gem5/src/arch/x86/isa/microops/regop.isa

629 lines
23 KiB
Text
Raw Normal View History

// Copyright (c) 2007 The Hewlett-Packard Development Company
// All rights reserved.
//
// Redistribution and use of this software in source and binary forms,
// with or without modification, are permitted provided that the
// following conditions are met:
//
// The software must be used only for Non-Commercial Use which means any
// use which is NOT directed to receiving any direct monetary
// compensation for, or commercial advantage from such use. Illustrative
// examples of non-commercial use are academic research, personal study,
// teaching, education and corporate research & development.
// Illustrative examples of commercial use are distributing products for
// commercial advantage and providing services using the software for
// commercial advantage.
//
// If you wish to use this software or functionality therein that may be
// covered by patents for commercial use, please contact:
// Director of Intellectual Property Licensing
// Office of Strategy and Technology
// Hewlett-Packard Company
// 1501 Page Mill Road
// Palo Alto, California 94304
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer. Redistributions
// in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution. Neither the name of
// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission. No right of
// sublicense is granted herewith. Derivatives of the software and
// output created using the software may be prepared, but only for
// Non-Commercial Uses. Derivatives of the software may be shared with
// others provided: (i) the others agree to abide by the list of
// conditions herein which includes the Non-Commercial Use restrictions;
// and (ii) such Derivatives of the software include the above copyright
// notice to acknowledge the contribution from this software where
// applicable, this list of conditions and the disclaimer below.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
//////////////////////////////////////////////////////////////////////////
//
// RegOp Microop templates
//
//////////////////////////////////////////////////////////////////////////
def template MicroRegOpExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
DPRINTF(X86, "The data size is %d\n", dataSize);
%(op_decl)s;
%(op_rd)s;
if(%(cond_check)s)
{
%(code)s;
%(flag_code)s;
}
else
{
%(else_code)s;
}
//Write the resulting state to the execution context
if(fault == NoFault)
{
%(op_wb)s;
}
return fault;
}
}};
def template MicroRegOpImmExecute {{
Fault %(class_name)sImm::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
%(op_decl)s;
%(op_rd)s;
if(%(cond_check)s)
{
%(code)s;
%(flag_code)s;
}
else
{
%(else_code)s;
}
//Write the resulting state to the execution context
if(fault == NoFault)
{
%(op_wb)s;
}
return fault;
}
}};
def template MicroRegOpDeclare {{
class %(class_name)s : public %(base_class)s
{
protected:
void buildMe();
public:
%(class_name)s(ExtMachInst _machInst,
const char * instMnem,
bool isMicro, bool isDelayed, bool isFirst, bool isLast,
RegIndex _src1, RegIndex _src2, RegIndex _dest,
uint8_t _dataSize, uint16_t _ext);
%(class_name)s(ExtMachInst _machInst,
const char * instMnem,
RegIndex _src1, RegIndex _src2, RegIndex _dest,
uint8_t _dataSize, uint16_t _ext);
%(BasicExecDeclare)s
};
}};
def template MicroRegOpImmDeclare {{
class %(class_name)sImm : public %(base_class)s
{
protected:
void buildMe();
public:
%(class_name)sImm(ExtMachInst _machInst,
const char * instMnem,
bool isMicro, bool isDelayed, bool isFirst, bool isLast,
RegIndex _src1, uint8_t _imm8, RegIndex _dest,
