Due to the ABI we are using we have to use the earm architecture
moniker for the build system to behave correctly. This involves
then some headers to move around.
There is also a few related Makefile updates as well as minor
source code corrections.
. some strncpy/strcpy to strlcpy conversions
. new <minix/param.h> to avoid including other minix headers
that have colliding definitions with library and commands code,
causing parse warnings
. removed some dead code / assignments
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.
There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.
No static pre-allocated memory sizes exist any more.
Changes to booting:
. The pre_init.c leaves the kernel and modules exactly as
they were left by the bootloader in physical memory
. The kernel starts running using physical addressing,
loaded at a fixed location given in its linker script by the
bootloader. All code and data in this phase are linked to
this fixed low location.
. It makes a bootstrap pagetable to map itself to a
fixed high location (also in linker script) and jumps to
the high address. All code and data then use this high addressing.
. All code/data symbols linked at the low addresses is prefixed by
an objcopy step with __k_unpaged_*, so that that code cannot
reference highly-linked symbols (which aren't valid yet) or vice
versa (symbols that aren't valid any more).
. The two addressing modes are separated in the linker script by
collecting the unpaged_*.o objects and linking them with low
addresses, and linking the rest high. Some objects are linked
twice, once low and once high.
. The bootstrap phase passes a lot of information (e.g. free memory
list, physical location of the modules, etc.) using the kinfo
struct.
. After this bootstrap the low-linked part is freed.
. The kernel maps in VM into the bootstrap page table so that VM can
begin executing. Its first job is to make page tables for all other
boot processes. So VM runs before RS, and RS gets a fully dynamic,
VM-managed address space. VM gets its privilege info from RS as usual
but that happens after RS starts running.
. Both the kernel loading VM and VM organizing boot processes happen
using the libexec logic. This removes the last reason for VM to
still know much about exec() and vm/exec.c is gone.
Further Implementation:
. All segments are based at 0 and have a 4 GB limit.
. The kernel is mapped in at the top of the virtual address
space so as not to constrain the user processes.
. Processes do not use segments from the LDT at all; there are
no segments in the LDT any more, so no LLDT is needed.
. The Minix segments T/D/S are gone and so none of the
user-space or in-kernel copy functions use them. The copy
functions use a process endpoint of NONE to realize it's
a physical address, virtual otherwise.
. The umap call only makes sense to translate a virtual address
to a physical address now.
. Segments-related calls like newmap and alloc_segments are gone.
. All segments-related translation in VM is gone (vir2map etc).
. Initialization in VM is simpler as no moving around is necessary.
. VM and all other boot processes can be linked wherever they wish
and will be mapped in at the right location by the kernel and VM
respectively.
Other changes:
. The multiboot code is less special: it does not use mb_print
for its diagnostics any more but uses printf() as normal, saving
the output into the diagnostics buffer, only printing to the
screen using the direct print functions if a panic() occurs.
. The multiboot code uses the flexible 'free memory map list'
style to receive the list of free memory if available.
. The kernel determines the memory layout of the processes to
a degree: it tells VM where the kernel starts and ends and
where the kernel wants the top of the process to be. VM then
uses this entire range, i.e. the stack is right at the top,
and mmap()ped bits of memory are placed below that downwards,
and the break grows upwards.
Other Consequences:
. Every process gets its own page table as address spaces
can't be separated any more by segments.
. As all segments are 0-based, there is no distinction between
virtual and linear addresses, nor between userspace and
kernel addresses.
. Less work is done when context switching, leading to a net
performance increase. (8% faster on my machine for 'make servers'.)
. The layout and configuration of the GDT makes sysenter and syscall
possible.
. all invocations were S or D, so can safely be dropped
to prepare for the segmentless world
. still assign D to the SCP_SEG field in the message
to make previous kernels usable
- when ACPI does not find mappings for pci brdiges, do no panic,
only report a warning and continue to a fallback which uses
only the root bus IRQ routing table. Fail only if that is not
present.
- every pci device which implements _PRT acpi method is considered to
be a pci-to-pci bridge
- acpi driver constructs a hierarchy of pci-to-pci bridges
- when pci driver identifies a pci-to-pci bridge it tells acpi driver
what is the primary and the secondary bus for this device
- when pci requests IRQ routing information from acpi, it passes the
bus number too to be able to identify the device accurately
- kernel turns on IO APICs if no_apic is _not_ set or is equal 0
- pci driver must use the acpi driver to setup IRQ routing otherwise
the system cannot work correctly except systems like KVM that use
only legacy (E)ISA IRQs 0-15
- PCI must query ACPI, if (IO)APIC is in use, for the routing
information and change the ILR (interrupt line register) of each
device accordingly so drivers use the right IRQ.
SYSLIB CHANGES:
- DS calls to publish / retrieve labels consider endpoints instead of u32_t.
VFS CHANGES:
- mapdriver() only adds an entry in the dmap table in VFS.
