly, a response previously came back through recvTiming, which is now recvTimingResp. For the modules that have both master and slave ports, e.g. the bus, the behaviour was previously relying on branches based on pkt->isRequest(), and this is now replaced with a direct call to the apprioriate member function depending on the type of access. Please note that send/recvRetry is still shared by all the timing accessors and remains in the Port base class for now (to maintain the current bus functionality and avoid changing the statistics of all regressions). The packet queue is split into a MasterPort and SlavePort version to facilitate the use of the new timing accessors. All uses of the PacketQueue are updated accordingly. With this patch, the type of packet (request or response) is now well defined for each type of access, and asserts on pkt->isRequest() and pkt->isResponse() are now moved to the appropriate send member functions. It is also worth noting that sendTimingSnoopReq no longer returns a boolean, as the semantics do not alow snoop requests to be rejected or stalled. All these assumptions are now excplicitly part of the port interface itself.
2012-05-01 19:40:42 +02:00
request packet.*/
bool recvTimingReq(PacketPtr pkt);
/** Function called by the port when the bus is recieving a Timing
response packet.*/
bool recvTimingResp(PacketPtr pkt);
/** Function called by the port when the bus is recieving a timing
snoop request.*/
void recvTimingSnoopReq(PacketPtr pkt);
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/** Function called by the port when the bus is recieving a timing
MEM: Separate requests and responses for timing accesses This patch moves send/recvTiming and send/recvTimingSnoop from the Port base class to the MasterPort and SlavePort, and also splits them into separate member functions for requests and responses: send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq, send/recvTimingSnoopResp. A master port sends requests and receives responses, and also receives snoop requests and sends snoop responses. A slave port has the reciprocal behaviour as it receives requests and sends responses, and sends snoop requests and receives snoop responses. For all MemObjects that have only master ports or slave ports (but not both), e.g. a CPU, or a PIO device, this patch merely adds more clarity to what kind of access is taking place. For example, a CPU port used to call sendTiming, and will now call sendTimingReq. Similarly, a response previously came back through recvTiming, which is now recvTimingResp. For the modules that have both master and slave ports, e.g. the bus, the behaviour was previously relying on branches based on pkt->isRequest(), and this is now replaced with a direct call to the apprioriate member function depending on the type of access. Please note that send/recvRetry is still shared by all the timing accessors and remains in the Port base class for now (to maintain the current bus functionality and avoid changing the statistics of all regressions). The packet queue is split into a MasterPort and SlavePort version to facilitate the use of the new timing accessors. All uses of the PacketQueue are updated accordingly. With this patch, the type of packet (request or response) is now well defined for each type of access, and asserts on pkt->isRequest() and pkt->isResponse() are now moved to the appropriate send member functions. It is also worth noting that sendTimingSnoopReq no longer returns a boolean, as the semantics do not alow snoop requests to be rejected or stalled. All these assumptions are now excplicitly part of the port interface itself.
2012-05-01 19:40:42 +02:00
snoop response.*/
bool recvTimingSnoopResp(PacketPtr pkt);
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/**
* Forward a timing packet to our snoopers, potentially excluding
* one of the connected coherent masters to avoid sending a packet
* back to where it came from.
*
* @param pkt Packet to forward
* @param exclude_slave_port_id Id of slave port to exclude
*/
void forwardTiming(PacketPtr pkt, Port::PortId exclude_slave_port_id);
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/**
* Determine if the bus is to be considered occupied when being
* presented with a packet from a specific port. If so, the port
* in question is also added to the retry list.
*
* @param pkt Incoming packet
* @param port Source port on the bus presenting the packet
*
* @return True if the bus is to be considered occupied
*/
bool isOccupied(PacketPtr pkt, Port* port);
/**
* Deal with a destination port accepting a packet by potentially
* removing the source port from the retry list (if retrying) and
* occupying the bus accordingly.
*
* @param busy_time Time to spend as a result of a successful send
*/
void succeededTiming(Tick busy_time);
/** Function called by the port when the bus is recieving a Atomic
transaction.*/
Tick recvAtomic(PacketPtr pkt);
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/** Function called by the port when the bus is recieving an
atomic snoop transaction.*/
Tick recvAtomicSnoop(PacketPtr pkt);
/**
* Forward an atomic packet to our snoopers, potentially excluding
* one of the connected coherent masters to avoid sending a packet
* back to where it came from.