uint8_t _dataSize, uint16_t _ext);
%(class_name)sImm(ExtMachInst _machInst,
const char * instMnem,
RegIndex _src1, uint8_t _imm8, RegIndex _dest,
uint8_t _dataSize, uint16_t _ext);
%(BasicExecDeclare)s
};
}};
def template MicroRegOpConstructor {{
inline void %(class_name)s::buildMe()
{
%(constructor)s;
}
inline %(class_name)s::%(class_name)s(
ExtMachInst machInst, const char * instMnem,
RegIndex _src1, RegIndex _src2, RegIndex _dest,
uint8_t _dataSize, uint16_t _ext) :
%(base_class)s(machInst, "%(mnemonic)s", instMnem,
false, false, false, false,
_src1, _src2, _dest, _dataSize, _ext,
%(op_class)s)
{
buildMe();
}
inline %(class_name)s::%(class_name)s(
ExtMachInst machInst, const char * instMnem,
bool isMicro, bool isDelayed, bool isFirst, bool isLast,
RegIndex _src1, RegIndex _src2, RegIndex _dest,
uint8_t _dataSize, uint16_t _ext) :
%(base_class)s(machInst, "%(mnemonic)s", instMnem,
isMicro, isDelayed, isFirst, isLast,
_src1, _src2, _dest, _dataSize, _ext,
%(op_class)s)
{
buildMe();
}
}};
def template MicroRegOpImmConstructor {{
inline void %(class_name)sImm::buildMe()
{
%(constructor)s;
}
inline %(class_name)sImm::%(class_name)sImm(
ExtMachInst machInst, const char * instMnem,
RegIndex _src1, uint8_t _imm8, RegIndex _dest,
uint8_t _dataSize, uint16_t _ext) :
%(base_class)s(machInst, "%(mnemonic)s", instMnem,
false, false, false, false,
_src1, _imm8, _dest, _dataSize, _ext,
%(op_class)s)
{
buildMe();
}
inline %(class_name)sImm::%(class_name)sImm(
ExtMachInst machInst, const char * instMnem,
bool isMicro, bool isDelayed, bool isFirst, bool isLast,
RegIndex _src1, uint8_t _imm8, RegIndex _dest,
uint8_t _dataSize, uint16_t _ext) :
%(base_class)s(machInst, "%(mnemonic)s", instMnem,
isMicro, isDelayed, isFirst, isLast,
_src1, _imm8, _dest, _dataSize, _ext,
%(op_class)s)
{
buildMe();
}
}};
let {{
class X86MicroMeta(type):
def __new__(mcls, name, bases, dict):
abstract = False
if "abstract" in dict:
abstract = dict['abstract']
del dict['abstract']
cls = type.__new__(mcls, name, bases, dict)
if not abstract:
allClasses[name] = cls
return cls
class XXX86Microop(object):
__metaclass__ = X86MicroMeta
abstract = True
class RegOp(X86Microop):
abstract = True
def __init__(self, dest, src1, src2, flags, dataSize):
self.dest = dest
self.src1 = src1
self.src2 = src2
self.flags = flags
self.dataSize = dataSize
if flags is None:
self.ext = 0
else:
if not isinstance(flags, (list, tuple)):
raise Exception, "flags must be a list or tuple of flags"
self.ext = " | ".join(flags)
self.className += "Flags"
def getAllocator(self, *microFlags):
allocator = '''new %(class_name)s(machInst, mnemonic
%(flags)s, %(src1)s, %(src2)s, %(dest)s,
%(dataSize)s, %(ext)s)''' % {
"class_name" : self.className,
"flags" : self.microFlagsText(microFlags),
"src1" : self.src1, "src2" : self.src2,
"dest" : self.dest,
"dataSize" : self.dataSize,
"ext" : self.ext}
return allocator
class RegOpImm(X86Microop):
abstract = True
def __init__(self, dest, src1, imm8, flags, dataSize):
self.dest = dest
self.src1 = src1
self.imm8 = imm8
self.flags = flags
self.dataSize = dataSize
if flags is None:
self.ext = 0
else:
if not isinstance(flags, (list, tuple)):
raise Exception, "flags must be a list or tuple of flags"
self.ext = " | ".join(flags)
self.className += "Flags"
def getAllocator(self, *microFlags):
allocator = '''new %(class_name)s(machInst, mnemonic
%(flags)s, %(src1)s, %(imm8)s, %(dest)s,
%(dataSize)s, %(ext)s)''' % {
"class_name" : self.className,
"flags" : self.microFlagsText(microFlags),
"src1" : self.src1, "imm8" : self.imm8,
"dest" : self.dest,
"dataSize" : self.dataSize,
"ext" : self.ext}
return allocator
}};