- dev_up() is only executed upon reception of a driver up event.
INET CHANGES:
- INET no longer searches for existing drivers instances at startup.
- A newtwork driver is (re)initialized upon reception of a driver up event.
- Networking startup is now race-free by design. No need to waste 5 seconds
at startup any more.
DRIVER CHANGES:
- Every driver publishes driver up events when starting for the first time or
in case of restart when recovery actions must be taken in the upper layers.
- Driver up events are published by drivers through DS.
- For regular drivers, VFS is normally the only subscriber, but not necessarily.
For instance, when the filter driver is in use, it must subscribe to driver
up events to initiate recovery.
- For network drivers, inet is the only subscriber for now.
- Every VFS driver is statically linked with libdriver, every network driver
is statically linked with libnetdriver.
DRIVER LIBRARIES CHANGES:
- Libdriver is extended to provide generic receive() and ds_publish() interfaces
for VFS drivers.
- driver_receive() is a wrapper for sef_receive() also used in driver_task()
to discard spurious messages that were meant to be delivered to a previous
version of the driver.
- driver_receive_mq() is the same as driver_receive() but integrates support
for queued messages.
- driver_announce() publishes a driver up event for VFS drivers and marks
the driver as initialized and expecting a DEV_OPEN message.
- Libnetdriver is introduced to provide similar receive() and ds_publish()
interfaces for network drivers (netdriver_announce() and netdriver_receive()).
- Network drivers all support live update with no state transfer now.
KERNEL CHANGES:
- Added kernel call statectl for state management. Used by driver_announce() to
unblock eventual callers sendrecing to the driver.
UPDATING INFO:
20100317:
/usr/src/etc/system.conf updated to ignore default kernel calls: copy
it (or merge it) to /etc/system.conf.
The hello driver (/dev/hello) added to the distribution:
# cd /usr/src/commands/scripts && make clean install
# cd /dev && MAKEDEV hello
KERNEL CHANGES:
- Generic signal handling support. The kernel no longer assumes PM as a signal
manager for every process. The signal manager of a given process can now be
specified in its privilege slot. When a signal has to be delivered, the kernel
performs the lookup and forwards the signal to the appropriate signal manager.
PM is the default signal manager for user processes, RS is the default signal
manager for system processes. To enable ptrace()ing for system processes, it
is sufficient to change the default signal manager to PM. This will temporarily
disable crash recovery, though.
- sys_exit() is now split into sys_exit() (i.e. exit() for system processes,
which generates a self-termination signal), and sys_clear() (i.e. used by PM
to ask the kernel to clear a process slot when a process exits).
- Added a new kernel call (i.e. sys_update()) to swap two process slots and
implement live update.
PM CHANGES:
- Posix signal handling is no longer allowed for system processes. System
signals are split into two fixed categories: termination and non-termination
signals. When a non-termination signaled is processed, PM transforms the signal
into an IPC message and delivers the message to the system process. When a
termination signal is processed, PM terminates the process.
- PM no longer assumes itself as the signal manager for system processes. It now
makes sure that every system signal goes through the kernel before being
actually processes. The kernel will then dispatch the signal to the appropriate
signal manager which may or may not be PM.
SYSLIB CHANGES:
- Simplified SEF init and LU callbacks.
- Added additional predefined SEF callbacks to debug crash recovery and
live update.
- Fixed a temporary ack in the SEF init protocol. SEF init reply is now
completely synchronous.
- Added SEF signal event type to provide a uniform interface for system
processes to deal with signals. A sef_cb_signal_handler() callback is
available for system processes to handle every received signal. A
sef_cb_signal_manager() callback is used by signal managers to process
system signals on behalf of the kernel.
- Fixed a few bugs with memory mapping and DS.
VM CHANGES:
- Page faults and memory requests coming from the kernel are now implemented
using signals.
- Added a new VM call to swap two process slots and implement live update.
- The call is used by RS at update time and in turn invokes the kernel call
sys_update().
RS CHANGES:
- RS has been reworked with a better functional decomposition.
- Better kernel call masks. com.h now defines the set of very basic kernel calls
every system service is allowed to use. This makes system.conf simpler and
easier to maintain. In addition, this guarantees a higher level of isolation
for system libraries that use one or more kernel calls internally (e.g. printf).
- RS is the default signal manager for system processes. By default, RS
intercepts every signal delivered to every system process. This makes crash
recovery possible before bringing PM and friends in the loop.
- RS now supports fast rollback when something goes wrong while initializing
the new version during a live update.
- Live update is now implemented by keeping the two versions side-by-side and
swapping the process slots when the old version is ready to update.
- Crash recovery is now implemented by keeping the two versions side-by-side
and cleaning up the old version only when the recovery process is complete.
DS CHANGES:
- Fixed a bug when the process doing ds_publish() or ds_delete() is not known
by DS.
- Fixed the completely broken support for strings. String publishing is now
implemented in the system library and simply wraps publishing of memory ranges.