*
* @param pkt Packet to forward
* @param exclude_slave_port_id Id of slave port to exclude
*
* @return a pair containing the snoop response and snoop latency
*/
std::pair<MemCmd, Tick> forwardAtomic(PacketPtr pkt,
Port::PortId exclude_slave_port_id);
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/** Function called by the port when the bus is recieving a Functional
transaction.*/
void recvFunctional(PacketPtr pkt);
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/** Function called by the port when the bus is recieving a functional
snoop transaction.*/
void recvFunctionalSnoop(PacketPtr pkt);
/**
* Forward a functional packet to our snoopers, potentially
* excluding one of the connected coherent masters to avoid
* sending a packet back to where it came from.
*
* @param pkt Packet to forward
* @param exclude_slave_port_id Id of slave port to exclude
*/
void forwardFunctional(PacketPtr pkt, Port::PortId exclude_slave_port_id);
MEM: Separate snoops and normal memory requests/responses This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-14 11:45:07 +02:00
/** Timing function called by port when it is once again able to process
* requests. */
void recvRetry(Port::PortId id);
/** Function called by the port when the bus is recieving a range change.*/
void recvRangeChange(Port::PortId id);
/** Find which port connected to this bus (if any) should be given a packet
* with this address.
* @param addr Address to find port for.
* @return id of port that the packet should be sent out of.
*/
int findPort(Addr addr);
// Cache for the findPort function storing recently used ports from portMap
struct PortCache {
bool valid;
Port::PortId id;
Addr start;
Addr end;
};
PortCache portCache[3];
// Checks the cache and returns the id of the port that has the requested
// address within its range
inline int checkPortCache(Addr addr) {
if (portCache[0].valid && addr >= portCache[0].start &&
addr < portCache[0].end) {
return portCache[0].id;
}
if (portCache[1].valid && addr >= portCache[1].start &&
addr < portCache[1].end) {
return portCache[1].id;
}
if (portCache[2].valid && addr >= portCache[2].start &&
addr < portCache[2].end) {
return portCache[2].id;
}
return Port::INVALID_PORT_ID;
}
// Clears the earliest entry of the cache and inserts a new port entry
inline void updatePortCache(short id, Addr start, Addr end) {
portCache[2].valid = portCache[1].valid;
portCache[2].id = portCache[1].id;
portCache[2].start = portCache[1].start;
portCache[2].end = portCache[1].end;
portCache[1].valid = portCache[0].valid;
portCache[1].id = portCache[0].id;
portCache[1].start = portCache[0].start;
portCache[1].end = portCache[0].end;
portCache[0].valid = true;
portCache[0].id = id;
portCache[0].start = start;
portCache[0].end = end;
}
// Clears the cache. Needs to be called in constructor.
inline void clearPortCache() {
portCache[2].valid = false;
portCache[1].valid = false;
portCache[0].valid = false;
}
/**
* Return the address ranges this port is responsible for.
*
* @param id id of the bus port that made the request
*
* @return a list of non-overlapping address ranges
*/
AddrRangeList getAddrRanges(Port::PortId id);
/**
* Determine if the bus port is snooping or not.
*
* @param id id of the bus port that made the request
*
* @return a boolean indicating if this port is snooping or not
*/
bool isSnooping(Port::PortId id) const;
/** Calculate the timing parameters for the packet. Updates the
* firstWordTime and finishTime fields of the packet object.
* Returns the tick at which the packet header is completed (which
* will be all that is sent if the target rejects the packet).
*/
Tick calcPacketTiming(PacketPtr pkt);
/** Occupy the bus until until */
void occupyBus(Tick until);
/**
* Release the bus after being occupied and return to an idle
* state where we proceed to send a retry to any potential waiting
* port, or drain if asked to do so.
*/
void releaseBus();
/**
* Send a retry to the port at the head of the retryList. The
* caller must ensure that the list is not empty.