let {{
# Make these empty strings so that concatenating onto
# them will always work.
header_output = ""
decoder_output = ""
exec_output = ""
# A function which builds the C++ classes that implement the microops
def setUpMicroRegOp(name, Name, base, code, flagCode = "", condCheck = "true", elseCode = ";"):
global header_output
global decoder_output
global exec_output
global microopClasses
iop = InstObjParams(name, Name, base,
{"code" : code,
"flag_code" : flagCode,
"cond_check" : condCheck,
"else_code" : elseCode})
header_output += MicroRegOpDeclare.subst(iop)
decoder_output += MicroRegOpConstructor.subst(iop)
exec_output += MicroRegOpExecute.subst(iop)
checkCCFlagBits = "checkCondition(ccFlagBits)"
genCCFlagBits = \
"ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, op2);"
genCCFlagBitsSub = \
"ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, ~op2, true);"
genCCFlagBitsLogic = '''
//Don't have genFlags handle the OF or CF bits
uint64_t mask = CFBit | OFBit;
ccFlagBits = genFlags(ccFlagBits, ext & ~mask, DestReg, psrc1, op2);
//If a logic microop wants to set these, it wants to set them to 0.
ccFlagBits &= ~(CFBit & ext);
ccFlagBits &= ~(OFBit & ext);
'''
regPick = '''
IntReg psrc1 = pick(SrcReg1, 0, dataSize);
IntReg psrc2 = pick(SrcReg2, 1, dataSize);
'''
immPick = '''
IntReg psrc1 = pick(SrcReg1, 0, dataSize);
'''
# This creates a python representations of a microop which are a cross
# product of reg/immediate and flag/no flag versions.
def defineMicroRegOp(mnemonic, code, flagCode=genCCFlagBits, \
cc=False, elseCode=";"):
Name = mnemonic
name = mnemonic.lower()
# Find op2 in each of the instruction definitions. Create two versions
# of the code, one with an integer operand, and one with an immediate
# operand.
matcher = re.compile("op2(?P<typeQual>\\.\\w+)?")
regCode = regPick + matcher.sub("psrc2", code)
immCode = immPick + matcher.sub("imm8", code)
if not cc:
condCode = "true"
else:
flagCode = ""
condCode = checkCCFlagBits
regFlagCode = matcher.sub("psrc2", flagCode)
immFlagCode = matcher.sub("imm8", flagCode)
class RegOpChild(RegOp):
mnemonic = name
className = Name
def __init__(self, dest, src1, src2, \
flags=None, dataSize="env.dataSize"):
super(RegOpChild, self).__init__(dest, src1, src2, \
flags, dataSize)
microopClasses[name] = RegOpChild
setUpMicroRegOp(name, Name, "X86ISA::RegOp", regCode);
setUpMicroRegOp(name, Name + "Flags", "X86ISA::RegOp",
regCode, flagCode=regFlagCode,
condCheck=condCode, elseCode=elseCode);
class RegOpChildImm(RegOpImm):
mnemonic = name + 'i'
className = Name + 'Imm'
def __init__(self, dest, src1, src2, \
flags=None, dataSize="env.dataSize"):
super(RegOpChildImm, self).__init__(dest, src1, src2, \
flags, dataSize)
microopClasses[name + 'i'] = RegOpChildImm
setUpMicroRegOp(name + "i", Name + "Imm", "X86ISA::RegOpImm", immCode);
setUpMicroRegOp(name + "i", Name + "ImmFlags", "X86ISA::RegOpImm",
immCode, flagCode=immFlagCode,
condCheck=condCode, elseCode=elseCode);
# This has it's own function because Wr ops have implicit destinations
def defineMicroRegOpWr(mnemonic, code, elseCode=";"):
Name = mnemonic
name = mnemonic.lower()
# Find op2 in each of the instruction definitions. Create two versions
# of the code, one with an integer operand, and one with an immediate
# operand.
matcher = re.compile("op2(?P<typeQual>\\.\\w+)?")
