The major thrust of this change is to limit the amount of code
duplication surrounding the code for these functions. This code also
adds two new message types called info and hack. Info is meant to be
less harsh than warn so people don't get confused and start thinking
that the simulator is broken. Hack is a way for people to add runtime
messages indicating that the simulator just executed a code "hack"
that should probably be fixed. The benefit of knowing about these
code hacks is that it will let people know what sorts of inaccuracies
or potential bugs might be entering their experiments. Finally, I've
added some flags to turn on and off these message types so command
line options can change them.
Even though we're not incorrect about operator precedence, let's add
some parens in some particularly confusing places to placate GCC 4.3
so that we don't have to turn the warning off. Agreed that this is a
bit of a pain for those users who get the order of operations correct,
but it is likely to prevent bugs in certain cases.
These functions keep trying to read and write until all data has been
transferred, or an error occurrs. In the case where an end of file
hasn't been reached, but all of the bytes have not been read/written,
try again. On EINTR, try again.
We haven't used the preprocessor feature of the inifile stuff in a
very long time, so let's get rid of it since it would otherwise take
effort to maintain.
When invoking several copies of m5 on the same machine at the same
time, there can be a race for TCP ports for the terminal connections
or remote gdb. Expose a function to disable those ports, and have the
regression scripts disable them. There are some SimObjects that have
no other function than to be used with ports (NativeTrace and
EtherTap), so they will panic if the ports are disabled.
This appears to work, but I don't want to commit it until it gets tested a lot more.
I haven't deleted the functionality in this patch that will come later, but one question
is how to enforce encourage objects that call getVirtPort() to not cache the virtual port
since if the CPU changes out from under them it will be worse than useless. Perhaps a null
function like delVirtPort() is still useful in that case.
Make OutputDirectory::resolve() private and change the functions using
resolve() to instead use create().
--HG--
extra : convert_revision : 36d4be629764d0c4c708cec8aa712cd15f966453
Also some bug fixes in MIPS ISA uncovered by g++ warnings
(Python string compares don't work in C++!).
--HG--
extra : convert_revision : b347cc0108f23890e9b73b3ee96059f0cea96cf6
This works in SE mode because the virtual and physical addresses specified for
segments are the same. In Alpha, the LoadAddrMask is still necessary because
the virtual and physical addresses are the same and apparently rely on the
super page mechanism. All of the regressions pass.
--HG--
extra : convert_revision : 45e49dec5002d64e541bc466c61a0f304af29ea5
Previously, the bitunion would need to be declared and then assigned to separately.
--HG--
extra : convert_revision : d229bd83bc7baeca2259d4e7b080f359915015f3
into vm1.(none):/home/stever/bk/newmem-cache2
src/base/traceflags.py:
Hand merge.
--HG--
extra : convert_revision : 9e7539eeab4220ed7a7237457a8f336f79216924
src/base/bitfield.hh:
bit_val was being used directly in the statement in
return. If type B had fewer bits than last, bit_val << last would get
the wrong answer.
--HG--
extra : convert_revision : cbc43ccd139f82ebbd65f30af5d05b87c4edac64
(which defines fenv) doesn't necessarily extend to c++ and it is a problem with solaris. If really
desired this could wrap the ieeefp interface found in bsd* as well, but I see no need at the moment.
src/arch/alpha/isa/fp.isa:
src/arch/sparc/isa/formats/basic.isa:
use m5_fesetround()/m5_fegetround() istead of fenv interface directly
src/arch/sparc/isa/includes.isa:
use base/fenv instead of fenv directly
src/base/SConscript:
add fenv to sconscript
src/base/fenv.hh:
src/base/random.cc:
m5 implementation to standerdize fenv across platforms.
--HG--
extra : convert_revision : 38d2629affd964dcd1a5ab0db4ac3cb21438e72c
and python code into m5 to allow swig an python code to
easily added by any SConscript instead of just the one in
src/python. This provides SwigSource and PySource for
adding new files to m5 (similar to Source for C++). Also
provides SimObject for including files that contain SimObject
information and build the m5.objects __init__.py file.
--HG--
extra : convert_revision : 38b50a0629846ef451ed02f96fe3633947df23eb
src/arch/sparc/ua2005.cc:
fix interrupting when quisced. Since sticks correspond to instructions when not quisced we need to
check if were suspended and interrupt at the guess time
src/base/traceflags.py:
add trace flag for Iob
src/cpu/simple/base.cc:
Use Quisce instead of IPI trace flag
src/dev/sparc/iob.cc:
add some Dprintfs
--HG--
extra : convert_revision : 72e18fcc750ad1e4b2bb67b19b354eaffc6af6d5
automatic. The point is that now a subdirectory can be added
to the build process just by creating a SConscript file in it.
The process has two passes. On the first pass, all subdirs
of the root of the tree are searched for SConsopts files.
These files contain any command line options that ought to be
added for a particular subdirectory. On the second pass,
all subdirs of the src directory are searched for SConscript
files. These files describe how to build any given subdirectory.
I have added a Source() function. Any file (relative to the
directory in which the SConscript resides) passed to that
function is added to the build. Clean up everything to take
advantage of Source().
function is added to the list of files to be built.
--HG--
extra : convert_revision : 103f6b490d2eb224436688c89cdc015211c4fd30
directly configured by python. Move stuff from root.(cc|hh) to
core.(cc|hh) since it really belogs there now.
In the process, simplify how ticks are used in the python code.
--HG--
extra : convert_revision : cf82ee1ea20f9343924f30bacc2a38d4edee8df3