*/
void retryWaiting();
/** Ask everyone on the bus what their size is
* @param id id of the busport that made the request
* @return the max of all the sizes
*/
unsigned findBlockSize(Port::PortId id);
// event used to schedule a release of the bus
EventWrapper<Bus, &Bus::releaseBus> busIdleEvent;
bool inRetry;
std::set<Port::PortId> inRecvRangeChange;
/** The master and slave ports of the bus */
std::vector<SlavePort*> slavePorts;
std::vector<MasterPort*> masterPorts;
typedef std::vector<SlavePort*>::iterator SlavePortIter;
typedef std::vector<SlavePort*>::const_iterator SlavePortConstIter;
Add a very poor implementation of dealing with retries on timing requests. It is especially slow with tracing on since it ends up being O(N^2). But it's probably going to have to change for the real bus anyway, so it should be rewritten then Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) Removed Port Blocked/Unblocked and replaced with sendRetry(). Remove possibility of packet mangling if packet is going to be refused anyway in bridge src/cpu/simple/atomic.cc: src/cpu/simple/atomic.hh: src/cpu/simple/timing.cc: src/cpu/simple/timing.hh: Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) src/dev/io_device.cc: src/dev/io_device.hh: Make DMA Timing requests/responses work. Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) src/mem/bridge.cc: src/mem/bridge.hh: Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) Removed Port Blocked/Unblocked and replaced with sendRetry(). Remove posibility of packet mangling if packet is going to be refused anyway. src/mem/bus.cc: src/mem/bus.hh: Add a very poor implementation of dealing with retries on timing requests. It is especially slow with tracing on since it ends up being O(N^2). But it's probably going to have to change for the real bus anyway, so it should be rewritten then src/mem/port.hh: Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) Removed Blocked/Unblocked port status, their functionality is really duplicated in the recvRetry() method --HG-- extra : convert_revision : fab613404be54bfa7a4c67572bae7b559169e573
2006-05-31 00:57:42 +02:00
/** An array of pointers to ports that retry should be called on because the
* original send failed for whatever reason.*/
std::list<Port*> retryList;
Add a very poor implementation of dealing with retries on timing requests. It is especially slow with tracing on since it ends up being O(N^2). But it's probably going to have to change for the real bus anyway, so it should be rewritten then Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) Removed Port Blocked/Unblocked and replaced with sendRetry(). Remove possibility of packet mangling if packet is going to be refused anyway in bridge src/cpu/simple/atomic.cc: src/cpu/simple/atomic.hh: src/cpu/simple/timing.cc: src/cpu/simple/timing.hh: Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) src/dev/io_device.cc: src/dev/io_device.hh: Make DMA Timing requests/responses work. Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) src/mem/bridge.cc: src/mem/bridge.hh: Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) Removed Port Blocked/Unblocked and replaced with sendRetry(). Remove posibility of packet mangling if packet is going to be refused anyway. src/mem/bus.cc: src/mem/bus.hh: Add a very poor implementation of dealing with retries on timing requests. It is especially slow with tracing on since it ends up being O(N^2). But it's probably going to have to change for the real bus anyway, so it should be rewritten then src/mem/port.hh: Change recvRetry() to not accept a packet. Sendtiming should be called again (and can respond with false or true) Removed Blocked/Unblocked port status, their functionality is really duplicated in the recvRetry() method --HG-- extra : convert_revision : fab613404be54bfa7a4c67572bae7b559169e573
2006-05-31 00:57:42 +02:00
void addToRetryList(Port* port)
{
if (!inRetry) {
// The device wasn't retrying a packet, or wasn't at an
// appropriate time.
retryList.push_back(port);
} else {
if (!retryList.empty() && port == retryList.front()) {
// The device was retrying a packet. It didn't work,
// so we'll leave it at the head of the retry list.
inRetry = false;
} else {
// We are in retry, but not for this port, put it at
// the end.