regCode = regPick + matcher.sub("psrc2", code)
immCode = immPick + matcher.sub("imm8", code)
class RegOpChild(RegOp):
mnemonic = name
className = Name
def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"):
super(RegOpChild, self).__init__("NUM_INTREGS", src1, src2, flags, dataSize)
microopClasses[name] = RegOpChild
setUpMicroRegOp(name, Name, "X86ISA::RegOp", regCode);
setUpMicroRegOp(name, Name + "Flags", "X86ISA::RegOp", regCode,
condCheck = checkCCFlagBits, elseCode = elseCode);
class RegOpChildImm(RegOpImm):
mnemonic = name + 'i'
className = Name + 'Imm'
def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"):
super(RegOpChildImm, self).__init__("NUM_INTREGS", src1, src2, flags, dataSize)
microopClasses[name + 'i'] = RegOpChildImm
setUpMicroRegOp(name + 'i', Name + "Imm", "X86ISA::RegOpImm", immCode);
setUpMicroRegOp(name + 'i', Name + "ImmFlags", "X86ISA::RegOpImm", immCode,
condCheck = checkCCFlagBits, elseCode = elseCode);
# This has it's own function because Rd ops don't always have two parameters
def defineMicroRegOpRd(mnemonic, code):
Name = mnemonic
name = mnemonic.lower()
class RegOpChild(RegOp):
def __init__(self, dest, src1 = "NUM_INTREGS", dataSize="env.dataSize"):
super(RegOpChild, self).__init__(dest, src1, "NUM_INTREGS", None, dataSize)
self.className = Name
self.mnemonic = name
microopClasses[name] = RegOpChild
setUpMicroRegOp(name, Name, "X86ISA::RegOp", code);
def defineMicroRegOpImm(mnemonic, code):
Name = mnemonic
name = mnemonic.lower()
code = immPick + code
class RegOpChild(RegOpImm):
def __init__(self, dest, src1, src2, dataSize="env.dataSize"):
super(RegOpChild, self).__init__(dest, src1, src2, None, dataSize)
self.className = Name
self.mnemonic = name
microopClasses[name] = RegOpChild
setUpMicroRegOp(name, Name, "X86ISA::RegOpImm", code);
defineMicroRegOp('Add', 'DestReg = merge(DestReg, psrc1 + op2, dataSize)')
defineMicroRegOp('Or', 'DestReg = merge(DestReg, psrc1 | op2, dataSize);',
flagCode = genCCFlagBitsLogic)
defineMicroRegOp('Adc', '''
CCFlagBits flags = ccFlagBits;
DestReg = merge(DestReg, psrc1 + op2 + flags.CF, dataSize);
''')
defineMicroRegOp('Sbb', '''
CCFlagBits flags = ccFlagBits;
DestReg = merge(DestReg, psrc1 - op2 - flags.CF, dataSize);
''', flagCode = genCCFlagBitsSub)
defineMicroRegOp('And', \
'DestReg = merge(DestReg, psrc1 & op2, dataSize)', \
flagCode = genCCFlagBitsLogic)
defineMicroRegOp('Sub', \
'DestReg = merge(DestReg, psrc1 - op2, dataSize)', \
flagCode = genCCFlagBitsSub)
defineMicroRegOp('Xor', \
'DestReg = merge(DestReg, psrc1 ^ op2, dataSize)', \
flagCode = genCCFlagBitsLogic)
defineMicroRegOp('Mul1s', '''
int signPos = (dataSize * 8) / 2 - 1;
IntReg srcVal1 = psrc1 | (-bits(psrc1, signPos) << signPos);
IntReg srcVal2 = op2 | (-bits(psrc1, signPos) << signPos);
DestReg = merge(DestReg, srcVal1 * srcVal2, dataSize)
''')
defineMicroRegOp('Mul1u', '''
int halfSize = (dataSize * 8) / 2;
IntReg srcVal1 = psrc1 & mask(halfSize);
IntReg srcVal2 = op2 & mask(halfSize);
DestReg = merge(DestReg, srcVal1 * srcVal2, dataSize)
''')
defineMicroRegOp('Mulel', \
'DestReg = merge(DestReg, psrc1 * op2, dataSize)')
defineMicroRegOp('Muleh', '''
int halfSize = (dataSize * 8) / 2;
uint64_t psrc1_h = psrc1 >> halfSize;
uint64_t psrc1_l = psrc1 & mask(halfSize);
uint64_t psrc2_h = op2 >> halfSize;
uint64_t psrc2_l = op2 & mask(halfSize);
uint64_t result =
((psrc1_l * psrc2_h) >> halfSize) +
((psrc1_h * psrc2_l) >> halfSize) +
psrc1_h * psrc2_h;
DestReg = merge(DestReg, result, dataSize);
''')
defineMicroRegOp('Div1', '''
int halfSize = (dataSize * 8) / 2;
IntReg quotient = (psrc1 / op2) & mask(halfSize);
IntReg remainder = (psrc1 % op2) & mask(halfSize);
IntReg result = quotient | (remainder << halfSize);
DestReg = merge(DestReg, result, dataSize);
''')
defineMicroRegOp('Divq', '''
DestReg = merge(DestReg, psrc1 / op2, dataSize);
''')
defineMicroRegOp('Divr', '''
DestReg = merge(DestReg, psrc1 % op2, dataSize);
''')