Ideally, we should adopt a similar approach for other data types as well.
- Test suite fixed.
DRIVER CHANGES:
- The hello driver has been added to the Minix distribution to demonstrate basic
live update and crash recovery functionalities.
- Other drivers have been adapted to conform the new SEF interface.
-Convert the include directory over to using bsdmake
syntax
-Update/add mkfiles
-Modify install(1) so that it can create symlinks
-Update makefiles to use new install(1) options
-Rename /usr/include/ibm to /usr/include/i386
-Create /usr/include/machine symlink to arch header files
-Move vm_i386.h to its new home in the /usr/include/i386
-Update source files to #include the header files at their
new homes.
-Add new gnu-includes target for building GCC headers
this change
- makes panic() variadic, doing full printf() formatting -
no more NO_NUM, and no more separate printf() statements
needed to print extra info (or something in hex) before panicing
- unifies panic() - same panic() name and usage for everyone -
vm, kernel and rest have different names/syntax currently
in order to implement their own luxuries, but no longer
- throws out the 1st argument, to make source less noisy.
the panic() in syslib retrieves the server name from the kernel
so it should be clear enough who is panicing; e.g.
panic("sigaction failed: %d", errno);
looks like:
at_wini(73130): panic: sigaction failed: 0
syslib:panic.c: stacktrace: 0x74dc 0x2025 0x100a
- throws out report() - printf() is more convenient and powerful
- harmonizes/fixes the use of panic() - there were a few places
that used printf-style formatting (didn't work) and newlines
(messes up the formatting) in panic()
- throws out a few per-server panic() functions
- cleans up a tie-in of tty with panic()
merging printf() and panic() statements to be done incrementally.
SYSLIB CHANGES:
- SEF framework now supports a new SEF Init request type from RS. 3 different
callbacks are available (init_fresh, init_lu, init_restart) to specify
initialization code when a service starts fresh, starts after a live update,
or restarts.
SYSTEM SERVICE CHANGES:
- Initialization code for system services is now enclosed in a callback SEF will
automatically call at init time. The return code of the callback will
tell RS whether the initialization completed successfully.
- Each init callback can access information passed by RS to initialize. As of
now, each system service has access to the public entries of RS's system process
table to gather all the information required to initialize. This design
eliminates many existing or potential races at boot time and provides a uniform
initialization interface to system services. The same interface will be reused
for the upcoming publish/subscribe model to handle dynamic
registration / deregistration of system services.
VM CHANGES:
- Uniform privilege management for all system services. Every service uses the
same call mask format. For boot services, VM copies the call mask from init
data. For dynamic services, VM still receives the call mask via rs_set_priv
call that will be soon replaced by the upcoming publish/subscribe model.
RS CHANGES:
- The system process table has been reorganized and split into private entries
and public entries. Only the latter ones are exposed to system services.
- VM call masks are now entirely configured in rs/table.c
- RS has now its own slot in the system process table. Only kernel tasks and
user processes not included in the boot image are now left out from the system
process table.
- RS implements the initialization protocol for system services.
- For services in the boot image, RS blocks till initialization is complete and
panics when failure is reported back. Services are initialized in their order of
appearance in the boot image priv table and RS blocks to implements synchronous
initialization for every system service having the flag SF_SYNCH_BOOT set.
- For services started dynamically, the initialization protocol is implemented
as though it were the first ping for the service. In this case, if the
system service fails to report back (or reports failure), RS brings the service
down rather than trying to restart it.
told to kernel
- makes VM ask the kernel if a certain process is allowed
to map in a range of physical memory (VM rounds it to page
boundaries afterwards - but it's impossible to map anything
smaller otherwise so I assume this is safe, i.e. there won't
be anything else in that page; certainly no regular memory)
- VM permission check cleanup (no more hardcoded calls, less
hardcoded logic, more readable main loop), a loose end left
by GQ
- remove do_copy warning, as the ipc server triggers this but
it's no more harmful than the special cases already excluded
explicitly (VFS, PM, etc).
- headers use the endpoint_t in syslib.h and the implmentation was using int
instead. Both uses endpoint_t now
- every variable named like proc, proc_nr or proc_nr_e of type endpoint_t has
name proc_ep now
- endpoint_t defined as u32_t not int
VMWare Workstation 6.x would previously die when running MINIX 3 with an
IOSPACE assertion and several error messages about multiply registered
I/O ports. The assertion is triggered when we probe for BAR sizes in
record_bar(). The solution: The PCI driver now disables I/O and mem
access before probing for BAR sizes.
Bumped up NR_PCIDEV and NR_PCIBUS, since Workstation 6.x virtualizes
more PCI buses and devices.
. memory maps in physical memory (for /dev/mem) with new vm interface
. pci complete_bars() seems to be buggy behaviour sometimes
. startup script opens its own stdout, stderr and stdin so init doesn't
have to do it