retryList.push_back(port);
}
}
}
Add default responder to bus Update configuration for new default responder on bus Update to devices to handle their own pci config space without pciconfigall Remove most of pciconfigall, it now is a dumbdevice which gets it's address based on the bus it's supposed to respond for Remove need for pci config space from platform, add registerPciDevice function to prevent more than one device from having same bus:dev:func and interrupt Remove pciconfigspace from pci devices, and py files Add calcConfigAddr that returns address for config space based on bus/dev/function + offset configs/test/fs.py: Update configuration for new default responder on bus src/dev/ide_ctrl.cc: src/dev/ide_ctrl.hh: src/dev/ns_gige.cc: src/dev/ns_gige.hh: src/dev/pcidev.cc: src/dev/pcidev.hh: Update to handle it's own pci config space without pciconfigall src/dev/io_device.cc: src/dev/io_device.hh: change naming for pio port break out recvTiming into two functions to reuse code src/dev/pciconfigall.cc: src/dev/pciconfigall.hh: removing most of pciconfigall, it now is a dumbdevice which gets it's address based on the bus it's supposed to respond for src/dev/pcireg.h: add a max size for PCI config space (per PCI spec) src/dev/platform.cc: src/dev/platform.hh: remove need for pci config space from platform, add registerPciDevice function to prevent more than one device from having same bus:dev:func and interrupt src/dev/sinic.cc: remove pciconfigspace as it's no longer a needed parameter src/dev/tsunami.cc: src/dev/tsunami.hh: src/dev/tsunami_pchip.cc: src/dev/tsunami_pchip.hh: add calcConfigAddr that returns address for config space based on bus/dev/function + offset (per PCI spec) src/mem/bus.cc: src/mem/bus.hh: src/python/m5/objects/Bus.py: add idea of default responder to bus src/python/m5/objects/Pci.py: add config port for pci devices add latency, bus and size parameters for pci config all (min is 8MB, max is 256MB see pci spec) --HG-- extra : convert_revision : 99db43b0a3a077f86611d6eaff6664a3885da7c9
2006-07-06 20:41:01 +02:00
/** Port that handles requests that don't match any of the interfaces.*/
short defaultPortId;
Add default responder to bus Update configuration for new default responder on bus Update to devices to handle their own pci config space without pciconfigall Remove most of pciconfigall, it now is a dumbdevice which gets it's address based on the bus it's supposed to respond for Remove need for pci config space from platform, add registerPciDevice function to prevent more than one device from having same bus:dev:func and interrupt Remove pciconfigspace from pci devices, and py files Add calcConfigAddr that returns address for config space based on bus/dev/function + offset configs/test/fs.py: Update configuration for new default responder on bus src/dev/ide_ctrl.cc: src/dev/ide_ctrl.hh: src/dev/ns_gige.cc: src/dev/ns_gige.hh: src/dev/pcidev.cc: src/dev/pcidev.hh: Update to handle it's own pci config space without pciconfigall src/dev/io_device.cc: src/dev/io_device.hh: change naming for pio port break out recvTiming into two functions to reuse code src/dev/pciconfigall.cc: src/dev/pciconfigall.hh: removing most of pciconfigall, it now is a dumbdevice which gets it's address based on the bus it's supposed to respond for src/dev/pcireg.h: add a max size for PCI config space (per PCI spec) src/dev/platform.cc: src/dev/platform.hh: remove need for pci config space from platform, add registerPciDevice function to prevent more than one device from having same bus:dev:func and interrupt src/dev/sinic.cc: remove pciconfigspace as it's no longer a needed parameter src/dev/tsunami.cc: src/dev/tsunami.hh: src/dev/tsunami_pchip.cc: src/dev/tsunami_pchip.hh: add calcConfigAddr that returns address for config space based on bus/dev/function + offset (per PCI spec) src/mem/bus.cc: src/mem/bus.hh: src/python/m5/objects/Bus.py: add idea of default responder to bus src/python/m5/objects/Pci.py: add config port for pci devices add latency, bus and size parameters for pci config all (min is 8MB, max is 256MB see pci spec) --HG-- extra : convert_revision : 99db43b0a3a077f86611d6eaff6664a3885da7c9
2006-07-06 20:41:01 +02:00
/** If true, use address range provided by default device. Any
address not handled by another port and not in default device's
range will cause a fatal error. If false, just send all
addresses not handled by another port to default device. */
bool useDefaultRange;
unsigned defaultBlockSize;
unsigned cachedBlockSize;
bool cachedBlockSizeValid;
public:
/** A function used to return the port associated with this bus object. */
virtual MasterPort& getMasterPort(const std::string& if_name, int idx = -1);
virtual SlavePort& getSlavePort(const std::string& if_name, int idx = -1);
virtual void init();
virtual void startup();
unsigned int drain(Event *de);
Bus(const BusParams *p);
};
#endif //__MEM_BUS_HH__