#
# HACK HACK HACK HACK - Put psrc1 in here but make it inert to shut up gcc.
#
defineMicroRegOp('Mov', 'DestReg = merge(SrcReg1, psrc1 * 0 + op2, dataSize)',
elseCode='DestReg=DestReg;', cc=True)
# Shift instructions
defineMicroRegOp('Sll', '''
uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
DestReg = merge(DestReg, psrc1 << shiftAmt, dataSize);
''')
defineMicroRegOp('Srl', '''
uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
// Because what happens to the bits shift -in- on a right shift
// is not defined in the C/C++ standard, we have to mask them out
// to be sure they're zero.
uint64_t logicalMask = mask(dataSize * 8 - shiftAmt);
DestReg = merge(DestReg, (psrc1 >> shiftAmt) & logicalMask, dataSize);
''')
defineMicroRegOp('Sra', '''
uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
// Because what happens to the bits shift -in- on a right shift
// is not defined in the C/C++ standard, we have to sign extend
// them manually to be sure.
uint64_t arithMask =
-bits(op2, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt);
DestReg = merge(DestReg, (psrc1 >> shiftAmt) | arithMask, dataSize);
''')
defineMicroRegOp('Ror', '''
uint8_t shiftAmt =
(op2 & ((dataSize == 8) ? mask(6) : mask(5)));
if(shiftAmt)
{
uint64_t top = psrc1 << (dataSize * 8 - shiftAmt);
uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt);
DestReg = merge(DestReg, top | bottom, dataSize);
}
else
DestReg = DestReg;
''')
defineMicroRegOp('Rcr', '''
uint8_t shiftAmt =
(op2 & ((dataSize == 8) ? mask(6) : mask(5)));
if(shiftAmt)
{
CCFlagBits flags = ccFlagBits;
uint64_t top = flags.CF << (dataSize * 8 - shiftAmt);
if(shiftAmt > 1)
top |= psrc1 << (dataSize * 8 - shiftAmt - 1);
uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt);
DestReg = merge(DestReg, top | bottom, dataSize);
}
else
DestReg = DestReg;
''')
defineMicroRegOp('Rol', '''
uint8_t shiftAmt =
(op2 & ((dataSize == 8) ? mask(6) : mask(5)));
if(shiftAmt)
{
uint64_t top = psrc1 << shiftAmt;
uint64_t bottom =
bits(psrc1, dataSize * 8 - 1, dataSize * 8 - shiftAmt);
DestReg = merge(DestReg, top | bottom, dataSize);
}
else
DestReg = DestReg;
''')
defineMicroRegOp('Rcl', '''
uint8_t shiftAmt =
(op2 & ((dataSize == 8) ? mask(6) : mask(5)));
if(shiftAmt)
{
CCFlagBits flags = ccFlagBits;
uint64_t top = psrc1 << shiftAmt;
uint64_t bottom = flags.CF << (shiftAmt - 1);
if(shiftAmt > 1)
bottom |=
bits(psrc1, dataSize * 8 - 1,
dataSize * 8 - shiftAmt + 1);
DestReg = merge(DestReg, top | bottom, dataSize);
}
else
DestReg = DestReg;
''')
defineMicroRegOpWr('Wrip', 'RIP = psrc1 + op2', elseCode="RIP = RIP;")
defineMicroRegOpRd('Rdip', 'DestReg = RIP')
defineMicroRegOpImm('Sext', '''
IntReg val = psrc1;
int sign_bit = bits(val, imm8-1, imm8-1);
val = sign_bit ? (val | ~mask(imm8)) : val;
DestReg = merge(DestReg, val, dataSize);''')
defineMicroRegOpImm('Zext', 'DestReg = bits(psrc1, imm8-1, 0);')
}};